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Abstract. Artificial oscillations in the contact pressure due to non-smooth contact surface are treated by the isoge-
ometric analysis (IGA). After a brief overview of the B-splines and NURBS representations, an explicit finite element
(FE) contact-impact algorithm is presented in a small deformation context. Contact constraints are regularized by
the penalty method. The contact-impact algorithm is tested by means of dynamic Hertz problem. The classic FEA
solution is compared to the IGA solution while different mass lumping techniques are considered.
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1 INTRODUCTION
The main difficulty in contact analysis is non-smoothness. It arises from inequality constraints as well as geometric
discontinuities inducted by the spatial discretization. Contact analysis based on traditional finite elements utilizes
element facets to describe contact surfaces. The facets are C0 continuous so that the surface normals can experience
jumps across facet boundaries leading to artificial oscillations in contact force and pressure. There were attempts to
treat these geometric discontinuities by smoothing the contact surfaces using splines interpolation. These remedies,
however, introduce an additional geometry on the top of the existing finite element mesh. This adds an additional
layer of data management and increasing computational overhead. Details and further references can be found in
[1].
Another remedy to the geometric discontinuity provides isogeometric analysis (IGA). The fundamental idea is to
accurately describe a physical domain by proper representation (e.g. NURBS) and then to utilize the same basis
for analysis. This is in contrast with the classical finite element method where the basis is given in advance by the
element type. Consequently the physical domain could be approximated inaccurately. A more detailed description
can be found in [2]. Isogeometric NURBS-based contact analysis has some additional advantages: preserving
geometric continuity, facilitating patch-wise contact search, supporting a variationally consistent formulation, and
having a uniform data structure for the contact surface and the underlying volumes.
Geometric basis and formulation for frictionless isogeometric contact were given in [6]. Sharp corners or C0 edges
that can exist on the interface of patches present a challenge to contact detection. A strategy to seamlessly deal with
sharp corners was proposed in this reference. The contact constraints were regularized by the penalty method and
the contact virtual work was discretized by the finite strain surface-to-surface contact element. Both one-pass and
two-pass algorithms were tested.
In reference [7], the finite deformation frictionless quasi-static thermomechanical contact problem was considered.
Two penalty-based contact algorithms were studied. The former was called knot-to-surface (KTS) algorithm. It is
the straightforward extension of the classical node-to-surface (NTS) algorithm. It was shown that this approach is
over-constrained and therefore not acceptable if a robust formulation with accurate tractions is desired. The latter
was called mortar-KTS algorithm. In this algorithm a mortar projection to control pressures was employed to obtain
the correct number of constraints.
The penalty-based mortar-KTS algorithm was extended to the frictional contact in [8, 10]. The mortar-KTS algo-
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rithm was also studied in conjugation with the augmented Lagrangian method in [11]. Isogeometric frictionless
contact analysis using the non-conforming mortar method in the two-dimensional linear elasticity regime was pre-
sented in [9].
In this paper, we present a frictionless isogeometric contact algorithm. After brief overview of B-splines and NURBS
representation in Section 2, the contact algorithm is presented in Section 3. The algorithm is studied by means of
dynamic Hertz problem in Section 4.

2 B-SPLINES AND NURBS
This section gives an overview of the B-spline and NURBS representations. For a comprehensive description as
well as efficient algorithmization see, e.g. [3]. Throughout this paper we use p to indicate the polynomial degree,
n to indicate the number of basis functions, dp to indicate the number of parametric dimensions, and ds to indicate
the number of spatial dimensions.
Let Ξi, i = 1, . . . , dp be the open non-uniform knot vector associated with ith parametric dimension of a patch

Ξi =

ξi1, . . . , ξipi+1︸ ︷︷ ︸
pi+1 equal terms

, ξipi+2, . . . , ξ
i
ni
, ξini+1, . . . , ξ

i
ni+pi+1︸ ︷︷ ︸

pi+1 equal terms

 , i = 1, . . . dp (1)

The knot vector is a non-decreasing sequence of parametric coordinates. The knot vector is said to be non-uniform
if the knots are unequally spaced in the parametric space. If the first and the last knot values appear pi + 1 times, the
knot vector is called open. The B-spline basis functions, Nj,p(ξ), are defined by Cox-de Boor recursion formula.
For p = 0 it is defined as

Nj,0(ξ) =

{
1 ξ ∈ [ξj , ξj+1) , j = 1 . . . n

0 otherwise
(2)

and for p > 0

Nj,p(ξ) =
ξ − ξj

ξj+p − ξj
Nj,p−1(ξ) +

ξj+1+p − ξ
ξj+1+p − ξj+1

Nj+1,p−1(ξ) (3)

B-splines as the polynomial functions are known to be unable to describe conic sections. The NURBS (Non-Uniform
Rational B-Splines) was developed to extend interpolatory capability of the B-splines. A pth degree NURBS basis
function is defined by

Rp
j (ξ) =

Nj,p(ξ)wj∑n
ĵ=1Nĵ,p(ξ)wĵ

(4)

where wj is referred to as the jth weight.
Multivariate NURBS objects can be constructed simply by tensor product of univariate NURBS basis functions (4).
For dp = 2 it yields

Rp1,p2

j1,j2
(ξ1, ξ2) = Rp1

j1
(ξ1)⊗Rp2

j2
(ξ2) =

Nj1,p1(ξ1)Nj2,p2(ξ2)wj1,j2∑n1

ĵ1=1

∑n2

ĵ2=1
Nĵ1,p1

(ξ1)Nĵ2,p2
(ξ2)wĵ1,ĵ2

(5)

and similarly for the higher parametric dimension. With NURBS basis functions at hand we can introduce surface
discretization as

x(ξ1, ξ2) =

n1∑
j1=1

n2∑
j2=1

Rp1,p2

j1,j2
(ξ1, ξ2)Pj1,j2 (6)

where Pj1,j2 ∈ <ds is the control net, i.e., the array of coordinates of control points. Adopting the isogeometric
concept, an analogous interpolation is used for the unknown displacement field and its variation.

3 EXPLICIT DYNAMIC CONTACT ALGORITHM
In this section an isogeometric treatment of the frictionless contact between two elastic deformable bodies is pre-
sented. An algorithm, originally proposed in [12], has been adapted to the isogeometric analysis and expanded to
explicit dynamics. The main idea is as follow. The contact boundary value problem is formulated in the weak sense

δΠint,ext(u, δu) + δΠc(u, δu) = 0 (7)
gN(u) ≥ 0 (8)
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where u and δu are the displacement field and its variation respectively, δΠint,ext denotes the virtual work due to
internal, external and inertial forces, δΠc is the contact virtual work and gN is the gap function. In reference [12],
δΠc was proposed in the form

δΠc(u, δu) = −
∫

Γc1

εNgNδu dΓ−
∫

Γc2

εNgNδu dΓ (9)

where εN is the penalty parameter. Note that the contact virtual work is integrated over both contact boundaries
Γc1 and Γc2 so that the algorithm preserves symmetry. Consequently, after FE discretization the action-reaction
principle is not explicitly fulfilled. However, it should be shown that the equilibrium is recovered during the mesh
refinement.
Applying the standard finite element procedures [4] to the weak form (8)-(9), the resulting system of ordinary
differential equations (ODE) is obtained as

MÜ + F(U) = R + Rc12(U) + Rc21(U) (10)

where M is the mass matrix, U is the displacement vector, F is the vector of internal forces, R is the vector of
external forces and Rc12, Rc21 are vectors of contact forces. Two superimposed dots denote time derivates. The
system of ODEs is integrated by the central difference method (CDM) [4] which yields

MUn+1 = ∆t2 [R + Rc12(Un) + Rc21(Un)− F(Un)] + M(2Un −Un−1) (11)

The stability of the integration process requires time step, ∆t, to be smaller or equal to 2/ωmax, where ωmax is the
maximal angular frequency of the FE mesh. The global mass matrix, M, arises from its element counterpart, Me,
by the standard FE assembly procedure. The element mass matrix arising from the variational formulation has the
form

Me =

∫
Ωe

ρHTH dΩ (12)

where ρ is the density and H is the matrix of shape functions (5). This mass matrix is called consistent. The efficient
solution of the linear system (11) requires diagonalization of M. The common techniques are the row sum method
and HRZ method [12].

4 DYNAMIC HERTZ PROBLEM
In this section, an example is presented to illustrate the performance of the classic FEA and IGA contact-impact
algorithm described in the previous section. The example deals with Hertz dynamic problem, a classical benchmark
for which an analytical solution is available [13]. In the example, the effect of mass lumping is investigated. The
analysis is limited to the second order elements. In particular, quadratic serendipity eight-node finite elements are
used in case of FEA, and second order basis function in case of IGA.
The presented numerical example deals with frictionless impact of the cylinders of radius R = 4 m. The material
of each of the cylinders is linearly elastic with Young’s modulus E = 1000 MPa, Poisson’s ratio ν = 0.2, and
density ρ = 1 kg ·m3. The initial velocity of the cylinders is 2 m · s−1. In the initial configuration the cylinders just
touches each other in a point. Due to symmetry, only the half of each cylinder is considered. The penalty parameter
is εN = 1×105 N ·m−2. The explicit time integration by CDM is performed for 0.9 s with the time step 5×10−4 s.
In order to evaluate the effect of mass lumping techniques on the oscillations of the contact forces and contact pres-
sure distribution in IGA, further analyses are performed using consistent mass matrix and mass matrix lumped by
the row sum method. Fig. 1 shows that consistent mass matrix delivers a more accurate contact pressure distribution
than row sum and HRZ mass lumping techniques.

5 CONCLUSIONS
This paper addressed the utilization of the NURBS based isogeometric analysis in an explicit contact-impact algo-
rithm. Two main conclusions may be drawn:

• For second order elements and mass matrix lumped by the HRZ method, IGA in comparison with classic FEA
leads to a more oscillatory contact force and consequently also contact pressure.

• The oscillations of the contact forces in IGA are minimal for consistent mass matrix.
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Figure 1: Influence of mass lumping techniques on contact forces (left) and contact pressures (right) for IGA.
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