Budapest 2011 Infinite Games and σ -porosity

M. Doležal, M. Zelený

Charles University in Prague Faculty of Mathematics and Physics

Outline

- Porosity-like relation.
- 2 Known results.
- 3 Characterization of σ -P-porosity.
- Inscribing theorems.

Definition of Porosity

Definition

Let (X, d) be a metric space. Let $A \subseteq X$, $x \in X$ and R > 0. Denote

$$\gamma(x, R, A) = \sup \{r > 0 : \text{ there exists } z \in X \text{ such that } d(x, z) < R \text{ and } B(z, r) \cap A = \emptyset \},$$

$$p(x,A) = \limsup_{R \to 0+} \frac{\gamma(x,R,A)}{R}.$$

A set $A \subseteq X$ is said to be porous at $x \in X$ if p(x, A) > 0.

A set $A \subseteq X$ is said to be porous if it is porous at every its point.

A set $A \subseteq X$ is said to be σ -porous if it is a countable union of porous sets.

Point-set relation

Let X be a metric space and let $P \subseteq X \times 2^X$ be a relation between points of the space X and subsets of X. Then we say that P is a point-set relation on X.

For any $x \in X$ and $A \subseteq X$, the symbol P(x, A) means $(x, A) \in P$.

Porosity-like relation

A point-set relation P on X is called a porosity-like relation if for every $A \subseteq X$, $B \subseteq X$ and $x \in X$ we have:

- (P1) $[A \subseteq B \text{ and } P(x, B)] \Longrightarrow P(x, A),$
- (P2) $P(x, A) \iff$ there exists r > 0 such that $P(x, A \cap B(x, r))$,
- (P3) $P(x, A) \iff P(x, \overline{A}).$

Whenever *P* is a porosity-like relation on X, $A \subseteq X$ and $x \in X$, we say that

- the set A is P-porous at x if P(x, A),
- the set A is P-porous if it is P-porous at every its point,
- the set A is σ-P-porous if it is a countable union of P-porous sets.

Porosity-like relation

A point-set relation P on X is called a porosity-like relation if for every $A \subseteq X$, $B \subseteq X$ and $x \in X$ we have:

- (P1) $[A \subseteq B \text{ and } P(x, B)] \Longrightarrow P(x, A),$
- (P2) $P(x, A) \iff$ there exists r > 0 such that $P(x, A \cap B(x, r))$,
- (P3) $P(x,A) \iff P(x,\overline{A}).$

Whenever P is a porosity-like relation on X, $A \subseteq X$ and $x \in X$, we say that

- the set A is P-porous at x if P(x, A),
- the set A is P-porous if it is P-porous at every its point,
- the set A is σ-P-porous if it is a countable union of P-porous sets.

Porosity-like relation. Known results. Characterization of σ -P-porosity. Inscribing theorems.

Question

Let X be a compact metric space and let $A \subseteq X$ be a Borel (analytic) set which is not σ -porous. Does there exist a compact set $K \subseteq A$ which is not σ -porous?

Outline

- Porosity-like relation.
- 2 Known results.
- 3 Characterization of σ -P-porosity.
- 4 Inscribing theorems.

- M. Zelený, J. Pelant, 2004:
 - Let X be a topologically complete metric space and let
 A ⊆ X be a Suslin set which is not σ-porous. Then there
 exists a closed set F ⊆ A which is not σ-porous.
- M. Zelený, L. Zajíček, 2005:
 - Let X be a locally compact metric space and let $A \subseteq X$ be an analytic set which is not σ -porous. Then there exists a compact set $K \subseteq A$ which is not σ -porous.
 - Analogous variants of this theorem for g-porosity, symmetrical porosity. ...

- M. Zelený, J. Pelant, 2004:
 - Let X be a topologically complete metric space and let
 A ⊆ X be a Suslin set which is not σ-porous. Then there
 exists a closed set F ⊆ A which is not σ-porous.
- M. Zelený, L. Zajíček, 2005:
 - Let X be a locally compact metric space and let A ⊆ X be an analytic set which is not σ-porous. Then there exists a compact set K ⊆ A which is not σ-porous.
 - Analogous variants of this theorem for g-porosity, symmetrical porosity, ...

- M. Zelený, J. Pelant, 2004:
 - Let X be a topologically complete metric space and let
 A ⊆ X be a Suslin set which is not σ-porous. Then there
 exists a closed set F ⊆ A which is not σ-porous.
- M. Zelený, L. Zajíček, 2005:
 - Let X be a locally compact metric space and let A ⊆ X be an analytic set which is not σ-porous. Then there exists a compact set K ⊆ A which is not σ-porous.
 - Analogous variants of this theorem for g-porosity, symmetrical porosity, ...

- I. Farah, J. Zapletal, 2006:
 - Let $A \subseteq 2^{\omega}$ be a Borel set which is not σ -porous. Then there exists a compact set $K \subseteq A$ which is not σ -porous.
- D. Rojas-Rebolledo, 2007:
 - Let X be a zero-dimensional compact metric space and let $A \subseteq X$ be an analytic set which is not σ -porous. Then there exists a compact set $K \subseteq A$ which is not σ -porous.
 - Analogous variant of this theorem for strong porosity.

- I. Farah, J. Zapletal, 2006:
 - Let $A \subseteq 2^{\omega}$ be a Borel set which is not σ -porous. Then there exists a compact set $K \subseteq A$ which is not σ -porous.
- D. Rojas-Rebolledo, 2007:
 - Let X be a zero-dimensional compact metric space and let $A \subseteq X$ be an analytic set which is not σ -porous. Then there exists a compact set $K \subseteq A$ which is not σ -porous.
 - Analogous variant of this theorem for strong porosity.

- I. Farah, J. Zapletal, 2006:
 - Let $A \subseteq 2^{\omega}$ be a Borel set which is not σ -porous. Then there exists a compact set $K \subseteq A$ which is not σ -porous.
- D. Rojas-Rebolledo, 2007:
 - Let X be a zero-dimensional compact metric space and let $A \subseteq X$ be an analytic set which is not σ -porous. Then there exists a compact set $K \subseteq A$ which is not σ -porous.
 - Analogous variant of this theorem for strong porosity.

Outline

- Porosity-like relation.
- 2 Known results.
- **3** Characterization of σ -P-porosity.
- 4 Inscribing theorems.

Let (X, d) be a complete metric space, let P be a porosity-like relation on X and $A \subseteq X$. Then we define an infinite game G(A) in this way:

I

П

- B_n is an open ball in X, $n \in \mathbb{N}$,
- $\overline{B_{n+1}} \subseteq B_n$ and diam $B_{n+1} \le \frac{1}{2}$ diam B_n , $n \in \mathbb{N}$,
- S_n^j is an open subset of B_n , $j \in \{1, ..., n\}$, $n \in \mathbb{N}$.

Let (X, d) be a complete metric space, let P be a porosity-like relation on X and $A \subseteq X$. Then we define an infinite game G(A) in this way:

```
I B<sub>1</sub>
```

П

- B_n is an open ball in X, $n \in \mathbb{N}$,
- $\overline{B_{n+1}} \subseteq B_n$ and diam $B_{n+1} \le \frac{1}{2}$ diam B_n , $n \in \mathbb{N}$,
- S_n^j is an open subset of B_n , $j \in \{1, ..., n\}$, $n \in \mathbb{N}$.

Let (X, d) be a complete metric space, let P be a porosity-like relation on X and $A \subseteq X$. Then we define an infinite game G(A) in this way:

```
I B_1
II (S_1^1)
```

- B_n is an open ball in X, $n \in \mathbb{N}$,
- $\overline{B_{n+1}} \subseteq B_n$ and diam $B_{n+1} \le \frac{1}{2}$ diam $B_n, n \in \mathbb{N}$,
- S_n^j is an open subset of B_n , $j \in \{1, ..., n\}$, $n \in \mathbb{N}$.

Let (X, d) be a complete metric space, let P be a porosity-like relation on X and $A \subseteq X$. Then we define an infinite game G(A) in this way:

I
$$B_1$$
 B_2
II (S_1^1)

- B_n is an open ball in X, $n \in \mathbb{N}$,
- $\overline{B_{n+1}} \subseteq B_n$ and diam $B_{n+1} \le \frac{1}{2}$ diam $B_n, n \in \mathbb{N}$,
- S_n^j is an open subset of B_n , $j \in \{1, ..., n\}$, $n \in \mathbb{N}$.

Let (X, d) be a complete metric space, let P be a porosity-like relation on X and $A \subseteq X$. Then we define an infinite game G(A) in this way:

I
$$B_1$$
 B_2
II (S_1^1) (S_2^1, S_2^2)

- B_n is an open ball in X, $n \in \mathbb{N}$,
- $\overline{B_{n+1}} \subseteq B_n$ and diam $B_{n+1} \le \frac{1}{2}$ diam $B_n, n \in \mathbb{N}$,
- S_n^j is an open subset of B_n , $j \in \{1, ..., n\}$, $n \in \mathbb{N}$.

Let (X, d) be a complete metric space, let P be a porosity-like relation on X and $A \subseteq X$. Then we define an infinite game G(A) in this way:

I
$$B_1$$
 B_2 B_3
II (S_1^1) (S_2^1, S_2^2)

- B_n is an open ball in X, $n \in \mathbb{N}$,
- $\overline{B_{n+1}} \subseteq B_n$ and diam $B_{n+1} \le \frac{1}{2}$ diam $B_n, n \in \mathbb{N}$,
- S_n^j is an open subset of B_n , $j \in \{1, ..., n\}$, $n \in \mathbb{N}$.

Let (X, d) be a complete metric space, let P be a porosity-like relation on X and $A \subseteq X$. Then we define an infinite game G(A) in this way:

I
$$B_1$$
 B_2 B_3

II (S_1^1) (S_2^1, S_2^2) (S_3^1, S_3^2, S_3^3)

- B_n is an open ball in X, $n \in \mathbb{N}$,
- $\overline{B_{n+1}} \subseteq B_n$ and diam $B_{n+1} \le \frac{1}{2}$ diam $B_n, n \in \mathbb{N}$,
- S_n^j is an open subset of B_n , $j \in \{1, ..., n\}$, $n \in \mathbb{N}$.

Let (X, d) be a complete metric space, let P be a porosity-like relation on X and $A \subseteq X$. Then we define an infinite game G(A) in this way:

- B_n is an open ball in X, $n \in \mathbb{N}$,
- $\overline{B_{n+1}} \subseteq B_n$ and diam $B_{n+1} \le \frac{1}{2}$ diam $B_n, n \in \mathbb{N}$,
- S_n^j is an open subset of B_n , $j \in \{1, ..., n\}$, $n \in \mathbb{N}$.

The second player wins if at least one of the following two conditions is satisfied:

- (a) $x \notin A$,
- (b) there exists $m \in \mathbb{N}$ such that $x \in X \setminus \bigcup_{n=m}^{\infty} S_n^m$ and the set

$$X \setminus \bigcup_{n=m}^{\infty} S_n^m$$
 is *P*-porous at *x*.

The first player wins in the opposite case.

Characterization of σ -P-porosity

Theorem

Let (X, d) be a complete metric space, let P be a porosity-like relation on X and $A \subseteq X$. Then the first player has a winning strategy in the game G(A) if and only if the set A is σ -P-porous.

Outline

- Porosity-like relation.
- 2 Known results.
- 3 Characterization of σ -P-porosity.
- Inscribing theorems.

Inscribing theorems

- Let X be a locally compact metric space and let $A \subseteq X$ be a Borel (analytic) set which is not σ -porous. Then there exists a compact set $K \subseteq A$ which is not σ -porous.
- Analogous variants of this theorem for strong, symmetric and strong symmetric porosity.

Inscribing theorems

- Let X be a locally compact metric space and let $A \subseteq X$ be a Borel (analytic) set which is not σ -porous. Then there exists a compact set $K \subseteq A$ which is not σ -porous.
- Analogous variants of this theorem for strong, symmetric and strong symmetric porosity.

• Finding an infinite game H(A) such that:

- the second player has a winning strategy in the game H(A) \iff the set A is σ -porous,
- the set A is Borel \Longrightarrow the game H(A) is determined,
- the second player has only a finite number of possible choices in every his move.
- The set A is Borel but not σ-porous ⇒ the first player has a winning strategy in the game H (A).
- There exists a compact set $K \subseteq A$ such that the same strategy is winning for the first player even in the game H(K). Therefore, this set cannot be σ -porous.

- Finding an infinite game H(A) such that:
 - the second player has a winning strategy in the game H(A)
 ⇒ the set A is σ-porous,
 - the set A is Borel \Longrightarrow the game H(A) is determined,
 - the second player has only a finite number of possible choices in every his move.
- The set A is Borel but not σ-porous ⇒ the first player has a winning strategy in the game H (A).
- There exists a compact set $K \subseteq A$ such that the same strategy is winning for the first player even in the game H(K). Therefore, this set cannot be σ -porous.

- Finding an infinite game H(A) such that:
 - the second player has a winning strategy in the game H(A)
 ⇒ the set A is σ-porous,
 - the set A is Borel \Longrightarrow the game H(A) is determined,
 - the second player has only a finite number of possible choices in every his move.
- The set A is Borel but not σ-porous ⇒ the first player has a winning strategy in the game H (A).
- There exists a compact set $K \subseteq A$ such that the same strategy is winning for the first player even in the game H(K). Therefore, this set cannot be σ -porous.

- Finding an infinite game H(A) such that:
 - the second player has a winning strategy in the game H(A)
 ⇒ the set A is σ-porous,
 - the set A is Borel \Longrightarrow the game H(A) is determined,
 - the second player has only a finite number of possible choices in every his move.
- The set A is Borel but not σ-porous ⇒ the first player has a winning strategy in the game H (A).
- There exists a compact set $K \subseteq A$ such that the same strategy is winning for the first player even in the game H(K). Therefore, this set cannot be σ -porous.

- Finding an infinite game H(A) such that:
 - the second player has a winning strategy in the game H(A)
 ⇒ the set A is σ-porous,
 - the set A is Borel \Longrightarrow the game H(A) is determined,
 - the second player has only a finite number of possible choices in every his move.
- The set A is Borel but not σ-porous ⇒ the first player has a winning strategy in the game H(A).
- There exists a compact set $K \subseteq A$ such that the same strategy is winning for the first player even in the game H(K). Therefore, this set cannot be σ -porous.

- Finding an infinite game H(A) such that:
 - the second player has a winning strategy in the game H(A)
 ⇒ the set A is σ-porous,
 - the set A is Borel \Longrightarrow the game H(A) is determined,
 - the second player has only a finite number of possible choices in every his move.
- The set A is Borel but not σ-porous ⇒ the first player has a winning strategy in the game H(A).
- There exists a compact set $K \subseteq A$ such that the same strategy is winning for the first player even in the game H(K). Therefore, this set cannot be σ -porous.

Another result

• There exists a closed set $F \subseteq [0,1]$ which is σ - $(1-\varepsilon)$ -symmetrically porous for every $0 < \varepsilon < 1$ but which is not σ -1-symmetrically (i.e. σ -strong symmetrically) porous.

Porosity-like relation. Known results. Characterization of σ -P-porosity. Inscribing theorems.

Thank you for your attention!