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Abstract
We introduce a new concept of dissipative measure-valued solution to the compressible

Navier-Stokes system satisfying, in addition, a relevant form of the total energy balance. Then
we show that a dissipative measure-valued and a standard smooth classical solution originating
from the same initial data coincide (weak-strong uniqueness principle) as long as the latter
exists. Such a result facilitates considerably the proof of convergence of solutions to various ap-
proximations including certain numerical schemes that are known to generate a measure-valued
solution. As a byproduct we show that any measure-valued solution with bounded density
component that starts from smooth initial data is necessarily a classical one.
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1 Introduction

The concept of measure-valued solution to partial differential equations was introduced by DiPerna [6]
in the context of conservation laws. He used Young measures in order to conveniently pass to the
artificial viscosity limit and in some situations (e.g. the scalar case) proved a posteriori that the
measure-valued solution is atomic, i.e. it is in fact a solution in the sense of distributions.

For general systems of conservation laws there is no hope to obtain (entropy) solutions in the
distributional sense and therefore there seems to be no alternative to the use of measure-valued
solutions or related concepts. In the realm of inviscid fluid dynamics, the existence of measure-
valued solutions has been established for a variety of models [7, 25, 16].

Measure-valued solutions to problems involving viscous fluids were introduced in the early nineties
in [21] and may seem obsolete nowadays in the light of the theory proposed by P.-L. Lions [20] and
extended by Feireisl et al. [11] in the framework of weak solutions for the barotropic Navier-Stokes
system

∂t%+ divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu),
(1.1)

where % is the density, u the velocity, p the given pressure function, and S the Newtonian viscous
stress.

The reason we consider measure-valued solutions nevertheless is twofold: First, the results of
this paper pertain to any adiabatic exponent greater than one, whereas the known existence theory
for weak solutions requires γ > 3/2; second, there remains a vast class of approximate problems
including systems with higher order viscosities and solutions to certain numerical schemes for which
it is rather easy to show that they generate a measure-valued solution whereas convergence to a
weak solution is either not known or difficult to prove. This motivates the present study, where we
introduce a new concept of (dissipative) measure valued solution to the system (1.1).

The main novelty is that we have to deal with nonlinearities both in the velocity and its derivative,
since we need to make sense of the energy inequality

∂t

∫
Ω

[
1

2
%|u|2 + P (%)

]
+

∫
Ω

[S(∇xu) : ∇xu] ≤ 0

in the measure-valued framework. Indeed, Neustupa [25] considered measure-valued solutions of (1.1),
but his theory does not involve the energy. Young measures do not seem suitable to describe the
limit distributions of a map and its gradient simultaneously, as it is unclear how the information
that one component of the measure is in some sense the gradient of the other component is encoded
in the measure. We solve this issue by introducing a “dissipation defect” (see Definition 2.1), which
encodes all conceivable concentration effects in the density and the velocity, and concentration and
oscillation effects in the gradient of the velocity. It then turns out that postulating a Poincaré-type
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inequality (see (2.23)), which is satisfied by any measure generated by a reasonable approximating
sequence of solutions for (1.1), already suffices to ensure weak-strong uniqueness. As a side effect,
we thus avoid the notationally somehow heavy f ramework of Alibert and Bouchitté [1] and give the
most extensive definition of dissipative measure-valued solution that still complies with weak-strong
uniqueness (cf. also the discussion in Section 2.2).

Indeed, the proof of weak-strong uniqueness for our dissipative measure-valued solutions is the
main point of this paper (Theorem 4.1). Weak-strong uniqueness means that classical solutions
are stable within the class of dissipative measure-valued solutions. For the incompressible Navier-
Stokes equations, a weak-strong uniqueness principle was shown for the first time in the classical
works of Prodi [29] and Serrin [30]. Surprisingly, even in the measure-valued setting, weak-strong
uniqueness results have been proved: For the incompressible Euler equations and bounded solutions
of conservation laws this was done in [2], and for the compressible Euler system and a related model
for granular flow in [17]. In the context of elastodynamics, dissipative measure-valued solutions
and their weak-strong uniqueness property were studied in [5]. Here, we give the first instance of
weak-strong uniqueness for measure-valued solutions of a vis cous flu id model.

We also identify a large class of problems generating dissipative measure-valued solutions including
the pressure-density equations of state that are still beyond the reach of the current theory of weak
solutions. We make a similar observation for certain numerical schemes, thus adopting the viewpoint
of Fjordholm et al. [13], who argue (in the context of hyperbolic systems of conservation laws)
that dissipative measure-valued solutions are a more appropriate solution concept compared to weak
entropy solutions, because the former are obtained as limits of common numerical approximations
whereas the latter aren’t.

As a further application of weak-strong unqiueness, we show (Theorem 6.1) that every approxi-
mate sequence of solutions of (1.1) with uniformly bounded density converges to the unique smooth
solution.

2 Definition and existence of dissipative measure-valued so-

lutions

2.1 Motivation: Brenner’s model in fluid dynamics

To motivate our definition of measure-valued solution, we consider a model of a viscous compressible
fluid proposed by Brenner [3], where the density % = %(t, x) and the velocity u = u(t, x) satisfy

∂t%+ divx(%u) = K∆% (2.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu) +Kdivx(u⊗∇x%), (2.2)
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where K > 0 is a parameter, and S the standard Newtonian viscous stress

S(∇xu) = µ

(
∇xu +∇t

xu−
2

3
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0. (2.3)

Note that S depends only on the symmetric part of its argument. Problem (2.1–2.3) may be supple-
mented by relevant boundary conditions, here

u|∂Ω = 0, ∇x% · n|∂Ω = 0, (2.4)

where Ω ⊂ RN , N = 2, 3 is a regular bounded domain.
In addition, sufficiently smooth solutions of (2.1–2.4) obey the total energy balance:

∂t

∫
Ω

[
1

2
%|u|2 + P (%)

]
dx+

∫
Ω

[
S(∇xu) : ∇xu +KP ′′(%)|∇x%|2

]
dx = 0, (2.5)

where P denotes the pressure potential,

P (%) = %

∫ %

1

p(z)

z2
dz.

Leaving apart the physical relevance of Brenner’s model, discussed and criticized in several stud-
ies (see, e.g., Öttinger, Struchtrup, and Liu [26]), we examine the limit of a family of solutions
{%K ,uK}K>0 for K → 0. Interestingly, system (2.1–2.3) is almost identical to the approximate
problem used in [8] in the construction of weak solutions to the barotropic Navier-Stokes system, in
particular, the existence of {%K ,uK}k>0 for a fairly general class of initial data may be established
by the method detailed in [8, Chapter 7]. A more general model of a heat-conducting fluid based on
Brenner’s ideas has been also analyzed in [12].

We suppose that the energy of the initial data is bounded∫
Ω

[
1

2
%K

0 |uK
0 |2 + P (%K

0 )

]
dx ≤ c

uniformly for K → 0. In order to deduce uniform bounds, certain coercivity assumption must be
imposed on the pressure term:

p ∈ C[0,∞) ∩ C2(0,∞), p(0) = 0, p′(%) > 0 for % > 0, lim inf
%→∞

p′(%) > 0, lim inf
%→∞

P (%)

p(%)
> 0. (2.6)
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Seeing that P ′′(%) = p′(%)/% we deduce from the energy balance (2.5) the following bounds

sup
τ∈[0,T ]

∫
Ω

P (%K)(τ, ·) dx ≤ c ⇒ sup
τ∈[0,T ]

∫
Ω

%K log(%K)(τ, ·) dx ≤ c,

sup
τ∈[0,T ]

∫
Ω

%K |uK |2(τ, ·) dx ≤ c,∫ T

0

∫
Ω

S(∇xu
K) : ∇xu

K dx ≤ c ⇒ (Korn inequality)

∫ T

0

∫
Ω

|∇xu
K |2 dx ≤ c

⇒ (Poincaré inequality)

∫ T

0

∫
Ω

|uK |2 dx ≤ c,

K

∫ T

0

∫
Ω

p′(%K)

%K
|∇x%

K |2 dx ≤ c

(2.7)

uniformly for K → 0.
Now, system (2.1, 2.2) can be written in the weak form[∫

Ω

%Kψ dx

]t=τ

t=0

=

∫ τ

0

∫
Ω

[
%K∂tψ + %KuK · ∇xψ −K∇x%

K · ∇xψ
]

dx dt (2.8)

for any ψ ∈ C1([0, T ]× Ω),[∫
Ω

%KuK · ϕ dx

]t=τ

t=0

=

∫ τ

0

∫
Ω

[
%KuK · ∂tϕ+ %K(uK ⊗ uK) : ∇xϕ+ p(%K)divxϕ

]
dx dt

−
∫ τ

0

∫
Ω

[
S(∇xu

K) : ∇xϕ+K(uK ⊗∇x%
K) : ∇xϕ

]
dx dt

(2.9)

for any ϕ ∈ C1([0, T ]× Ω), ϕ|∂Ω = 0.
The first observation is that the K-dependent quantities vanish in the asymptotic limit K → 0

as long as (2.7) holds. To see this, note that

K

∫ τ

0

∫
Ω

∇x%
K · ∇xψ dx dt =

√
K

∫ τ

0

∫
Ω

√
K
∇x%

K√
%K

·
√
%K∇xψ dx dt,

K

∫ τ

0

∫
Ω

(uK ⊗∇x%
K) : ∇xϕ dx dt =

√
K

∫ τ

0

∫
Ω

(√
%KuK ⊗

√
K
∇x%

K√
%K

)
: ∇xϕ dx;

(2.10)

whence, by virtue of hypothesis (2.6), these integrals are controlled by (2.7) at least on the set where
%K ≥ 1. In order to estimate ∇x%

K on the set where %K is small, we multiply (2.1) on b′(%K)
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obtaining

∂tb(%
K)+divx(b(%

K)uK)+
(
b′(%K)%K − b(%K)

)
divxu

K = Kdivx

(
b′(%K)∇xb(%

K)
)
−Kb′′(%K)|∇x%

K |2.
(2.11)

Such a step can be rigorously justified for the solutions of Brenner’s problem discussed in [12] pro-
vided, for instance, b ∈ C∞

c [0,∞). Thus taking b such that b(%) = %2 for % ≤ 1, integrating (2.11)
and using (2.7) we deduce that

K

∫ ∫
{%K≤1}

|∇x%
K |2 dx dt ≤ c uniformly for K → 0,

which provides the necessary bounds for the integrals in (2.10) on the set where %K ≤ 1. Indeed
using the fact that b is bounded and the bounds established in (2.7) we deduce∣∣∣∣K ∫ T

0

∫
Ω

b′′(%K)|∇x%
K |2 dx dt

∣∣∣∣ ≤ c.

On the other hand, thanks to our choice of b,

2K

∫ ∫
{%K≤1}

|∇x%
K |2 dx dt = K

∫ T

0

∫
Ω

b′′(%K)|∇x%
K |2 dx dt−K

∫ ∫
{%K>1}

b′′(%K)|∇x%
K |2 dx dt,

where the right-most integral is bounded in view of (2.7), hypothesis (2.6) and the fact that b′′(%K)
vanishes for large %K .

Consequently, we may, at least formally, let K → 0 in (2.8), in (2.9) and also in (2.5) obtaining
a measure-valued solution to the barotropic Navier-Stokes system:

∂t%+ divx(%u) = 0, (2.12)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu), (2.13)

u|∂Ω = 0. (2.14)

More specifically, as all integrands in (2.8), (2.9) admit uniform bounds at least in the Lebesgue
norm L1, it is convenient to use the well developed framework of parametrized measures associated
to the family of equi-integrable functions {%K ,uK}K>0 generating a Young measure

νt,x ∈ P
(
[0,∞)×RN

)
for a.a. (t, x) ∈ (0, T )× Ω,

cf. Pedregal [27, Chapter 6, Theorem 6.2]. We will systematically use the notation

F (%,u)(t, x) = 〈νt,x;F (s,v)〉 for the dummy variables s ≈ %, v ≈ u.
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Focusing on the energy balance (2.5) we first take advantage of the no-slip boundary conditions
and rewrite the viscous dissipation term in a more convenient form∫

Ω

S(∇xu
K) : ∇xu

K dx =

∫
Ω

[
µ|∇xu

K |2 + λ|divxu
K |2
]

dx, λ =
µ

3
+ η > 0.

Now, we identify[
1

2
%K |uK |2 + P (%K)

]
(τ, ·) ∈M(Ω) bounded uniformly for τ ∈ [0, T ];[

µ|∇xu
K |2 + λ|divxu

K |2
]

bounded in M+([0, T ]× Ω);

whence, passing to a subsequence as the case may be, we may assume that[
1

2
%K |uK |2 + P (%K)

]
(τ, ·) → E weakly-(*) in L∞weak(0, T ;M(Ω)),[

µ|∇xu
K |2 + λ|divxu

K |2
]
→ σ weakly-(*) in M+([0, T ]× Ω).

Thus, introducing new (non-negative) measures

E∞ = E − 〈νt,x;
1

2
s|v|2 + P (s)〉 dx, σ∞ = σ −

[
µ|∇〈νt,x;v〉|2 + λ (tr|∇〈νt,x;v〉|)2] dx dt,

we may perform the limit K → 0 in the energy balance (2.5) obtaining∫
Ω

(
1

2
%|u|2 + P (%)

)
(τ, ·) dx+ E∞(τ)[Ω] +

∫ τ

0

∫
Ω

µ|∇xu|2 + λ|divxu|2 dx dt+ σ∞[[0, τ ]× Ω]

≤
∫

Ω

(
1

2
%0|u0|2 + P (%0)

)
dx+ E∞(0)[Ω]

(2.15)

for a.a. τ ∈ (0, T ).
Applying a similar treatment to (2.8) we deduce[∫

Ω

%ψ dx

]t=τ

t=0

=

∫ τ

0

∫
Ω

[
%∂tψ + %u · ∇xψ

]
dx dt (2.16)

for any ψ ∈ C1([0, T ]×Ω). Note that (2.16) holds for any τ as the family {%K}K>0 is precompact in
Cweak([0, T ];L1(Ω)). Indeed precompactness follows from the uniform bound for {ρK} in L logL in
(2.7).

Our final goal is to perform the limit K → 0 in (2.9). This is a bit more delicate as both the
convective term %KuK ⊗ uK and p(%K) are bounded only in L∞(L1). We use the following result:

7



Lemma 2.1. Let {Zn}∞n=1, Zn : Q → RN be a sequence of equi-integrable functions generating a
Young measure νy, y ∈ Q, where Q ⊂ RM is a bounded domain. Let

G : RN → [0,∞)

be a continuous function such that

sup
n≥0

‖G(Zn)‖L1(Q) <∞,

and let F be continuous such that

F : RN → R |F (Z)| ≤ G(Z) for all Z ∈ RN .

Denote
F∞ = F̃ − 〈νy, F (Z)〉 dy, G∞ = G̃− 〈νy, G(Z)〉 dy,

where F̃ ∈M(Q), G̃ ∈M(Q) are the weak-star limits of {F (Zn)}n≥1, {G(Zn)}n≥1 in M(Q).
Then

|F∞| ≤ G∞.

Proof:
Write

< F̃ , φ >= lim
n→∞

∫
|Zn|≤M

F (Zn)φ dy + lim
n→∞

∫
|Zn|>M

F (Zn)φ dy,

< G̃, φ >= lim
n→∞

∫
|Zn|≤M

G(Zn)φ dy + lim
n→∞

∫
|Zn|>M

G(Zn)φ dy.

Applying Lebesgue theorem, we get

lim
M→∞

(
lim

n→∞

∫
|Zn|≤M

F (Zn)φ dy

)
=

∫
Q

〈νy;F (Z)〉 dy,

lim
M→∞

(
lim

n→∞

∫
|Zn|≤M

G(Zn)φ dx

)
=

∫
Q

〈νy;G(Z)〉 dy.

Consequently,

〈F∞;φ〉 = lim
M→∞

(
lim

n→∞

∫
|Zn|>M

F (Zn)φ dy

)
, 〈G∞;φ〉 = lim

M→∞

(
lim

n→∞

∫
|Zn|>M

G(Zn)φ dy

)
.
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As |F | ≤ G the desired result follows.

Seeing that

|%uiuj| ≤ %|u|2 and, by virtue of hypothesis (2.6), p(%) ≤ aP (%) for % >> 1,

we may let K → 0 in (2.9) to deduce[∫
Ω

%u · ϕ dx

]t=τ

t=0

=

∫ τ

0

∫
Ω

[
%u · ∂tϕ+ %(u⊗ u) : ∇xϕ+ p(%)divxϕ

]
dx dt

−
∫ τ

0

∫
Ω

S(∇xu) : ∇xϕ dx dt+

∫ τ

0

〈
rM ;∇xϕ

〉
dt

(2.17)

for any ϕ ∈ C1([0, T ]× Ω), ϕ|∂Ω = 0, where

rM =
{
rM
i,j

}N

i,j=1
rM
i,j ∈ L∞weak(0, T ;M(Ω)), |rM

i,j(τ)| ≤ cE∞(τ) for a.a. τ ∈ (0, T ).

2.2 Dissipative measure-valued solutions to the Navier-Stokes system

Motivated by the previous considerations, we introduce the concept of dissipative measure valued
solution to the barotropic Navier-Stokes system.

Definition 2.1. We say that a parameterized measure {νt,x}(t,x)∈(0,T )×Ω,

ν ∈ L∞weak

(
(0, T )× Ω;P

(
[0,∞)×RN

))
, 〈νt,x; s〉 ≡ %, 〈νt,x;v〉 ≡ u

is a dissipative measure-valued solution of the Navier-Stokes system (2.12 – 2.14) in (0, T )×Ω, with
the initial conditions ν0 and dissipation defect D,

D ∈ L∞(0, T ), D ≥ 0,

if the following holds.

• Equation of continuity. There exists a measure rC ∈ L1([0, T ];M(Ω)) and χ ∈ L1(0, T )
such that for a.a. τ ∈ (0, T ) and every ψ ∈ C1([0, T ]× Ω),∣∣〈rC(τ);ψ〉

∣∣ ≤ χ(τ)D(τ)‖ψ‖C(Ω) (2.18)

and∫
Ω

〈ντ,x; s〉ψ(τ, ·) dx−
∫

Ω

〈ν0; s〉ψ(0, ·) dx

=

∫ τ

0

∫
Ω

[
〈νt,x; s〉∂tψ + 〈νt,x; sv〉 · ∇xψ

]
dx dt+

∫ τ

0

〈rC ;∇xψ〉 dt.

(2.19)
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• Momentum equation.

u = 〈νt,x;v〉 ∈ L2(0, T ;W 1,2
0 (Ω;RN)),

and there exists a measure rM ∈ L1([0, T ];M(Ω)) and ξ ∈ L1(0, T ) such that for a.a. τ ∈ (0, T )
and every ϕ ∈ C1([0, T ]× Ω;RN), ϕ|∂Ω = 0,∣∣〈rM(τ);ϕ〉

∣∣ ≤ ξ(τ)D(τ)‖ϕ‖C(Ω) (2.20)

and ∫
Ω

〈ντ,x; sv〉 · ϕ(τ, ·) dx−
∫

Ω

〈ν0; sv〉 · ϕ(0, ·) dx

=

∫ τ

0

∫
Ω

[
〈νt,x; sv〉 · ∂tϕ+ 〈νt,x; s(v ⊗ v)〉 : ∇xϕ+ 〈νt,x; p(s)〉divxϕ

]
dx dt

−
∫ τ

0

∫
Ω

S(∇xu) : ∇xϕ dx dt+

∫ τ

0

〈
rM ;∇xϕ

〉
dt.

(2.21)

• Energy inequality.∫
Ω

〈
ντ,x;

(
1

2
s|v|2 + P (s)

)〉
dx+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt+D(τ)

≤
∫

Ω

〈
ν0;

(
1

2
s|v|2 + P (s)

)〉
dx

(2.22)

for a.a. τ ∈ (0, T ). In addition, the following version of “Poincaré’s inequality” holds for a.a.
τ ∈ (0, T ): ∫ τ

0

∫
Ω

〈
νt,x; |v − u|2

〉
dx dt ≤ cPD(τ). (2.23)

Remark 2.1. Hypothesis (2.23) is motivated by the following observation: Suppose that

uε → u weakly in L2(0, T ;W 1,2
0 (Ω;RN)),

then∫ τ

0

∫
Ω

〈
νt,x; |v − u|2

〉
dx dt = lim

ε→0

∫ τ

0

∫
Ω

|uε − u|2 dx dt ≤ cP lim
ε→0

∫ τ

0

∫
Ω

|∇uε −∇u|2 dx dt

= cP lim
ε→0

∫ τ

0

∫
Ω

|∇uε|2 − |∇u|2 dx dt ≤ cPD(τ),

provided the dissipation defect D “contains” the oscillations and concentrations in the velocity gra-
dient.
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We tacitly assume that all integrals in (2.19–2.23) are well defined, meaning, all integrands are
measurable and at least integrable.

Notice that S(∇xu) : ∇xu ≥ 0 so that the dissipative term in the energy inequality is nonnegative.
The function D represents a dissipation defect usually attributed to (hypothetical) singularities

that may appear in the course of the fluid evolution. The measure-valued formulation contains a
minimal piece of information encoded in system (2.12–2.14). In contrast with the definition intro-
duced by Neustupa [25], the oscillatory and concentration components are clearly separated and,
more importantly, the energy balance is included as an integral part of the present approach.

Although one often uses the framework of Alibert and Bouchitté [1] in order to handle oscillations
and concentrations (for instance in [16, 2, 17]), we choose here to give a somewhat simpler repre-
sentation of the concentration effects, thereby avoiding usage of the concentration-angle measure.
Indeed, the generalized Young measures of Alibert-Bouchitté capture information on all nonlinear
functions of the generating sequence with suitable growth, whereas for our purposes this information
is not fully needed, as we deal only with specific nonlinearities (such as ρu⊗ u, |∇xu|2, etc.), which
are all encoded in the dissipation defect D. This approach is inspired by [5]. We feel that the present
formulation improves readability, and, more importantly, extends considerably the class of possible
applications of the weak-strong uniqueness principle stated below. Indeed, it is possible to define
dissipative measure-valued solutions in the framework of Alibert-Bouchitté and show that they give
rise to a dissipative measure-valued solutions as defined above, but presumably not vice versa. Let us
also point out that an analogue of our dissipative measure-valued solutions could be considered also
for the incompressible and compressible Euler system and might thus lead to a slight simplification
and generalization of the results in [2] and [17].

The considerations of Section 2.1 immediately yield the following existence result:

Theorem 2.1. Suppose Ω is a regular bounded domain in R2 or R3, and suppose the pressure
satisfies (2.6). If (ρ0,u0) is initial data with finite energy, then there exists a dissipative measure-
valued solution with initial data

ν0 = δ(ρ0,u0). (2.24)

Proof. For every K > 0, we find a weak solution to Brenner’s model with initial data uK
0 ∈ C∞

c (Ω)
and ρK

0 ∈ C∞(Ω) such that ∇xρ
K
0 · n|∂Ω = 0 and such that ρK

0 → ρ0, ρ
K
0 uK

0 → ρ0u0, and

1

2
ρK

0 |uK
0 |2 + P (ρK

0 ) → 1

2
ρ0|u0|2 + P (ρ0)

in L1(Ω), respectively. Indeed, it is easy to see that such an approximation of the initial density
exists (use a simple truncation and smoothing argument). Then, the arguments of Section 2.1 yield
a dissipative measure-valued solution with

D(τ) = E∞(τ)[Ω] + σ∞[[0, τ ]× Ω]

11



for a.a. τ ∈ (0, T ). Moreover, we have rC = 0 and χ ≡ 0, ξ ≡ c. The Poincaré-Korn inequality (2.23)
is an easy consequence of the respective inequality for each uK .

Note that our definition of dissipative measure-valued solutions is arguably broader than nec-
essary: For instance, any approximation sequence with a uniform bound on the energy will not
concentrate in the momentum, whence rC = 0. We choose to include such an effect in our defini-
tion anyway since even in this potentially larger class of measure-valued solutions we can still show
weak-strong uniqueness: a measure-valued and a smooth solution starting from the same initial data
coincide as long as the latter exists. In other words, the set of classical (smooth) solutions is stable
in the class of dissipative measure-valued solutions. Showing this property is the main goal of the
present paper.

3 Relative energy

The commonly used form of the relative energy (entropy) functional in the context of weak solutions
to the barotropic Navier-Stokes system reads

E
(
%,u

∣∣∣r,U) =

∫
Ω

[
1

2
%|u−U|2 + P (%)− P ′(r)(%− r)− P (r)

]
dx,

where %, u is a weak solution and r and U are arbitrary “test” functions mimicking the basic
properties of %, u, specifically, r is positive and U satisfies the relevant boundary conditions, see
Feireisl et al. [10], Germain [15], Mellet and Vasseur [22], among others. Here, the crucial observation
is that

E
(
%,u

∣∣∣r,U) =

∫
Ω

[
1

2
%|u|2 + P (%)

]
dx−

∫
Ω

%u ·U dx+

∫
Ω

1

2
%|U|2 dx−

∫
Ω

P ′(r)% dx+

∫
Ω

p(r) dx,

where all integrals on the right-hand side may be explicitly expressed by means of either the energy
inequality or the field equations. Accordingly, a relevant candidate in the framework of (dissipative)
measure valued solutions is

Emv

(
%,u

∣∣∣r,U) (τ) =

∫
Ω

〈
ντ,x;

1

2
s|v −U|2 + P (s)− P ′(r)(s− r)− P (r)

〉
dx

=

∫
Ω

〈
ντ,x;

1

2
s|v|2 + P (s)

〉
dx−

∫
Ω

〈ντ,x; sv〉 ·U dx+

∫
Ω

1

2
〈ντ,x; s〉 |U|2 dx

−
∫

Ω

〈ντ,x; s〉P ′(r) dx+

∫
Ω

p(r) dx.

Our goal in the remaining part of this section is to express all integrals on the right hand side in
terms of the energy balance (2.22) and the field equations (2.19), (2.21).

12



3.1 Density dependent terms

Using the equation of continuity (2.19) with test function 1
2
|U|2, we get∫

Ω

1

2
〈ντ,x; s〉 |U|2(τ, ·) dx−

∫
Ω

1

2
〈ν0,x; s〉 |U|2(0, ·) dx

=

∫ τ

0

∫
Ω

[〈νt,x; s〉U · ∂tU + 〈νt,x; sv〉 ·U · ∇xU] dx dt+

∫ τ

0

∫
Ω

〈
rC ;

1

2
∇x|U|2

〉
dx dt

(3.1)

provided U ∈ C1([0, T ]× Ω;RN).
Similarly, testing with P ′(r) we can write∫

Ω

〈ντ,x; s〉P ′(r)(τ, ·) dx−
∫

Ω

〈ν0,x; s〉P ′(r)(0, ·) dx

=

∫ τ

0

∫
Ω

[〈νt,x; s〉P ′′(r)∂tr + 〈νt,x; sv〉 · P ′′(r) · ∇xr] dx dt+

∫ τ

0

∫
Ω

〈
rC ;P ′(r)

〉
dx dt

=

∫ τ

0

∫
Ω

[
〈νt,x; s〉

p′(r)

r
· ∂tr + 〈νt,x; sv〉

p′(r)

r
· ∇xr

]
dx dt+

∫ τ

0

∫
Ω

〈
rC ;∇xP

′(r)
〉

dx dt

(3.2)

provided r > 0 and r ∈ C1([0, T ]× Ω), and P is twice continuously differentiable in (0,∞).

3.2 Momentum dependent terms

Analogously to the preceding part, we use (2.21) to compute∫
Ω

〈ντ,x; sv〉 ·U(τ, ·) dx−
∫

Ω

〈ν0,x; sv〉 ·U(0, ·) dx

=

∫ τ

0

∫
Ω

〈νt,x; sv〉 · ∂tU dx dt+

∫ τ

0

∫
Ω

[〈νt,x; sv ⊗ v〉 : ∇xU + 〈νt,x; p(s)〉 divxU] dx dt

−
∫ τ

0

∫
Ω

〈νt,x; S(D)〉 : ∇xU dx dt+

∫ τ

0

〈
rM ;∇xU

〉
dt

=

∫ τ

0

∫
Ω

〈νt,x; sv〉 · ∂tU dx dt+

∫ τ

0

∫
Ω

[〈νt,x; sv ⊗ v〉 : ∇xU + 〈νt,x; p(s)〉 divxU] dx dt

−
∫ τ

0

∫
Ω

S(∇xu) : ∇xU dx dt+

∫ τ

0

〈
rM ;∇xU

〉
dt

(3.3)

for any U ∈ C1([0, T ]× Ω;RN), U|∂Ω = 0.

13



3.3 Relative energy inequality

Summing up the previous discussion we may deduce a measure-valued analogue of the relative energy
inequality:

Emv

(
%,u

∣∣∣r,U)+

∫ τ

0

S(∇xu) : (∇xu−∇xU) dx dt+D(τ)

≤
∫

Ω

〈
ν0,x;

1

2
s|v −U0|2 + P (s)− P ′(r0)(s− r0)− P (r0)

〉
dx

−
∫ τ

0

∫
Ω

〈νt,x, sv〉 · ∂tU dx dt

−
∫ τ

0

∫
Ω

[〈νt,x; sv ⊗ v〉 : ∇xU + 〈νt,x; p(s)〉 divxU] dx dt

+

∫ τ

0

∫
Ω

[〈νt,x; s〉U · ∂tU + 〈νt,x; sv〉 ·U · ∇xU] dx dt

+

∫ τ

0

∫
Ω

[〈
νt,x;

(
1− s

r

)〉
p′(r)∂tr − 〈νt,x; sv〉 ·

p′(r)

r
∇xr

]
dx dt

+

∫ τ

0

〈
rC ;

1

2
∇x|U|2 −∇xP

′(r)

〉
dt−

∫ τ

0

〈
rM ;∇xU

〉
dt.

(3.4)

As already pointed out, the relative entropy inequality (3.4) holds for any r ∈ C1([0, T ] × Ω),
r > 0, and any U ∈ C1([0, T ]× Ω;RN), U|∂Ω = 0.

Moreover, in accordance with Definition 2.1, we have∣∣∣∣∫ τ

0

〈
rC ;

1

2
∇x|U|2 −∇xP

′(r)

〉
dt−

∫ τ

0

〈
rM ;∇xU

〉
dt

∣∣∣∣
≤ c

(
‖∇xU‖C([0,T ]×Ω;RN×N ) + ‖r‖C([0,T ]×Ω) + ‖∇xr‖C([0,T ]×Ω;RN )

)∫ τ

0

(χ(t) + ξ(t))D(t) dt.

Thus the validity of (3.4) can be extended to the following class of test functions by a simple argument:

U,∇xU, r,∇xr ∈ C([0, T ]× Ω), ∂tr, ∂tU ∈ L1(0, T ;C(Ω)), r > 0, U|∂Ω = 0. (3.5)

4 Weak-strong uniqueness

Now, we suppose that the test functions r, U belong to the class (3.5), and, in addition, solve the
Navier-Stokes system (2.12–2.14). Our goal is to show that the measure valued solution and the
strong one are close in terms of the “distance” of the initial data. We proceed in several steps.
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4.1 Continuity equation

In addition to the general hypotheses that guarantee (3.4) suppose that r,U satisfy the equation of
continuity

∂tr + divx(rU) = 0. (4.1)

Accordingly, we may rewrite (3.4) as

Emv

(
%,u

∣∣∣r,U)+

∫ τ

0

∫
Ω

S(∇xu) : (∇xu−∇xU) dx dt+D(τ)

≤
∫

Ω

〈
ν0,x;

1

2
s|v −U0|2 + P (s)− P ′(r0)(s− r0)− P (r0)

〉
dx

−
∫ τ

0

∫
Ω

〈νt,x, sv〉 · ∂tU dx dt−
∫ τ

0

∫
Ω

〈νt,x; sv ⊗ v〉 : ∇xUdx dt

+

∫ τ

0

∫
Ω

[〈νt,x; s〉U · ∂tU + 〈νt,x; sv〉 ·U · ∇xU] dx dt

+

∫ τ

0

∫
Ω

〈νt,x; sU− sv〉 · p
′(r)

r
∇xr dx dt

−
∫ τ

0

∫
Ω

〈νt,x; p(s)− p′(r)(s− r)− p(r)〉 divxU dx dt

+ c

∫ τ

0

(χ(t) + ξ(t))D(t)dt

(4.2)

where the constant c depends only on the norms of the test functions specified in (3.5).

4.2 Momentum equation

In addition to (4.1) suppose that r,U satisfy also the momentum balance

∂tU + U · ∇xU +
1

r
∇xp(r) =

1

r
divxS(∇xU).
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Indeed, it is easily seen that this follows from the momentum equation in conjunction with (4.1).
Accordingly, relation (4.2) reduces to

Emv

(
%,u

∣∣∣r,U)+

∫ τ

0

∫
Ω

S(∇xu) : (∇xu−∇xU) dx dt+D(τ)

≤
∫

Ω

〈
ν0,x;

1

2
s|v −U0|2 + P (s)− P ′(r0)(s− r0)− P (r0)

〉
dx

+

∫ τ

0

∫
Ω

〈νt,x, sv − sU〉 · ∇xU ·U dx dt−
∫ τ

0

∫
Ω

〈νt,x; sv ⊗ v〉 : ∇xUdx dt

+

∫ τ

0

∫
Ω

〈νt,x; sv〉 · ∇xU ·U dx dt

+

∫ τ

0

∫
Ω

〈νt,x; sU− sv〉 · 1

r
divxS(∇xU) dx dt

+

∫ τ

0

∫
Ω

〈νt,x; p(s)− p′(r)(s− r)− p(r)〉 divxU dx dt

+ c

∫ τ

0

(χ(t) + ξ(t))D(t)dt

(4.3)

where, furthermore,∫ τ

0

∫
Ω

〈νt,x; (sv − sU)〉 · ∇xU ·U dx dt−
∫ τ

0

∫
Ω

〈νt,x; sv ⊗ v〉 : ∇xUdx dt

+

∫ τ

0

∫
Ω

〈νt,x; sv〉 · ∇xU ·U dx dt

=

∫ τ

0

∫
Ω

〈νt,x; (sv − sU)〉 · ∇xU ·U dx dt+

∫ τ

0

∫
Ω

〈νt,x; sv · ∇xU · (U− v)〉 dx dt

=

∫ τ

0

∫
Ω

〈νt,x; s(v −U) · ∇xU · (U− v)〉 dx dt.
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Thus, finally, (4.3) can be written as

Emv

(
%,u

∣∣∣r,U)+

∫ τ

0

∫
Ω

S(∇xu−∇xU) : (∇xu−∇xU) dx dt+D(τ)

≤
∫

Ω

〈
ν0,x;

1

2
s|v −U0|2 + P (s)− P ′(r0)(s− r0)− P (r0)

〉
dx

+

∫ τ

0

∫
Ω

〈νt,x; s(v −U) · ∇xU · (U− v)〉 dx dt

−
∫ τ

0

∫
Ω

(∇xu−∇xU) : S(∇xU) dx dt

+

∫ τ

0

∫
Ω

〈νt,x; sU− sv〉 · 1

r
divxS(∇xU) dx dt

+

∫ τ

0

∫
Ω

〈νt,x; p(s)− p′(r)(s− r)− p(r)〉 divxU dx dt

+ c

∫ τ

0

(χ(t) + ξ(t))D(t)dt.

(4.4)

4.3 Compatibility

Our last goal is to handle the difference∫ τ

0

∫
Ω

〈νt,x; sU− sv〉 · 1

r
divxS(∇xU) dx dt−

∫ τ

0

∫
Ω

(∇xu−∇xU) : S(∇xU) dx dt.

To this end, we need slightly more regularity than required in (3.5), namely

divxS(∇xU) ∈ L2(0, T ;L∞(Ω;RN×N)) or, equivalently ∂tU ∈ L2(0, T ;L∞(Ω;RN)).

Now, since
u ∈ L2((0, T );W 1,2

0 (Ω;RN)),

we get ∫ τ

0

∫
Ω

〈νt,x; sU− sv〉 · 1

r
divxS(∇xU) dx dt−

∫ τ

0

∫
Ω

(∇xu−∇xU) : S(∇xU) dx dt

=

∫ τ

0

∫
Ω

〈νt,x; (sU− sv + rv − rU)〉 · 1

r
divxS(∇xU) dx dt

=

∫ τ

0

∫
Ω

〈νt,x; (s− r)(U− v)〉 · divxS(∇xU)

r
dx dt.
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Now, we write

〈νt,x; (s− r)(U− v)〉
= 〈νt,x;ψ(s)(s− r)(U− v)〉+ 〈νt,x; (1− ψ(s))(s− r)(U− v)〉 ,

where
ψ ∈ C∞

c (0,∞), 0 ≤ ψ ≤ 1, ψ(s) = 1 for s ∈ (inf r, sup r).

Consequently, we get

〈νt,x;ψ(s)(s− r)(U− v)〉 ≤ 1

2

〈
νt,x;

ψ(s)2

√
s

(s− r)2

〉
+

1

2

〈
νt,x;

ψ(s)2

√
s
s|U− v|2

〉
,

where, as ψ is compactly supported in (0,∞), both terms can be controlled in (4.4) by Emv, as is
easily verified.

Next, we write

〈νt,x; (1− ψ(s))(s− r)(U− v)〉
= 〈νt,x;ω1(s)(s− r)(U− v)〉+ 〈νt,x;ω2(s)(s− r)(U− v)〉 ,

where
supp[ω1] ⊂ [0, inf r), supp[ω2] ⊂ (sup r,∞], ω1 + ω2 = 1− ψ.

Accordingly,

〈νt,x;ω1(s)(s− r)(U− v)〉 ≤ c(δ)
〈
νt,x;ω

2
1(s)(s− r)2

〉
+ δ

〈
νt,x; |U− v|2

〉
where the former term on the right-hand side is controlled by Emv while the latter can be absorbed
by the left hand side of (4.4) by virtue of Poincaré inequality stipulated in (2.23) provided δ > 0 has
been chosen small enough. Indeed, on one hand,〈

νt,x; |U− v|2
〉

= |U|2 − 2u ·U + |u|2 +
〈
νt,x; |v|2 − |u|2

〉
= |u−U|2 +

〈
νt,x; |v − u|2

〉
;

whence, by virtue of (2.23) and the standard Poincaré-Korn inequality,∫ τ

0

∫
Ω

〈
νt,x; |U− v|2

〉
dx dt ≤ cP

(∫ τ

0

∫
Ω

(S(∇xu−∇xU)) : (∇xu−∇xU) dx dt+D(τ)

)
.

Finally,
〈ω2(s)(s− r)(U− v)〉 ≤ c

〈
νt,x;ω2(s)

(
s+ s(U− v)2

)〉
,
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where both integrals are controlled by Emv.
Summing up the previous discussion, we deduce from (4.4) that

Emv

(
%,u

∣∣∣r,U)+
1

2
D(τ)

≤
∫

Ω

〈
ν0,x;

1

2
s|v −U(0, ·)|2 + P (s)− P ′(r(0, ·))(s− r(0, ·))− P (r(0, ·))

〉
dx

+ c

(∫ τ

0

Emv

(
%,u

∣∣∣r,U) dt+

∫ τ

0

(χ(t) + ξ(t))D(t) dt

)
.

Thus applying Gronwall’s lemma, we conclude that

Emv

(
%,u

∣∣∣r,U) (τ) +D(τ)

≤ c(T )

∫
Ω

〈
ν0,x;

1

2
s|v −U(0, ·)|2 + P (s)− P ′(r(0, ·))(s− r(0, ·))− P (r(0, ·))

〉
dx

(4.5)

for a.a. τ ∈ [0, T ].
We have shown the main result of the present paper.

Theorem 4.1. Let Ω ⊂ RN , N = 2, 3 be a bounded smooth domain. Suppose the pressure p satisfies
(2.6). Let {νt,x,D} be a dissipative measure-valued solution to the barotropic Navier-Stokes system
(2.12–2.14) in (0, T )×Ω, with the initial state represented by ν0, in the sense specified in Definition
2.1. Let [r,U] be a strong solution of (2.12–2.14) in (0, T )× Ω belonging to the class

r, ∇xr, U, ∇xU ∈ C([0, T ]× Ω), ∂tU ∈ L2(0, T ;C(Ω;RN)), r > 0, U|∂Ω = 0.

Then there is a constant Λ = Λ(T ), depending only on the norms of r, r−1, U, χ, and ξ in the
aforementioned spaces, such that∫

Ω

〈
ντ,x;

1

2
s|v −U|2 + P (s)− P ′(r)(s− r)− P (r)

〉
dx

+

∫ τ

0

∫
Ω

|∇xu−∇xU|2 dx dt+D(τ)

≤ Λ(T )

∫
Ω

〈
ν0,x;

1

2
s|v −U(0, ·)|2 + P (s)− P ′(r(0, ·))(s− r(0, ·))− P (r(0, ·))

〉
dx

for a.a. τ ∈ (0, T ). In particular, if the initial states coincide, meaning

ν0,x = δ[r(0,x),U(0,x)] for a.a. x ∈ Ω

then D = 0, and
ντ,x = δ[r(τ,x),U(τ,x)] for a.a. τ ∈ (0, T ), x ∈ Ω.
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5 Examples of problems generating measure-valued solu-

tions

Besides the model of Brenner discussed in Section 1, there is a vast class of problems – various approxi-
mations of the barotropic Navier-Stokes system (2.12–2.14) – generating (dissipative) measure-valued
solutions. Below, we mention three examples among many others.

5.1 Artificial pressure approximation

The theory of weak solutions proposed by Lions [20] and later developed in [11] does not cover certain
physically interesting cases. For the sake of simplicity, consider the pressure p in its iconic form

p(%) = a%γ, a > 0, γ ≥ 1

obviously satisfying (2.6). The existence of weak solutions is known in the following cases:

N = 2, γ ≥ 1 and N = 3, γ >
3

2
.

Note that the critical case γ = 1 for N = 2 was solved only recently by Plotnikov and Weigant [28].
This motivates the following approximate problem

∂t%+ divx(%u) = 0, (5.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%) + δ∇x%
Γ = divxS(∇xu), (5.2)

u|∂Ω = 0, (5.3)

where δ > 0 is a small parameter and Γ > 1 is large enough to ensure the existence of weak solutions.
Repeating the arguments applied in Section 2.1 to Brenner’s model, it is straightforward to check

that a family of weak solutions {%δ,uδ}δ>0, satisfying the energy inequality, generates a dissipative
measure-valued solution in the sense of Definition 2.1. Indeed it is enough to observe that

p(%) + δ%Γ ≤ c

(
P (%) +

δ

Γ− 1
%Γ

)
for all % ≥ 1,

where the constant is uniform with respect to δ → 0.
We conclude that the weak solutions of the problem with vanishing artificial pressure generate a

dissipative measure-valued solution. In particular, as a consequence of Theorem 4.1, they converge
to the (unique) strong solution provided it exists and the initial data are conveniently adjusted. We
remark that strong solutions to the barotropic Navier-Stokes system exist at least locally in time
provided
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• the pressure is a sufficiently smooth function of %,

• the domain Ω has a regular boundary, and

• the initial data are smooth enough and satisfy the necessary compatibility conditions as the
case may be,

see e.g. Cho, Choe and Kim [4], Valli and Zaja̧czkowski [32].

5.2 Multipolar fluids

The theory of multipolar fluid was developed by Nečas and Šilhavý [24] in the hope to develop an
alternative approach to regularity for compressible fluids. The problems may take various forms
depending on the shape of the viscous stress

T(u,∇xu, ∇2
xu, . . . ) = S(∇xu)+δ

k−1∑
j=1

(
(−1)jµj∆

j(∇xu +∇t
xu) + λj∆

jdivxu I
)
+ non-linear terms.

The resulting system has a nice variational structure and, for k large enough, admits global in time
smooth solutions, see Nečas, Novotný and Šilhavý [23].

It is natural to conjecture that the (smooth) solutions of the multipolar system will converge
to their weak counterparts as δ → 0 at least in the cases where the pressure complies with the
requirements of Lions’ theory. However, this is to the best of our knowledge an open problem.
Instead, such a process may and does generate a (dissipative) measure valued solutions at least for
a certain class of boundary conditions studied in [23] that may be schematically written as

no-slip u|∂Ω = 0 + natural boundary conditions of Neumann type.

Then the proof is basically the same as for Brenner’s model.

5.3 Numerical schemes

Theorem 4.1 may be useful in the study of convergence to certain dissipative numerical schemes for
the barotropic Navier-Stokes system, meaning schemes preserving some form of the energy inequality.
Such a scheme was proposed by Karlsen and Karper [18], and a rigorous proof of convergence to weak
solutions finally was finally established by Karper [19]. Karper’s result applies to a certain class of
pressures, notably

p(%) = a%γ for γ > 3, N = 3.
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On the other hand, however, the consistency estimates cover a larger set for γ > 3/2, see Gallouët et
al. [14]. It can be shown that the consistency estimate imply that the family of numerical solutions
generate a (dissipative) measure-valued solution. In accordance with the conclusion of Theorem 4.1,
the numerical solutions will converge to a classical exact solution as soon as the latter exists. In fact
this has been shown in [9] by means of a discrete analogue of the relative energy inequality.

6 Measure valued solutions with bounded density field

We conclude our discussion by a simple example that indicates that the measure-valued solutions
may be indeed an artifact of the theory as long as they emanate from sufficiently regular initial data.
The following result is a direct consequence of Theorem 4.1 and a regularity criterion proved by
Sun, Wang, and Zhang [31] stating that solutions of the barotropic Navier-Stokes system starting
from smooth initial data remain smooth as long as their density component remains bounded. Since
Theorem 4.1 requires slightly better regularity than [31], we restrict ourselves to very regular initial
data for which the necessary local existence result was proved in [9, Proposition 2.1].

Theorem 6.1. In addition to the hypotheses of Theorem 4.1, suppose that µ > 0, η = 0, and
{νt,x,D} is a dissipative measure-valued solution to the barotropic Navier-Stokes system in (0, T )×Ω
emanating from smooth data, specifically,

ν0,x = δ[r0(x),U0(x)] for a.a. x ∈ Ω,

where
r0 ∈ C3(Ω), r0 > 0, U0 ∈ C3(Ω), U0|∂Ω = 0, ∇xp(r0) = divxS(∇xU0).

Suppose that the measure valued solution νt,x has bounded density component, meaning the support
of the measure νt,x is confined to a strip

0 ≤ s ≤ % for a.a (t, x) ∈ (0, T )× Ω.

Then D = 0 and νt,x = δ[r(τ,x),U(τ,x)] for a.a. τ ∈ (0, T ), x ∈ Ω, where [r,U] is a classical smooth
solution of the barotropic Navier-Stokes system in (0, T )× Ω.

Remark 6.1. Note that ∇xp(r0) = divxS(∇xU0) is the standard compatibility condition associated
to (2.14).

Proof:
As stated in [9, Proposition 2.1], the compressible Navier-Stokes system (2.12–2.14) endowed with

the initial data [r0,U0] admits a local in time classical solutions fitting the regularity class required
in Theorem 4.1. Thus the measure-valued solution coincides with the classical one on its life span.
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However, as the density component is bounded, the result of Sun, Wang, and Zhang [31] asserts that
the classical solution can be extended up to the time T .

Remark 6.2. The assumption that the bulk viscosity η vanishes is a technical hypothesis used in [31].
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[1] J.-J. Alibert and G. Bouchitté. Non-uniform integrability and generalized young measure. J.
Convex Anal., 4:129–148, 1997.
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