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Abstract

In the paper, we are concerned with some computational aspects of smooth
approximation of data. This approach to approximation employs a (possibly infinite)
linear combinations of smooth functions with coefficients obtained as the solution of
a variational problem, where constraints represent the conditions of interpolating or
smoothing. Some 1D numerical examples are presented.

1. Introduction

Smooth approximation [2] is an approach to data interpolation that employs the
variational formulation of the problem in an inner product space, where constraints
represent the interpolation conditions. A possible criterion is to minimize the inte-
gral of the squared magnitude of the interpolating function. A more sophisticated
criterion is then to minimize, with some weights chosen, the integrals of the squared
magnitude of some (or possibly all) derivatives of the interpolating function. We are
thus concerned with the exact interpolation of the data at nodes and, at the same
time, with the smoothness of the interpolating curve and its derivatives.

Smooth approximation has numerous applications as measurements of the values
of a continuous function of one, two, or three independent variables are carried out
in many branches of science and technology. We always get a finite number of
function values measured at a finite number of points but we are interested also in
intermediate values corresponding to other points. Apparently, except for the fixed
constraints to be satisfied, the formulation of the problem of smooth approximation
can vary and give the resulting interpolant of different smoothness. The cubic spline
interpolation is known to be the approximation of this kind.

We confine ourselves to the case of 1D independent variable. We introduce the
proper inner product space in Section 2. We formulate the problem and present the
existence and uniqueness theorem in Section 3. In the next section, we show results
of numerical experiments comparing the classical interpolation formulae and various
basis systems for the smooth approximation. We finally sum up the results presented
that show some properties of smooth approximation.

A paper containing all proofs has been prepared for a numerical analysis journal.
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2. Notation

Let us consider the linear vector space W̃ of complex functions g continuous
together with their derivatives of all orders on the interval (a, b), which may be
infinite. Let {Bl}

∞

l=0 be a sequence of nonnegative numbers and let there be the
smallest nonnegative integer L such that BL > 0 while Bl = 0 for all l < L. For
g, h ∈ W̃ we construct the expression

(g, h)L =
∞∑

l=L

Bl

∫ b

a

g(l)(x)[h(l)(x)]∗ dx, (1)

where ∗ denotes complex conjugation. Let us further put

|g|2L =
∞∑

l=L

Bl

∫ b

a

|g(l)(x)|2 dx. (2)

If B0 > 0 (i.e. L = 0) the expression |g|0 = ‖g‖ is the norm and (g, h)0 = (g, h) the
inner product, and the set of all such functions forms a Hilbert spaceW corresponding
to the sequence {Bl}.

If L > 0 then |g|L is a seminorm on W . We construct the quotient space W/PL−1

where the subspace PL−1 ⊂ W is the space of polynomials of degree at most L− 1.
Then |g|L is the norm and (g, h)L the inner product on the quotient space W/PL−1 of
equivalence classes. The choice of the sequence {Bl} defines weights of the individual
derivatives in the expression (2) and guarantees the convergence of the series (2) as
well.

Let us introduce some more notation to be able to formulate the problem of
smooth approximation. Let us choose a system of functions {gk} ⊂ W , k = 1, 2, . . . ,
that is complete and orthogonal (with respect to the inner product (1)), i.e.,

(gk, gm)L = 0 for k 6= m, (gk, gk)L = |gk|
2
L > 0.

3. Problem of smooth interpolation

Let us have N (complex, in general) measured (sampled) function values f1, f2,
. . . , fN ∈ C measured at N mutually distinct nodes X1, X2, . . . , XN ∈ Rn. We are
interested also in the intermediate values corresponding to other points. Assume
that these fj = f(Xj) are measured values of some continuous function f while z is
an approximating function to be constructed. We put n = 1 in what follows.

If L > 0 we construct the set {ϕp}, p = 1, . . . , L, of mutually orthogonal complex
functions from W such that

(ϕp, ϕq)L = 0 for p, q = 1, . . . , L. (3)

This implies |ϕp|L = 0. Moreover, assume

(ϕp, gk)L = 0 for p = 1, . . . , L, k = 1, 2, . . . . (4)
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The natural choice is ϕp(x) = xp−1, p = 1, . . . , L. The relations (3) and (4) are
then satisfied. The set {ϕp} is empty for L = 0.

Put

z(x) =

∞∑

k=1

Akgk(x) + t(x), t(x) =

L∑

p=1

apϕp(x). (5)

Problem of smooth interpolation. Let us fix nonnegative integers L and N of
the above properties. The problem of smooth interpolation of a continuous func-
tion f given by its N values fj = f(Xj) is to find the coefficients ap and Ak of the
expressions (5) such that

z(Xj) = fj , j = 1, . . . , N, (6)

and
the quantity |z|2L attains its minimum. (7)

The smooth interpolation problem thus consists of the variational problem (7),
i.e. minimizing the functional |z|2L, with constraints (6).

Note that when minimizing ‖z‖2, we minimize not only the L2(a, b) norm of z
but also (with a weight B1 chosen) the L

2(a, b) norm of z′, i.e. of the first derivative
of z. This can be of importance in processing of such measured data where also
a good approximation of the first derivative is needed.

Put

RL(x, y) =

∞∑

k=1

gk(x)g
∗

k(y)

|gk|2L
. (8)

If L > 0, introduce the rectangular N × L matrix Φ with entries Φjp = ϕp(Xj),
j = 1, . . . , N , p = 1, . . . , L. Now we can formulate the following theorem.

Theorem 1. Let Xi 6= Xj for all i 6= j. Assume that the series (8) converges for

all x, y ∈ (a, b). Moreover, let rank Φ = L. Then the problem (5), (6), and (7) of

smooth interpolation has the unique solution

z(x) =

N∑

j=1

λjRL(x,Xj) +

L∑

p=1

apϕp(x),

where the coefficients λj, j = 1, . . . , N , and ap, p = 1, . . . , L, are the unique solution

of the linear algebraic system

N∑

j=1

λjRL(Xi, Xj) +
L∑

p=1

apϕp(Xi) = fi, i = 1, . . . , N,

N∑

j=1

λjϕ
∗

p(Xj) = 0, p = 1, . . . , L.

Proof. The proof is based on the method of Lagrange multipliers for constrained
minimization.
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4. Numerical examples

We have used three systems {gk} defined in different spaces W with different
sequences {Bl}, cf. [1], [2]. It is Bl = (1

3
)2l/(2l)!, l = 0, 1, . . . , for I and II.

I dashed line The system of transformed complex exponential functions exp(ikx),
L = 0, and the function R0(x, y) analytically known.
II dotted line The system of monomials xk orthonormalized numerically on (−1, 1)
by the Gram-Schmidt procedure. The function R0(x, y) computed in double precision
by summation until the module of the increment is less than 10−12 but at most
40 terms are considered.
III dashed line The same transformed complex exponential functions like in I. Bl = 0
for all l except for B2 = 1, i.e. the L2 norm of z′′ is minimized. R2(x, y) = |y − x|3,
t(x) = a0 + a1x. This is the well-known cubic spline interpolation.

Moreover, we computed the results of
IV dotted line Polynomial interpolation.
V dash-dot line Rational interpolation.

Solid line shows the true solution, i.e. the function f given. We tried two of them,
the smooth even function

f(x) =
1

1 + 16x2
(9)

with its maximum at x = 0 and the function

f(x) = 3(x+ 1)2 + ln(( 1
10
x)2 + 10−5) + 1 (10)

with “almost a singularity” at x = 0. The grid is equidistant. Very “wavy” inter-
polants obtained are not shown.

Numerical experiments performed to present the properties of smooth interpola-
tion show that it is an efficient method.

We were concerned only with the problem of smooth exact interpolation of func-

tion values at nodes which is controlled by the constraints (6) and, in addition, by
the minimum condition (7). Moreover, the smooth approximation approach can be
employed also in the exact Hermite interpolation and in the smoothing of data. The
2D case is much more interesting and makes many important applications possible.
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Figure 1: Interpolants of the function (9), N = 5. Curves at x = 0.2 from top to
bottom: IV, III, I identical to II, true identical to V.
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Figure 2: Interpolants of the function (10), N = 5. Curves at x = −0.8 from top to
bottom: IV, II, III, I, true. V not shown.
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Figure 3: Interpolants of the function (10), N = 9. Curves at x = 0.9 from top to
bottom: IV, I, II identical to III and to true. At x = −0.1, the first two from top:
true, V. Notice different y scale.
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Figure 4: Interpolants of the function (10), N = 17. IV not shown, the rest almost
identical.
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