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1. Preliminaries and terminology 
1.1. Line integral and its geometrical meaning 

 

 

 

 

 

 

 

 

 

 

Fig. 1. 

 

The planar curve k  is described by the function )(xgy = , or by its inverse )(ygx = . 

∫=
k

k syxfI d),( .     See Fig. 1. 

∫∫ ==
b

ak
x xxgxfxyxfI d))(,(d),( .   Projection into )(xz plane.  

∫∫ ==
d

ck
y yyygfyyxfI d)),((d),( .   Projection into )(yz  plane. 

Example 1. Show relations between the above integrals 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 
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Let the function ),( yxf is defined as follows 

 cbyaxyxfz ++== ),( . 

From the ‘boundary’ conditions we get 

 caA ++= 00:  

 cbB ++= 00:   1;1;1 −=−==⇒ abc  .  

 cC ++= 001:  

Projection kI  to )( zx, : ∫= kx x)y,x(fI d . 

 xx II ′=                    see Fig. 2 

 ,121))(,(),( +−=+−−== xxxxgxfyxF  

 ∫∫ ′===
b

a
x

k
x IxxgxfyxfI d))(,(dx),( . 

Example 2. Calculate the integrals for the following functions. 

 )(1),( 22 yxyxf +−= , 

 xxg =)( , 

 221)( xxF −= . 

 

 

 

 

 

 

 

 

 

 

Fig. 3 

 

1.2. Gradient 

Consider a two-dimensional quantity Φ  constituting a scalar field depending on yx,   

),( yxΦΦ = . 
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The total differential shows how Φ  differs with position 

y
y

x
x

ddd
∂
∂

+
∂
∂

=
ΦΦΦ . 

Let's introduce column vectors 

{ }


















∂
∂
∂
∂

=∇

y

x
Φ

Φ

Φ , { }








=
y
x

x
d
d

d .   

The former vector is called the gradient of a scalar field ),( yxΦ . Then, the total 

differential can be rewritten in the form of a scalar product 

 { } { }xdd TΦΦ ∇= , 

for which we can write  

 { } { } ΘΦΦ cosdd x∇= . 

The gradient is orthogonal to contour lines since if .const=Φ , then 0d =Φ  and 

{ } { } 0cosd =∇ ΘΦ x   only if  0 cos =Θ , which we have for 
2
πΘ = . 

 

 

 

 

 

 

 

 

 

 

Fig. 4 

1.3 Gauss Divergence Theorem 

For functions )y,x(),y,x( ΨΨΦΦ ==  defined over the area A, consider the 

integrals  

 ( )
∫ ∂
∂

A
A

x
y,x dΨ , ( )

∫ ∂
∂

A
A

y
y,x dΦ . 

Take the second one first in the counterclockwise direction along both boundaries. 
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 ∫ ∫∫ =
∂
∂

=
∂
∂

A
A

yx
y

A
y

ddd ΦΦ
∫ ∫ =








∂
∂b

a

f

)x(f

)x(

xy
y

2

1

ddΦ ( )[ ] =∫ xy,x )x(f
)x(f

b

a

d2

1
Φ

 ( )( ) ( )( )[ ]∫ −
b

a

xxf,xxf,x d12 ΦΦ = 

 ( )( ) ( )( )∫ ∫−=
b

a

b

a

xxf,xxxf,x dd 12 ΦΦ ( )( ) ( )( )∫ ∫−−=
b

a

b

a

xxf,xxxf,x dd 12 Φ  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 

 

We can conclude that ( ) ( )∫ ∫−=∂
∂

A c

xyxA
y

yx d,d, ΦΦ .     (1.1) 

Let the curve c  is defined by two functions 2f and 1f  respectively. Similarly for the other 

coordinate and for the other function ( )y,xΨΨ =  we get 

 ( ) ( )∫ ∫+=
∂

∂

A c

yy,xA
x

y,x dd ΨΨ .       (1.2) 

Again in the counterclockwise direction. 

The equations (1.1), (1.2) form the Green theorem in the simplest case. Sometimes 

also called the Green-Ostrogradsky theorem or the theorem of Green-Gauss. 
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Fig. 6 

Let us rewrite the equations (1.1), (1.2) by introducing vectors crd  and nr , such in such 

a way that 









=
y

x

n
n

nr ,  122 =+= yx nnnr . 

 22 ddd yxc +=
r , 

  
22

d
d1d

d
d1dd 








+=






+=

y
xy

x
yxcr  if  0d ≠x  or 0d ≠y . 

Observing triangles in the previous figure one can write 

 sin
n
nx y
rr =

−
=

cd
dΘ  (due to counterclockwise orientation of the curve), 

 
n
n

c
y xrr ==

d
dcosΘ ,  where 1=nr . 

From it follows 

 cnx y
rdd −= ,  cny x

rdd = .       (1.3) 

Substituting (1.3) into (1.1), (1.2), we get 

 ( ) ( )∫ ∫=∂
∂

A c
x cny,xA

x
y,x dd ΨΨ ,       (1.4) 

 ( ) ( )∫ ∫=∂
∂

A c
y cny,xA

y
y,x dd ΦΦ .       (1.5) 

Now define an arbitrary vector q  by 

 { }








=








=
Φ
Ψ

y

x

q
q

q .         (1.6) 

Adding (1.4), (1.5) and using (1.6) we get 
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( )∫∫ +=







∂
∂

+
∂
∂

c
yyxx

A

yx cnqnqA
y
q

x
q dd . 

The divergence is defined 

 { }
i

i

x
qqq
∂
∂

== divdiv .         (1.7) 

The scalar product can be expressed 

 { } { } iinqnq =T . 

So we can finally write 

  { } { } { }∫ ∫=
A c

cnqAq dddiv T .       (1.8) 

This is a so called divergence theorem of Gauss. 

The Gauss-Green theorem can be seen as a two-dimensional counterpart of the 

integration by parts 

 ∫ ∫−= vuvuvu // .         (1.9) 

The Gauss divergence theorem could be found in literature in different forms.  

 { } { } { }∫∫ =
SV

SnqVq dddiv T .                (1.10) 

The equivalent notations are as follows 

 { } { } { } { }∫ ∫=∇
V S

SnqVq dd TT , { }








∂
∂

∂
∂

∂
∂

=∇
321

T

xxx
.   (1.11) 

 ∫ ∫=
V S

SnqVq d.ddiv , 

 ∫ ∫=∂
∂

V S
ii

i

i SnqV
x
q dd ,        (1.12) 

 ∫ ∫=∂
∂

V S
i

i

SnfV
x
f dd . 

The Gauss divergence theorem for a tensor quantity is defined as follows 

 ∫ ∫=∂
∂

V S
iji

i

ij STnV
x
T

dd .        (1.13) 

So the Green theorem represents the transformation of a volume integral into a surface 

integral (or vice versa) for quantities associated with a considered body having the volume V , 

bounded by the surface S . The outward normal in  is defined at each point of the surface. The 
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function appearing under the integral sign is real valued with the first continuous derivative 

within the body. 

 

1.4. The generalization of ‘per partes’ integration (integration by parts) 

According to Green divergence theorem we can write 

 ( ) ( )∫ ∫=∂
∂

V S
i

i

SnuvVuv
x

dd .       (1.14) 

The left hand side could be rewritten 

 ( )∫ ∫ ∫ ∂
∂

+
∂
∂

=
∂
∂

V V V iii

V
x
vuV

x
uVuv

x
ddd .     (1.15) 

Equalling the right hand sides of the last two equations and rearranging gives a formula 

 ( )∫ ∫ ∫ ∂
∂

−=
∂
∂

V S V i
i

i

Vv
x
uSnuvV

x
vu ddd  ,     (1.16) 

which reminds the integration by parts 

 [ ]∫ ∫ ′−=′
b

a

b

a

b
a xvuvuxvu dd .       (1.17) 

It is of interest to remind the Stokes theorem which transforms the integral over the closed 

curve in space to the surface integral 

 ( )∫ ∫=×∇
S c

cq.tSq.n dd ,       (1.18) 

 

zyx qqq
zyx

kji

qq
∂
∂

∂
∂

∂
∂

== rotcurl . 

 

 

 

 

 

 

 

 

 

Fig. 7 
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1.5. Flux 

Imagine a surface S  in space and the continuum flowing by the velocity vr  through it. 

The volume of material flowing through Sd in time td is 

 Stn.v dd ,  [ ]3m  ... [ ][ ][ ][ ]2ms1m/s . 

The volume flux is defined 

 ∫∫ =
S

ii
S

SnvSn.v dd , [ ]s/m3 .      (1.19) 

Similarly the mass flux is ∫ρ
S

ii Snv d , [ ]skg / .     (1.20) 

 

 

 

 

 

 

 

 

 

 

Fig. 8 

Kinetic energy flux corresponds to 2

2
1 mv , so 

 ( )∫ ρ
S

Sn.vv d
2
1 2 ,        (1.21) 

Dimensional check      





====

s
1

s
1Nm

s
1m

s
kgm

s
kgm

s
kg

s
m

23

2

2

2

 .     

Generally 

The flux of Φ  through S is Snv ii
S

dΦ∫ρ ,      (1.22) 

where Φ  is a quantity (defined per unit mass) which is associated with particles. 
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Remark 

Often we encounter a so called oriented surface defined by 

 nSd rrr
d=Α  or SnA ii dd = .      (1.23) 

 

1.6. Material derivative 

Imagine that the motion of a particle is defined by the material description in the form 

 ( )t,axx = .         (1.24) 

The particle velocity could simply be calculated by taking the partial time derivative with a 

variable a  held constant 

 ( ) ( )t,ax
tt

xt,avv
a ∂

∂
=







∂
∂

== .      (1.25) 

Similarly, the acceleration is 

 ( ) ( ) vt,ax
t

t,av
tt

vz
a

&=
∂
∂

=
∂
∂

=






∂
∂

= 2

2

.     (1.26) 

These are examples of material time derivatives in material description. Notice the 

different types of notation. 

The material time derivative may be thought of as a time rate of change that would be 

masured by an observer travelling with the specific particle under study. The same physical 

phenomenon could be described by the spatial description. The velocity fields is   

 ( )t,xvv = .         (1.27) 

Note 

The studied phenomenon is supposed to be the same regardless of the formulation being 

applied, so we are tempted to use the same symbol for the variable describing it, even if it is 

defined by a different function. There are authors using different symbols for the same 

variables in material and spatial descriptions respectively. 

 

The derivative, with spatial coordinate x  held constant 

 ( )t,xv
tt

v
x ∂

∂
=







∂
∂         (1.28) 

is called the local rate of change of v . It is the rate of change of an ideal velocity meter 

located at the fixed place x . This is not the same thing as the acceleration of the particle 

passing the place x  just now. 
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Remark 

For example, in a steady state flow the local rate of change is zero everywhere. This 

does not imply, however, that the acceleration of all particles is zero everywhere. Even in a 

steady state flow the velocity varies in general from point to point and a particle changes its 

velocity as it moves from one place of constant velocity to another place, having a different 

constant velocity. 

If we want to calculate the particle acceleration from knowledge of spatial velocity 

description ( )t,xv  we have to employ the chain rule of calculus 

 
axa t

x
x
v

t
v

t
v








∂
∂








∂
∂

+






∂
∂

=






∂
∂ .      (1.29) 

Since v
t
x

a

=






∂
∂  we can finally write 

 .
x
vv

t
v

t
vz

xa








∂
∂

+






∂
∂

=






∂
∂

=        (1.30) 

Another name for the material derivative is the substantial derivative. There are other 

notations used in textbooks and references, as 

 
at

vv
t
v

t
v








∂
∂

=== &
d
d

D
D .       (1.31) 

In vector notation we can write 

 v.v
t
vv.v

t
v

t
vz grad

d
d

+
∂
∂

=∇+
∂
∂

== ,      (1.32) 

where 
T

grad








∂
∂

∂
∂

∂
∂

==∇
zyx

. 

For any scalar Φ , vector  u  or tensor T quantities, the formulas of material derivatives are as 

follows  

  
k

k x
v

t
fv

tt ∂
∂

+
∂
∂

=∇+
∂
∂

==
ΦΦΦΦΦ .

d
d& , 

{ } u.v
t
uu.v

t
u

t
uu grad

d
d

+
∂
∂

=∇+
∂
∂

==& , 

k

i
k

ii
i x

uv
t
u

t
uu

∂
∂

+
∂
∂

==
d
d

& , 

k

ij
k

ijij
ij x

T
v

t
T

t
T

T
∂
∂

+
∂
∂

==
d

d& . 
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2. Conservation laws 
2.1. Conservation of mass 

Assume that continuum with density ρ  fills the volume V , bounded by surface S . 

The total mass contained in  V  is 

 Vm
V

dρ∫= .         (2.1) 

It is assumed that the density ( )t,xiρρ =  is a continuous function of space and time 

coordinates and that there is no flux through the surface S . 

The mass of the considered body at configuration C0  is equal to that at configuration Ct , i.e. 

 ∫∫ =
V

tt

V t

VV dd00

0

ρρ ,       (2.2) 

 ( ) ( ) VtxVta t
j

V V
j

t

d,d,
0

0
0∫ ∫= ρρ .      (2.3) 

Realizing that ( )t,axx jii =  and substituting after the integral sign allows rewriting the right 

hand side of (2.3) in the form 

 ( ) ( )( )∫ ∫=
V V

ji
t

j
t

VJtaxVtx
0

0d,d, ρρ ,     (2.4) 

where the Jacobian of the transformation is the determinant of the deformation gradient 

 ijFJ det= , 
j

i
ij a

xF
∂
∂

= .       (2.5) 

Equations (2.3) and (2.4), written in short, give 

 VJV
V V

t 000 dd
0 0
∫ ∫ ρ=ρ .       (2.6) 

Since the last equation must be valid for an arbitrary volume we can write 

 Jtρρ =0 .         (2.7) 

But JJ = , since 0>J . 

Proof 

The continuum in  V0  completely fills the space. The initial density is 00 >ρ . At the initial 

configuration  C0 , there is no deformation, so IF =  and consequently 1=J  which is greater 

than zero. The value of 0<J  in the process of deformation would mean that at a certain time 

( )t,t0∈  the value of the Jacobian would become 0=J . For such a case there would be no one-

to-one correspondence 

 ( ) ( )t,xaat,axx jiijii =⇔=        (2.8) 
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which is a contradiction with initial assumption about the physical acceptability of 

deformation description. 

 The consequence of the conservation of mass is known as the continuity equation. 

 

2.2. Lagrangian (material) form of the continuity equation can be written in different 

forms 

 constJ == ρρ 0 ,  where  ,FJ ijdet=  
j

i
ij a

xF
∂
∂

= ,   (2.9a) 

or ( ) 0
D
D

=J
t
ρ ,         (2.9b) 

or constVJVV ttt === 000 ddd ρρρ ,     (2.9c) 

or ijt FJ
V
V det

d
d

0

t0

===
ρ
ρ .       (2.9d) 

 

Remark 1 

Remember that the condition 0≠J  is necessary for the equivalence of  material and spatial 

descriptions ( ) ( )t,xaat,axx jiijii =⇔= . 

If the Jacobian of the above transformations 0det == ijFJ  then the inverse function 

of  ( )t,axx jii =  does not exist. 

Also, if 0det =ijF , then, either 00 =ρ , or +∞→ρt . 

 

Remark 2 

Remember that aFx dd = , xFa dd 1−= . If 0det =F , then 1−F  cannot be computed. 

 

2.3. Eulerian (spatial) form of the continuity equation 

Again the total mass of a continuous medium of density  ρ   filling the volume  V  at time  t  

is  

 ∫=
V

VM dρ . 

The time rate of increase of the total mass in the volume  V  is 

  ∫ ∂
∂

=
∂
∂

V

V
tt

M dρ . 
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We assume that no mass is created inside the volume  V . Then the time rate of mass 

must be equal to the rate of flux of the mass through the surface. 

 flux = rate of mass outflow = ∫
S

Snv d.ρ  

 rate of mass inflow = ( )∫ ∫ ρ−=ρ−
S V

VvSn.v ddivd  

So ( )∫ ∫ ρ−=
∂
ρ∂

V V

VV
t

dvdivd , 

or { } { }∫ ∫ ∇−=
∂
∂

V

VvV
t

dd T ρρ , where { }








∂
∂

∂
∂

∂
∂

=∇
zyx

T . 

From it follows 

 ( )∫ =





 ρ+
∂
ρ∂ 0dvdiv V
t

. 

This equation must be valid for any volume, so 

 ( ) 0vdiv =+
∂
∂ ρρ

t
, 

or { } { } 0T =∇+
∂
∂ v

t
ρρ ,        (2.10) 

or ( ) 0=
∂

∂
+

∂
∂

i

i

x
v

t
ρρ  

There are different forms of continuity equation in spatial description. The last 

equation could be rewritten using the rule for the derivative of a product 

 0=
∂
∂

+
∂
∂

+
∂
∂

i

i

i
i x

v
x

v
t

ρρρ .       (2.11) 

Realizing that the material derivative of density is 

 
i

i x
v

tt ∂
∂

+
∂
∂

=
ρρρ

D
D . 

The equation (2.11) could be simplified into 

 0
D
D

=
∂
∂

+
i

i

x
v

t
ρρ .        (2.12a) 

The equivalent formulas are 

 0div
D
D

=+ v
t

ρρ ,        (2.12b) 
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 0
D
D

=







∂
∂

+
∂
∂

+
∂
∂

+
z
v

y
v

x
v

t
zyxρρ ,      (2.12c) 

 0
D
D

=+ iiD
t

ρρ .        (2.12d) 

 

Remark 1 

The velocity gradient is 
i

i
ij x

vL
∂
∂

= , the strain rate is its symmetrical part 

( )jiijij LLD +=
2
1 . From it follows that iiii DL = . 

 

Remark 2 

If the material is incompressible, then const=ρ  at any particle and 

 0
D
D

=
t
ρ  

so the incompressibility condition is  

 0div ===
∂
∂

ii
i

i Dv
x
v . 

 

2.4. Conservation of linear momentum 

For a particle of mass m  we say that the rate of change of linear momentum is equal 

to the resultant force applied to a particle 

 ( ) Fvm
t

=
D
D .         (2.13) 

The validity of this principle is postulated in continuum mechanics. 

 

Continuum form 

Assume that at time  t  a given amount of mass is in volume  V , bounded by surface S . 

Denote ib  [N/kg] - body force (per unit mass) and 

  it  [N/m2] - surface traction, defined per a unit surface. 

Based upon Newton's second law the rate of change momentum of a given amount of mass is 
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 ∫∫∫ ρ+=







ρ

VSV

VbStVv
t

ddd
D
D ,      (2.14a) 

 



 == N

s
kgmm

s
m

m
kg

2
3

23    



 2

2 m
m
N    







 3
3 m

kg
N

m
kg  

or ∫ ∫∫ ρ=ρ+
S V

i
V

ii Vv
t

VbSt d
D
Ddd .      (2.14b) 

The relation between the stress vector and stress components is given by so called 

Cauchy relation 

 jjii nt σ= , 

where it  and ijσ  are the stress vector and Cauchy (true) stress tensor components 

respectively. The symbol jn  stands for the component of a normal. 

Substituting the Cauchy relation into the surface integral in (2.14b) and using the 

divergence theorem gives 

 ∫ ∫ ∫ ∂
∂

==
S S V j

ji
jjii V

x
SnSt ddd

σ
σ       (2.15) 

The former equality is due to Cauchy relation while the latter is due to divergence 

theorem of Gauss. 

 

2.5. Interlude 

What is the material time derivative of a volume integral in (2.14b)? It can be proved that 

 ∫∫ ρ=ρ
V

i
i

V

V
t
vVv

t
d

D
Dd

D
D .       (2.16) 

Proof in literature is based on Reynold's transport theorem + Gauss divergence theorem + 

continuity equation + definition of material derivative of ρ . 

Using (2.15), (2.16) in (2.14b) we have 

 ∫ ∫=









+

∂
∂

V V

i
i

j

ji V
t
vVb

x
d

D
Dd ρρ

σ
.      (2.17) 

From the condition that it must hold for an arbitrarily chosen volume V we get 

 
t
vb

x
i

i
i

ji

D
Dρρ

σ
=+

∂
∂

        (2.18a) 

which is called the Cauchy equation of motion. 
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2.6. Cauchy equation of motion in another form is  

 ii
j

ji xb
x

&&ρρ
σ

=+
∂
∂

.        (2.18b) 

If we introduce body forces per unit volume 

 [ ] 







=

kg
N

m
kgN/m 3

3
ii bf ρ        (2.19) 

we obtain still another form of Cauchy relation of motion in the form 

 ii
j

ji xf
x

&&ρ
σ

=+
∂
∂

.        (2.18c) 

 

Remarks 

Cauchy equations of motion represent 3 PDE for 6 unknown components of stress. 

Notice that ijσ is symmetric. 

These equations are written for a given spatial domain, for a collection of considered 

material particles - filling volume V , bounded by surface S , considered at a configuration  

Ct . Derivatives are with respect to spatial coordinates. 

 

In special cases the acceleration could be neglected and equations (2.18) reduce to the 

equations of equilibrium 

 0=+
∂
∂

i
j

ij f
x
σ

.         (2.20) 

These equations do not contain any kinematic variables. They do not generally suffice 

to determine the stress distribution since they are only three partial differential equations for 

six independent unknown stress components.  

Additional equations must be considered, i.e. 

a) displacement vs. strain relations - kinematic relations 

b) stress vs., strain relations - constitutive equation. 

 

2.7. Equation of motion in the reference state 

It was already mentioned that the Cauchy equations of motion apply to the current 

deformed configuration Ct . The equations of motion could be transformed to referential 

configuration C0 by means of the first and second Piola-Kirchhoff stress tensors. 
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It should be reminded that Piola-Kirchhoff tensors are useful stress measures which 

recalculate the actual stress at Ct to the reference state, i.e. to the non-deformed 

configuration C0 . 

It was already shown that 

1st P.-K.: τ  1
0

−= F
ρ
ρ

σ    or  rijrji F σ
ρ
ρτ 1

0
−= .   (2.21) 

2nd P.-K.: =S  1
0

−F
ρ
ρ T−Fσ   or   11

0
−−= irsrjsji FFS σ

ρ
ρ .  (2.22) 

The inverse relations are 

for 1st P.-K.:   =σ F
ρ
ρ

0 τ    or   rijrji F τ
ρ
ρσ 0= .   (2.23) 

for 2nd P.-K.:   =σ T
0 FSF
ρ
ρ   or  irsrjsji FSF

ρ
ρσ 0= ,  (2.24) 

where  












∂
∂

=
j

i

a
xF , 













∂
∂

=−

j

i

x
a1F .      (2.25) 

So the equation (2.15) 

 ∫ ∫ ∫=+
S V V iii VxVbSt ddd &&ρρ ,  where  jjii nt σ=  

could be transformed to the referential configuration followingly 

 ∫ ∫∫ =+
S iViVjji VxVbSn

0 00

0000000 ddd &&ρρτ ,    (2.26) 

where  ( )t,abb ji=1
0   using  ( )t,axx jii = . 

Notice that for the right-hand side we could write 

 ∫ ∫=V V
i V
t
vV

t
v

0

00 d
d
dd

D
D ρρ  

since VVJV 000 ddd ρρρ ==  (see 2.9c)), where J  is the Jacobian of  the transformation 

( )t,axx jii = .  

t
vx i

i D
D

=&& – material derivative of iv expressed in spatial coordinates  ( )t,xvv jii =  

t
v

x i
i d

d
=&&  – material derivative of iv  expressed in material coordinates  ( )t,avv jii = . 

Using the divergence theorem 

 ∫ ∫ ∂

∂
=

S V
j

ji
jji V

a
Sn

0 0

000 dd
τ

τ  
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and realizing that eq. (2.26) must hold for any volume we finally get 

 ii
j

ji xb
a

&&ρρ
τ 000 =+
∂
∂

.        (2.27) 

This is the Cauchy equation of motion expressed in referential coordinates by means 

of the first Piola-Kirchhoff strain tensor. 

Using the relation between the first Piola-Kirchhoff and the second Piola-Kirchhoff 

 TFS=τ   or    irjrji FS=τ        (2.28) 

we could write the Cauchy equation of motion by means of the second Piola-Kirchhoff stress 

tensor in the form 

 ( ) iiirjr
j

xbFS
a

&&ρρ 000 =+
∂
∂ .       (2.29) 

 

2.8. Conservation of angular momentum 

The law of conservation of angular momentum for a particle of the mass m  is 

 ( )( ) Frvrm
t

×=×
D
D ,  where  
















=

3

2

1

x
x
x

r .     (2.30) 

For continuum we could similarly write  

 ( ) ( ) ( )∫ ∫∫ ×+×=×
S VV

VbrStrVvr
t

ddd
D
D ρρ .    (2.31) 

For rewriting it into indicial notation we have to realize that the equivalent of vector product  

bac ×=  is kjijki baec = ,  where ijke  is the Civita-Levi permutation symbol. 

Note 

1+=ijke  for even permutation of indices, i.e.: 1,2,3 – 2,3,1 – 3,1,2, 

1−=ijke  for  odd permutation of indices, i.e.: 3,2,1 – 2,1,3 – 1,3,2, 

0=ijke   for repeating indices:  1,1,2  etc. 

So, 

 ∫∫ ∫ +=
V nmrmnnV S mrmnnmrmn VbxeStxeVvxe

t
ddd

D
D ρρ .   (2.32) 

Substituting the Cauchy relation jjnn nt σ= , using the divergence theorem for the surface 

integral and the conclusion (2.16) concerning the material time derivative of a volume 

integral, i.e. 
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 ∫ ∫=V V
i

i V
t
vVv

t
d

D
Dd

D
D ρρ  

we could rewrite eq. (32) into the form 

 ( ) ( )
Vbx

x
x

eVvx
t

e
V nm

j

jnm
rmnV nmrmn dd

D
D

∫∫ 









+

∂
∂

= ρ
σ

ρ . 

Realizing that 

 m
m v
t

x
=

D
D , mj

j

m

x
x δ=
∂
∂ , 

 
( )

mn
j

jn
mjnmj

j

jnm

j

jnm

x
x

x
x

x
x

σ
σ

σδ
σσ

+
∂
∂

=+
∂
∂

=
∂

∂
, 

we have 

 ∫ ∫











+










+

∂
∂

=





 +

V V mnn
j

jn
mrmn

n
mnmrmn Vb

x
xeV

t
vxvve dd

D
D σρ

σ
ρ  

   ↑     ↑  

= 0, equation of motion, see eq. (2.18a)  

and also 

 0=nmrmn vve , 

since  rmne is skew-symmetric in m , n . 

Example of double product evaluation shows the trick 

 =































=

332313

322212

312111

133132131

123122121

113112111

1 :
vvvvvv
vvvvvv
vvvvvv

eee
eee
eee

vve nmmn  

 

    =
































−
=

332313

322212

312111

:
010
100
000

vvvvvv
vvvvvv
vvvvvv

 02332 =− vvvv . 

And similarly for other indices. So what remains of eq. (2.32) is 

 ∫ =
V mnrmn Ve 0dσ    for arbitrary volume     (2.33) 

0=⇒ mnrmne σ   only if  mnσ  is symmetric, i.e. 

 nmmn σσ =          (2.34) 
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This establishes the symmetry of stress matrix without any assumptions of equilibrium or of 

uniformity of the stress distribution. The symmetry of the stress matrix is so called Cauchy's 

second law of motion. 

 

2.9. Conservation of energy 

If mechanical quantities only are considered the principle of conservation of energy 

for the continuum may be derived directly from the equation of motion. 

 

Power input  

Assume at first that only external surface traction it  per unit area and body forces ib  

per unit mass are doing work on the mass instantaneously occupying volume V , bounded by 

S . The power input is  

 ∫∫ +=
V iiS ii VvbSvtP ddinput ρ ,      (2.35) 

where iv  are components of the velocity field. As before we express the components of 

tractions by means of stress components 

 jjii nt σ=  

and use the Gauss divergence theorem for the transformation of the surface integral into 

volume integral and get 

 
( )

∫ ∫ ∫ ∫ 










∂
∂

+
∂
∂

=
∂

∂
==

S S V V
j

i
jii

j

ji

j

iji
ijjiii V

x
vv

x
V

x
v

SvnSvt dddd σ
σσ

σ .   (2.36) 

Realizing that the velocity gradient if defined by  

 
j

i
ij x

vL
∂
∂

=          (2.37) 

we obtain 

  VLvb
x

P
V

ijjii
j

ji
i

dinput ∫











+










+

∂
∂

= σρ
σ

     (2.38)           

but  
t
vb

x
i

j

ji
i D

Dρρ
σ

=+
∂
∂

  by (2.18a) 
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The first term of eq. (2.38) on the right hand side could be rewritten as 

∫ ∫ ∫=





=

V V V
iiii

i
i Vvv

t
Vvv

t
V

t
vv d

2
1

D
Dd

2
1

D
Dd

D
D ρρρ    (2.39) 

           ↑         ↑                         ↑  

  Remember material derivative Kinetic energy 

  vvv d2d 2 =     of volume integral      of the system 

    see eq. (16) 

and represents the time rate of the kinetic energy of the system. Realizing that the stress tensor 

is symmetric jiij σσ =  and using (2.39) we could rewrite (2.38) into the form 

 ∫ ∫+=
V V ijijii VLVvv

t
P dd

2
1

D
D

input σρ .     (2.40) 

The last term of (40) is a double dot product of stress and velocity gradient tensors. The 

velocity gradient tensor can be decomposed into symmetric and skew-symmetric parts 

 ijijij WDL += , 

where, as explained before, ijD and ijW  represent rate of deformation and spin tensors 

respectively. It could be shown easily that 

 0=ijijWσ , ( ijσ - symmetric, ijW - skew-symmetric). 

From it follows that  

 ijijijij DL σσ = .         (2.41) 

The final form for the power input expression is  

 ∫ ∫+=
V V ijii VVvv

t
P dDd

2
1

D
D

ijinput σρ .     (2.42) 

We can conclude that the power input is the sum of two volume integrals. The first 

one is the material time derivative of the kinetic energy of the system, while the second one 

contributes to the internal energy. 

The scalar L:σ  equals to D:σ  and is called stress power per unit volume. Stress 

power does not contribute to the kinetic energy of the system. This result is due to Stokes 

(1851). 

 

 If both mechanical and non-mechanical energies are to be considered the principle of 

conservation of energy in its most general form must be used. 
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In this form the conservation principle states that the time rate of change of kinetic + 

internal energy is equal to sum of the rate of work + all other energies supplied to the 

continuum per unit time. Such energies may include thermal, chemical, electromagnetic 

energies. 

In the following only mechanical and thermal energies are considered. Then the 

energy principle takes on the form of the first law of thermodynamics.  

For our purposes we will consider a thermodynamic system chosen as a closed system 

not interchanging matter with surroundings.  

The first law of thermodynamics relates the work done on the system and the heat transfer 

into the system to the change in energy of the system. 

It is assumed that only energy transfers to the system are by  

a) – mechanic work done on the system by surface tractions and body forces, 

b) – heat transfer through the boundary, 

c) – distributed internal heat sources. 

Surface tractions and body forces and their contribution to power input to the system were 

already treated by previous paragraph are summarized by eq. (2.42). 
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3. Finite deformations, incremental decomposition and finite element discretization 

Overview 

 

Principle of virtual work relates the work done by internal and external forces due to 

prescribed virtual displacements 

 WU tttt ∆+∆+ δ=δ .         (3.1) 

On the left hand side we have the virtual strain energy of a system at   Ctt ∆+  

 ∫ ∆+

∆+
∆+

∆+ =δ
V

tt
tt

tt
tt

U
 ijσ  δ ∫ ∆+∆+∆+

∆+ =ε
V

tttt
ij

tt
tt SV

0 0d VEij
tt 0

0 d∆+δ .   (3.2) 

Using the total Lagrangian approach, the incremental decompositions for the second Piola-

Kirchhoff stress tensor and the Green-Lagrange strain tensor are 

 ijij
t

ij
tt SSS ∆00 +=∆+ ,         (3.3) 

 ijij
t

ij
tt EEE ∆00 +=∆+ .         (3.4) 

It was already shown that the increment of Green-Lagrange strain tensor is 

 ( ) ( ) ( )ZZZZZZZZE ∆∆+∆+∆+∆+∆=∆ TTTT

2
1

2
1

2
1  

where 
j

i
t

x
uZ 0ij ∂

∂
=LZ  is the material displacement gradient. 

We can introduce the following notation which will consistently be used later 

 NL EEE ∆+∆=∆  
L2L1L EEE ∆+∆=∆  

( )TL1

2
1 ZZE ∆+∆=∆          (3.6) 

( )ZZZZE ∆+∆=∆ TTL2

2
1  

( )ZZE ∆∆=∆ TN

2
1 . 

Variation of eq. (3.4) gives 

 ijij
tt EE ∆δ=δ ∆+

0 .         (3.7) 

Substituting eqs. (3.7) and (3.3) to (3.2) we get 

 ( )∫ =+=+

V ijijij
ttt VESSU

0

0
0 d∆δ∆δ ∆         

  ( ) ( )∫ =++=
V ijijijij

t VEESS
0

0NN
0 d∆δ∆δ∆  
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  ( )∫ +++=
V ijijijijijij

t
ijij

t VESESESES
0

0NLN
0

L
0 d∆δ∆∆δ∆∆δ∆δ .   (3.8) 

The increment of the second Piola-Kirchhoff stress tensor appearing in the third term 

of the integrand could be linearized 

 L
0 ijijklij ECS ∆=∆          (3.9) 

and the last term in (3.8) could be neglected since it is one order less than other terms, so the 

virtual strain energy could be approximated by 

 IIIIII UUUUtt δ+δ+δ=δ ∆+                  (3.10) 

where 

 ∫= V ijij
t VESU

0

0L
0I d∆δδ ,               (3.10a) 

 ∫= V ijij
t VESU

0

0N
0II d∆δδ ,              (3.10b) 

 ∫= V ijklijkl VEECU
0

0LL
0III d∆δ∆δ .             (3.10c) 

This approximation implicitly assumes that the changes between the configurations 

Ct and Ctt ∆+ are small. 

For finite element implementation of these ideas it is convenient to switch from the tensor 

to matrix notation. The process could be summarized in four steps 

a) Instead of tensor L
ijE∆ we will use a column array { }LE∆  defined by 

( ) { }L
31

L
23

L
12

L
33

L
22

L
11

TL 222 EEEEEE ∆∆∆∆∆∆=∆E .          (3.11) 

b) Instead of tensor N
ijE∆  we will use a column array { }NE~∆  defined by 

( ) { }N
33

N
32

N
31

N
23

N
22

N
21

N
13

N
12

N
11

TN EEEEEEEEE~ ∆∆∆∆∆∆∆∆∆=∆ E .          (3.12) 

c) The second Piola-Kirchhoff stress tensor will have two appearances. Instead of  

ij
tS0 we will use either { }St

0  defined by 

{ } { }310230120330220110
T

0 SSSSSSS ttttttt =             (3.13) 

or a two-dimensional array [ ]S~t
0  defined by 

[ ]
[ ]

[ ]
[ ]

990

0

0

0

00
00
00

×
















=
S

S
S

S~

t

t

t

t ,                (3.14) 
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where 

[ ]
















=

330320310

230220210

130120110

0

SSS
SSS
SSS

S
ttt

ttt

ttt

t .               (3.15) 

d)  [ ]CCijkl 00 → . 

In the matrix notation, the virtual strain energy components, equivalent to those appearing in 

eq. (3.10), are 

 { } { }∫= V

t VSEU
0

0
0

TL
I d∆δδ ,               (3.17a) 

 { } [ ]{ }∫= V

t VESEU
0

0N
0

TN
II d~~~ ∆∆δδ ,             (3.17b) 

 { } [ ] { }∫= V
VECEU

0

0L
0

TL
III d∆∆δδ ,             (3.17c) 

And now, the finite element discretization enters the stage. The generalized 

displacements within a finite element are usually expressed by means of shape functions 

systematically arranged in A  and by generalized nodal displacements q  in  the form 

 1*LMAXLMAX*3 qAu =                    (3.18) 

where LMAX  is the number of D.O.F. for  a particular element. The increments of 

displacements are  

 qAu ∆=∆                     (3.19) 

Knowing the shape functions appearing in A  we can easily calculate the components 

of the material displacement gradient and then to express its increments. It will contain 

derivatives of shape functions and will depend on q and q∆ . 

 
j

i
t

ij
t

x
uZ 00 ∂

∂
=

j

i
ij x

uZ 0∂
∆∂

=∆                   (3.20) 

The results for linear part of strain increments – in accordance with eqs. (3.9) and (3.11) – 

could be expressed in the form 

 ( ) 1*LMAX
L

LMAX*60
L2

0
L1

0
L2L1L

1*6 qBqBBEEE ∆=∆+=∆+∆=∆                (3.21) 

where obviously 

 L2
0

L1
0

L
0 BBB += .                  (3.22) 

The lower left hand index zero emphasises that the derivatives appearing in these 

matrices are taken with respect to coordinates ix0 . 
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Similarly for the nonlinear part of strain increments 

 1*LMAX
N

LMAX*90
N

1*9
~ qBE ∆=∆                 (3.23) 

Now, the three contributions to the virtual strain energy (3.17a), (3.17b), (3.17c) could 

be formally rewritten. The first component is  

 Fq tU 0
T

I ∆δ=δ                    (3.24) 

where a so called vector of internal forces in nodes is  

 ( ) V
V

tt 0
0

TL
00 d

0∫= SBF .                 (3.25) 

For the second component, i.e. (3.17b), we can write 

 qKq ∆∆δ=δ N
0

T
II

tU ,                  (3.26) 

where a so called non-linear part of incremental stiffness matrix is  

 ( ) V
V

tt 0N
00

TN
0

N
0 d~

0∫= BSBK .                     (3.27) 

The third component of the virtual strain energy, i.e. (3.17c), can be discretized using 

(3.9) and (3.21). After some algebraic manipulations we get  

 qKq ∆∆δ=δ L
0

T
III

tU  ,                  (3.28) 

where 

 ( )∫= V

t V
0

0L
00

TL
0

L
0 dBCBK                  (3.29) 

is the linear part of incremental stiffness matrix. 

Using eqs. (3.24), (3.26) and (3.28) and realizing that the virtual work done by 

external forces { }Rtt ∆+  is 

 { } { }RqW tttt ∆+∆+ ∆δ=δ T ,                  (3.30) 

we can conclude that in agreement with (1) we get 

 ( ) RqqKqKFq ttttt ∆+∆δ=∆+∆+∆δ TN
0

L
00

T .               (3.31) 

This equation must hold for any virtual diplacement, hence finally we have  

 FRqK tttt
00 −=∆ ∆+ ,                  (3.32) 

where 

 N
0

L
00 KKK ttt +=                    (3.33) 

This system of algebraic equations constitutes the conditions of equilibrium. Solving 

the system gives the unknown increments of nodal displacements and the new displacements 

in the configuration  Ctt ∆+  could be calculated by  
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 qqq ∆+=∆+ ttt                    (3.34) 

The new displacements, however, have to be taken as the first approximation only and 

refined subsequently in an iterative process. Introducing the iteration counter )(i  we can 

rewrite eq. (3.32) as follows 

 )1(
0

)()(
0

−∆+∆+ −=∆ ittttiit FRqK     for  K2,1,0=i                (3.35) 

At the beginning of the process we set 

 FFqq tttttt
0

)0(
0

)0( , == ∆+∆+    and   KK 0)0(
0 =t  .               (3.36) 
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       The Newton Raphson iteration process with total Lagrangian approach could be 

implemented as follows. 

 Let’s assume that from 0t =  to tmaxt =  there are kmax  (same) loading steps. The 

maximum force, corresponding to final configuration at time tmax  is  RR kmaxtmax = . If a 

linear increase of force between consecutive loading steps is considered, then the force 

corresponding to thk =  loading step is  R/kmaxk*R tmaxk = . 

 

 for  stepsloadingforloop%dokmaxto1k =   

         0;i =  

         ;;;then1k qqFFKK kkk 0)0(0
0

)0(
0

0)0(
0 0 =====if  

        ;;;else )(1)0()(1
0

)0(
0

)(1
0

)0(
0

ilastkkilastkkilastkk qqFFKK −−− ===  

         ifofend  

         ;k/kmax*RRislevelloadteintermedia tmaxk =  

         .false.satisfied =   

         loopiteration%dosatisfied.not.while  

   1;ii +=  

   )()1(
0

)()1(
0 ; iikkiik qFRqK ∆⇒−=∆ −−solve  

   ;)()1()( iikik qqq ∆+= −   
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0
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0

)(
0

)()(
0

)(
0 , ikikikikikik SgFSqfKS ==  
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












<

−
<= 2

)ilast(
0

1)ilast(

)(

..
∆

εε
R
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and

q

q
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  loopwhileofend  

loopforofend  
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4. What is the material derivative of volume integral? 

Let ϕ  be a function that is sufficiently smooth in a given volume V . Then 

 ∫ ∫=V V
V

t
V

t
d

D
Dd

D
D ρϕϕρ .    (*) 

Proof: From left-hand side of the equation (*), we can write 

 ∫ ∫ ∫+∂
∂

=
V V S

SvV
t

V
t

ddd
D
D ρϕρϕρϕ .      (4.1) 

Using Gauss theorem we can transform surface integral to volume integral and get 

 ( ) ( ) ( )∫ ∫ ∫ ∫ 



 +
∂
∂

=+
∂
∂

=
V V V V

V
t

VvV
t

V
t

dvdivddivdd
D
D ϕρϕρϕρϕρϕρ  

 (4.2) 

For a divergence of product of scalar function α and general vector function k , we can write 

 ( ) kk div.gradkdiv ααα +=         (4.3) 

Using this expression we can rewrite integrand of integral (2) and we obtain 

 ( ) ( ) ( ) =++
∂
∂

+
∂
∂

=+
∂
∂ ϕρρϕρϕϕρϕρϕρ gradvdivvdiv v

ttt
 

    ( )



 ρ+
∂
ϕ∂

ϕ+



 ϕ+
∂
ϕ∂

ρ= vdivgrad
t

v
t

.     (4.4) 

The second bracket of expression (4.4) is from equation of continuity equal to zero and first 

bracket from this expression is a definition relation for 
tD

Dϕ . After substituting back into 

integral (4.2) we finally get 

 ( )∫ ∫ =












 +
∂
∂

+



 +
∂
∂

=
V V

V
t

v
t

V
t

dvdivgradd
D
D ρρϕϕϕρρϕ  

 ∫ ∫=







+






=

V V
V

t
V

t
d

D
Dd0.

D
D ρϕϕϕρ .      (4.5) 

 

 

 

 

 

 

 

 



telemachos c:\education_jaderna_2005\01_cm_background\all_together_01_05_c3.doc 

 30

 

5. Conjugate stress and strain measures 

 A stress is called conjugate to the strain if its scalar product with strain gives work. 

Stress and strain quantities giving mechanical work as their scalar product are energetically 

conjugate. Mechanical work per unit time is power, or rate of work, so we could also relate 

stress and strain rate quantities whose scalar product gives power. Such quantities could be 

called power conjugate. 

The mechanical work of surface tractions and body forces at the current configuration Ct  is  

 ∫ ∫+=
S V

t
i

t
i

tt
i

t
i

tt
t t

VufSutW dd .       (5.1) 

All quantities are related to the current configuration. Let's omit the upper left index t  

for a moment. Using the Cauchy relation and the Gauss theorem we get 

 ∫∫ =+=
V iiS ijji VufSunW ddσ  

       
( )

∫ ∫





















+

∂
∂

+
∂
∂

=











+

∂
∂

=
V V ii

j

ji

j

i
jiii

j

iji Vuf
xx

uVuf
x

u
dd

σ
σ

σ
.   (5.2) 

The second term in eq. (5.2) is equal to zero, since it is the equilibrium equation. 

Exploiting the fact that the stress tensor is symmetric, the mechanical work could be 

calculated by a double dot product of Cauchy (true) strain and infinitesimal strain at the 

current configuration Ct . 

 ∫ ∫ ===
V V ijijijji VVuW dd εσσ ∫V

Vd:εσ .      (5.3) 

We can conclude that the true stress and infinitesimal strain constitutes the 

energetically conjugate variables. 

 

Remark 

Remember that the infinitesimal strain could be calculated exactly, involving no 

approximation, from 

 ε ( ) ( ) IFFZZ −+=+= TT

2
1

2
1  

since the deformation gradient 
j

i
t

ij
t

x
xF 00 ∂

∂
= could be expressed by means of the material 

displacement gradient 
j

i
t

ij
t

x
uZ 00 ∂

∂
= in the form 
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 IZF += . 

 

Similarly for the mechanical power, or the rate of work gives 

 ( )∫ ∫∫ =+====
V V ijijijijijV ijij VWDVLVuWP ddd σσσ &&  

     ∫ ==
V ijij VD dσ ∫V

Vd:Dσ ,       (5.4) 

so the power conjugate quantities are the true stress ijσ and the velocity gradient  ijL . Using 

the fact that the spin tensor  ijW is skew-symmetric and its scalar product with symmetric 

stress tensor  ijσ gives zero, we can state that the true stress and the strain rate  ijD  are also 

power conjugate quantities. 

Using the definition of the first Piola-Kirchhoff stress tensor we could express the 

previous equation in the reference configuration  C0 . 

Substituting kijkji F τ
ρ
ρσ 0=  into eq. (5.4) we get 

 ∫ ∫ ∫==
V V V jkijkiijkijkijji VFLVLFVv 0

0 ddd
0
ττ

ρ
ρσ .     (5.5) 

But 

 ikjkij FFL &=           (5.6) 

since 

 jkij
k

j
t

j
t

i
t

k

j
t

j
t

i
t

k

i
t

ikik FL
x
x

x
v

x
x

x
x

x
x

t
F

t
F =

∂
∂

∂
∂

=
∂
∂

∂
∂

=







∂
∂

== 000D
D

D
D && . 

So the mechanical power in the reference configuration is expressed by  

 ∫ ∫ ===
V V ikikikki VFVFP

0 0

00 dd && ττ ∫ V
V

0

0d: F&τ .     (5.7) 

which is a double dot product of the first Piola-Kirchoff stress tensor and the rate of 

deformation gradient tensor. These tensors form another suitable couple of power conjugate 

quantities. 

Similarly for the second Piola-Kirchhoff stress tensor. Substituting 

 σ T
0 FSF
ρ
ρ

=   or  jsrsirij FSF
ρ
ρσ 0=   

into eq. (5.4) we get 

 ∫ ∫ ∫===
V V V ijrsjsirijrsjsirijij VDSFFVDSFFVDP

0

0
0 ddd
ρ
ρσ . 
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But 

 rsijjsir EDFF &=  

since for the Green-Lagrange strain tensor 

 ( )IFFE −= T

2
1  

we could express its time rate by 

 ( ) ( )FFFFFFE &&& TTT

2
1

D
D

2
1

+==
t

. 

Using eq. (5.6) the previous equation can be rewritten into 

 ( ) ( ) ( )( )=+++=+= FWDFFWDFFLFLLFE TTTTTT

2
1

2
1&  

     ( ) ( )( )=+++= FWDFFWDF TTTT

2
1  

        ( ) ( )( ) FDFFWDFFWDF TTT

2
1

=++−= . 

since D  is symmetric and  W  skew-symmetric. So the stress power in a reference 

configuration can also be expressed by 

 ∫ ∫ ∫===
V V Vijijijij VVESVDP

0 0

00 d:dd ES &&σ  

giving another couple of suitable quantities. It is obvious that in terms of mechanical wark we 

have 

 ∫ ∫==
V V ijijijij VESVW

0

0ddεσ . 

Finally, let's find what role plays the Almansi strain tensor is these considerations. It can be 

proved that  

 ∫∫ ∇==
VV

VVP d:d: AD σσ , 

where 

 DA =∇  is a so called Rivlin-Ericksen rate of Almansi strain A . 

Proof 

a) The Almansi strain tensor is defined by ( ) ( ) xAx ttt ss dd2dd 202
=− . 

b) The time rate of the previous expression is 

( ) ( )( ) ( ) ( )===− xAx tttt

t
s

t
ss

t
dd

D
D2d

D
Ddd

D
D 2202  
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 ( )=++= xAxxAxxAx &&& tttttt dddddd2  

But  xLx tt dd = , TTT dd Lxx tt =  

so 

 ( ) xLAAALx tt dd2 TT ++= & . 

         c)  We can also write  

( ) ( )
( ) xDxxWDxxLx

xxxxxx

tttttt

ttttttt

tt
s

t
dd2dd2dd2

dd2d
D
Dd2dd

D
Dd

D
D

TTT

TTT2

=+==

====
 

since 

 0dd2 T =xWx tt  due to the skew-symmetry of W  and the symmetry of xx tt dd T . 

This way we have proved that 

 LAAALAD ++== ∇ &T . 

 

6. Summary for conjugate strain and stress measures 

 

Measure of strain   Measure of stress  Their scalar product 

___________________________________________________________________________ 

 

 ijε   - Cauchy (infinitesimal)  ijσ   - Cauchy (true) stress  work 

ijE   - Green-Lagrange  ijS   - second Piola-Kirchhoff  work 

ijE&   - rate of Green-Lagrange   ijS   - second Piola-Kirchhoff  power, rate of work 

ijF&   - rate of deformation gradient ijτ   - first Piola-Kirchhoff  power, rate of work 

ijD   - strain rate   ijσ   - Cauchy (true) stress  power, rate of work 

ijL   - velocity gradient  ijσ   - Cauchy (true) stress  power, rate of work 

∇
ijA  - Rivlin-Eriksen rate of Almansi  ijσ   - Cauchy (true) stress  power, rate of work
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