Constitutive models

Part 1
Background and terminology
Elasticity



An Initial excuse

* One of the difficulties of the presentation of
a difficult theory Is that the subject will not
be fully appreciated until it is studied In
detail

o Difficulties of this sort are encountered
frequently in teaching a mature subject

* The wholeness of the subject can rarely be
communicated quickly



Material behaviour — models

Linear elastic
Nonlinear elastic
Hyperelastic
Hypoelastic
Elastoplastic
Creep
Viscoplasticity



Preliminaries

* Invariants
e Strain energy
« Continuum mechanics background



PRINCIPAL AXIS AND INVARIANTS OF SECOND
ORDER TENSORS

STRAIN INVARIANTS
Two sets of invariants are defined and used in continuum mechanics
1) Associated with characteristic equation of tensor standard transformation
[e'] = [AKe} AT
We are looking for such [A] which gives [g/] of diagonal form
Standard eigenvalue problem for a generic strain tensor
€11 €12 €13

€21 €22 €23
€31 €32 €33 X, AX,

is defined by  ([e]-A[l){a} =0 and has
nontrivial solution only if
det([e]-AlID =0
which given characteristic equation of strain tensor
in the form

}\,3—11}\,24‘12)\,—13:0 x>
where X

A; are principal strains and y
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are the first, second , and third strain invariants respectively.

2)Associated with the tensor through its property of trace and different orders of trace
(tr . . .trace .. .sum of diagonal t.)

I, =tr([e])
I, =tr [8]2 = %8118,'1

Iz = tr([8]5) = ~%Sikskmgmi.



STRESS INVARIANTS

similarly as before for strains

1) Ji=o0oy
- G111 Oy O11 O G, O
_I2= 11 12 + 11 13 + 22 23
G112 022 G113 O33 O23 033
J3 = o

Sometimes hydrostatic

2) Ji=tu(oD =0y .
{ or spherical part of stress tensor

Je=tr{[0)?) = %Gijcii

Js = te([0]?) = towOimom

DECOMPOSITION OF STRESS INTO VOLUMETRIC AND DEVIATORIC
COMPONENTS
Gij = Vij +Sj
where
vj... volumetric part (sometimes mean), changes of volumeonly
s _deviatoric part of stress responsible for changes of shape

Om G11 = Om C12 G113
Gj = Gm + G21 G22 —Om G23
Om G3a1 G32 G33 —0Om

Om= %Gﬁ volumetric stress tensor, also: mean, hydrostatic, spherical

recall Ji =0y
sij=0j— OmOy  deviatoric stress

INVARIANTS OF DEVIATORIC STRESS TENSOR
Jp1=8i =05 —30udii

112

Jo2 = 3848 = ';“[T([Slz) =J2-gh

2 23
Jb3 = 3SimSmkSki = :],;tl'([S]s) =J3 =312+ 550

Note
-these invariants are invariant with respect to the choice of coordinate system,
-each particle has its own invariants,
-a multiple of an invariant is an invariant as well (see characteristic equation)



Interpretation of 1D tensile test

force

elongation

&

engineering stress

engineering strain

(S

L ... current length
A ... current area

stretch A, =L/L,, L=L,+0o
oM =TIA, &®=5/L,=4-1
o =T /A

true strain increment de =dL/L

true strain £ = _[LL dL/L=In(L/L)=InA,

true (Cauchy) stress

true (logarithmic) strain

In A




Rate dependent properties of material

Engineering stress vs. engineering strain ‘é//___
rate independent rate dependent

engineering stress rate is M =6 / L
sinced=Lando/L,=L/L, =4,
= &M = ],

So the engineering stress rate is equivalent to the rate of stretching



oading, unloading —
different models of material behaviour

Non-linear elastic
Elastic plastic

Linear elastic

€ | - ’
\ (a) (b)

0.2% for steel

Brittle material which is damaged due to
formation of microcracks during loading,
microcracks are closed upon removal of the load

£
(c)



Theory of elasticity

There Is a unique relationship between stress and strain

Elastic actually means no hysteresis, it does not mean
‘linear’ or “force proportional to displacement’.

Could be linear or nonlinear.
Strains are said to be reversible.
Elastic material is rate independent

It is purely mechanical theory — no thermodynamic
effects — are considered.



Nonlinear elasticity, 1D, small strains 1/2
Convex function w

W(e) o o
%‘;w
.8
o, =5S(g) --- unique relationship” :
If ds/deg, >0... s(g,) monotonically inch Linear elasticity
(i.e. strain hardening) o, =Eg,
if not, material is said to exhibit strain softening W =1Eg&

and its response Is then unstable

Increment of strain energy density dW (¢,) = o, dg,

strain energy densityW (¢, ) = _[:X o, de, ...1sa potential
_dW(e,)
” de

X

O




Nonlinear elasticity, 1D, small strains 2/2

Non-convex function

w(€)

RN

€

s(€)

If ds/de, <0 (locally) then s(&, ) is not motonically increasing

strain energy function is non - convex
material is said to exhibit strain softening

and its response Is then unstable

1D behaviour of elastic material is characterized by

e path independence
e reversibility
 non-dissipativeness



Nonlinear elasticity, 1D, large strains 1/2

S, = % 2nd Piola - Kirchhoff stress, Green - Lagrange strain
W =W (E,)

Elastic stress-strain relationships in which the stress can be obtained
from a potential function of the strains are called hyperelastic

e path independence
o reversibility

 non-dissipativeness



1D element — small strains, small rotations, no hysteresis

dF_E Adg(g)_E dg(e) dg

k. =— = —
" ds Y ds 7 de

Ag (e) —
Stress

o= 1(s)=E, (&)

tana = E, -1

strain

) . F

S
— — F:EoAg(g):EoAg(I)




K(@)q

y=

Secant stiffness method

Equilibrium reached

\ \A Q

given Q and initial quess.... q,

alphal firS'[ Step
alpha0 K
il »\ K, =tang, = (G) G = K(q,)
g2 ql go qo
y=kg and y=Q gives q,=Q/k,=[K(q,)]" Q
second step
kl — tan al — K(ql) ql — K(ql)

1

y:qu and y=Q gives q2=Q/k1=[K(q1)]_lQ



|_Inear elastic model

* Good for many materials under reasonable
temperatures provided that the stresses and
strains are small

o Examples
— Steel
— Cast Iron
— Glass
— Rock
— Wood



Linear elastic model, Hooke’s law o; =C;, &,

e Linear
— Strain i1s proportional to stress

HOmMOogeneous  fimam=1limp AV = plimAV

— Material properties are independent of the size of specimen
— corpuscular structure of matter is disregarded

Anisotropic
— Stress-strain coefficients in C depend on direction

Fourth tensor C Is constant and has 81 components

— Generally, however, there are 21 independent elastic
constants

— Orthotropic material ... 9
— Cubic anisotropy ... 3
— Isotropic material ... 2 (Young modulus, Poisson ratio)



Hooke’s law — VVoigt’s notation

) A 0 0 0
&x u l-u u 0 0 0
&y L 1-u 0 0 0
_gl% |l E- E o 0o o0 Iz 0
7/xy (1+ :u)(l_ 2,Ll) 2 1-2
y 0 0 0 —H
yz 2
Y ax 0 0 0 0 0 ﬂ
I 2
(1 -y —u 0 0 0
-u 1 —u 0 0 0
—u - 1 0 0 0
D:E—l_i H H
0 0 0 20+ux) O 0
0 0 O 0 20+ux) O
0 0 0 0 0 2Q+u)




Nonlinear elastic

A

O = Cijkl gq = T(&y)

stress

"ensor C Is a function of strain
"here 1s no hysteresis

strain

For large displacements (but small strains)

engineering strain (Cauchy) is replaced by Green-Lagrange strain and
engineering stress is replaced by 2PK stress

and TL or UL formulations should be used



Hyperelastic

Stress Is calculated from strain energy
functional by o oW
ij _O_Eij

Good for rubberlike materials

W Is assumed by

— Mooney-Rivlin model,
— Ogden model,

— Etc.

Path-independent and fully reversible



Hypoelastic

» Path-dependent

e Stress increments are calculated from strain
Increments

O = Cijkl N

Ciu = f(stress,strain, fracture criteria, loading, unloading,...)

e Models for concrete
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