THE CZECH ACADEMY OF SCIENCES

INSTITUTE OF MATHEMATICS

The approximate Loebl-Komlos-So6s
Conjecture IV: Embedding techniques
and the proof of the main result

Jan Hladky
Jdnos Komlos
Diana Piguet

Miklos Simonovits

Maya Stein

Endre Szemerédi

Preprint No. 14-2016
PRAHA 2016






The Approximate Loebl-Komlos—S6s Conjecture IV:
Embedding techniques and the proof of the main result

Jan Hladky * Janos Komlés' Diana Piguet!
Miklés Simonovits® Maya SteinY  Endre Szemerédill

Abstract

This is the last paper of a series of four papers in which we prove the following relaxation
of the Loebl-Komlés—Sés Conjecture: For every o > 0 there exists a number kg such that for
every k > ko every n-vertex graph G with at least (3 + a)n vertices of degree at least (1 + o)k
contains each tree T of order k as a subgraph.

In the first two papers of this series, we decomposed the host graph G, and found a suitable
combinatorial structure inside the decomposition. In the third paper, we refined this structure,
and proved that any graph satisfying the conditions of the above approximate version of the
Loebl-Komlés—Sés Conjecture contains one of ten specific configurations. In this paper we
embed the tree T in each of the ten configurations.
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1 Introduction

This paper concludes a series of four papers in which we provide an approximate solution of the
Loebl-Komlés—S6s Conjecture. The conjecture reads as follows.

Conjecture 1.1 (Loebl-Komlés—Sés Conjecture 1995 [EFLS95]). Suppose that G is an n-vertex
graph with at least n/2 vertices of degree more than k — 2. Then G contains each tree of order k.

We discuss the history and state of the art in detail in the first paper [HKPa] of our series.
Our main result, which we prove in the present paper, is the approximate solution of the Loebl-
Komlés—Sés Conjecture, and reads as follows.

Theorem 1.2 (Main result). For every o > 0 there exists a number ko such that for any k > ko we
have the following. Each n-vertex graph G with at least (% + a)n vertices of degree at least (14 «)k
contains each tree T' of order k.

In the first paper [HKPta] of the series we exposed a decomposition technique (the sparse
decomposition), and in the second paper [HKP*b], we found a rough combinatorial structure in the
host graph G. In [HKP™¢], the third paper of the series, we refined this structure, and obtained one
of ten possible configurations, at least one of which appears in any graph satisfying the hypotheses
of Theorem 1.2. These configurations will be reintroduced in Section 5. All the configurations are
built up from basic elements which are inherited from the sparse decomposition.

In the present paper, we will embed the tree 7' in the host graph G using the preprocessing
from [HKP*c|. Let us give a short outline of this procedure. First, we cut the tree into smaller
subtrees, connected by few vertices. This will be done in Section 3.

We then develop techniques to embed the smaller subtrees in different building blocks of the
configurations. Then, for each of the configurations, we show how to combine the embedding
techniques for smaller trees to embed the whole tree T'. All of this will be done in Section 6. We
mention that Section 6.1 contains a 5-page overview of the embedding procedures, with all the
relevant ideas.

Finally, in Section 7, we prove Theorem 1.2, with the help of the main results from the earlier
papers [HKP*a, HKP™b, HKP*(].

2 Notation and preliminaries

2.1 General notation

The set {1,2,...,n} of the first n positive integers is denoted by [n]. We frequently employ
indexing by many indices. We write superscript indices in parentheses (such as a(3)), as opposed to
notation of powers (such as a3). We sometimes use subscript to refer to parameters appearing in
a fact/lemma/theorem. For example a9 refers to the parameter o from Theorem 1.2. We omit
rounding symbols when this does not lead to confusion.

We use lower case Greek letters to denote small positive constants. The exception is the letter ¢
which is reserved for embedding of a tree T in a graph G, ¢ : V(T) — V(G). The capital Greek
letters are used for large constants.

We write V(G) and E(G) for the vertex set and edge set of a graph G, respectively. Further,
v(G) = |V(G)| is the order of G, and e(G) = |E(G)| is its number of edges. If X,Y C V(G) are



2.2 Regular pairs

two not necessarily disjoint sets of vertices we write e(X) for the number of edges induced by X,
and e(X,Y) for the number of ordered pairs (z,y) € X x Y for which zy € E(G). In particular,
note that 2e(X) = e(X, X).

For a graph G, a vertex v € V(G) and a set U C V(G), we write deg(v) and deg(v, U) for the
degree of v, and for the number of neighbours of v in U, respectively. We write mindeg(G) for the
minimum degree of G, mindeg(U) := min{deg(u) : u € U}, and mindeg(V1, V2) = min{deg(u, V2) :
u € Vi } for two sets V1,V C V(G). Similar notation is used for the maximum degree, denoted by
maxdeg(G). The neighbourhood of a vertex v is denoted by N(v). We set N(U) := U,y N(u).
The symbol — is used for two graph operations: if U C V(G) is a vertex set then G — U is the
subgraph of G induced by the set V(G)\ U. If H C G is a subgraph of G then the graph G — H is
defined on the vertex set V(G) and corresponds to deletion of edges of H from G.

2.2 Regular pairs

In this section we introduce the notion of regular pairs which is central for Szemerédi’s regularity
lemma. We also list some simple properties of regular pairs that will be useful in our embedding
process.

Given a graph H and two disjoint sets U, W C V(H) the density of the pair (U, W) is defined
as

_ e(U,w)
AU W) = Tt

Similarly, for a bipartite graph G with colour classes U, W we talk about its bipartite density
d(G) = % For a given € > 0, a pair (U, W) of disjoint sets U,W C V(H) is called an e-regular
pair if [d(U,W) —d(U',W')| < € for every U’ C U, W C W with |U'| > ¢|U|, |W'| > e|W|. If
the pair (U, W) is not e-regular, then we call it e-irregular. A stronger notion than regularity is
that of super-regularity which we recall now. A pair (A, B) is (g, v)-super-regular if it is e-regular,
mindeg(A, B) > v|B|, and mindeg(B, A) > v|A|. Note that then (A, B) has bipartite density at
least ~.
The following two well-known properties of regular pairs will be useful.

Fact 2.1. Suppose that (U, W) is an e-reqular pair of density d. Let U' C U and W' C W be sets of
vertices with |U'| = a|U| and |W'| > «|W|, where o > €. Then the pair (U',W') is a 2¢e/a-regular
pair of density at least d — ¢.

Fact 2.2. Suppose that (U, W) is an e-reqular pair of density d. Then all but at most e|U| vertices
v € U satisfy deg(v, W) = (d — €)|W]|.

2.3 LKS graphs

Write LKS(n, k, «) for the class of all n-vertex graphs with at least (% + a)n vertices of degrees
at least (1 + a)k. Write trees(m) for the class of all trees on m vertices. With this notation,
Conjecture 1.1 states that every graph in LKS(n, k,0) contains every tree from trees(k + 1).

Define LKSmin(n, k,n) as the set of all graphs G € LKS(n,k,n) that are edge-minimal in
LKS(n, k,n). Write S, ,(G) for the set of all vertices of G that have degree less than (1+7)k, and
set L, 1(G) :=V(G) \ S x(G).

Definition 2.3. Let LKSsmall(n, k,n) be the class of those graphs G € LKS(n,k,n) for which

we have the following three properties:



1. All the neighbours of every vertex v € V(G) with deg(v) > [(1 + 2n)k]| have degrees at most
[(1+2n)k].

2. All the neighbours of every vertex of Sy (G) have degree exactly [(1 4 n)k].
3. We have e(G) < kn.

3 Trees

In this section we will show how to partition any given tree into small subtrees, connected by only
a few vertices; this is what we call an ¢-fine partition. This notion is essential for our proof of
Theorem 1.2, as we can embed these small subtrees one at a time.

Similar but simpler tree-cutting procedures were used earlier for the dense case of the Loebl-
Komlés—Sés Conjecture [AKS95, HP15, PS12, Zhall]. There, the small trees were embedded in
regular pairs of a regularity lemma decomposition of the host graph G. Since here, we use the
sparse decomposition instead, we had to take more care when cutting the tree. (In particular,
features (h), (i), (j) of Definition 3.3 are needed for the more complex setting here.)

If T is a tree and r € V(T), then the pair (T,r) is a rooted tree with root r. We write
Vodad(T,r) C V(T) for the set of vertices of T' of odd distance from r. Viyen(T,7) is defined
analogously. Note that 7 € Voyen(T, 7). The distance between two vertices v; and vy in a tree is
denoted by dist(vy,v2).

We start with a simple well-known fact about the number of leaves in a tree. For completeness
we include a proof.

Fact 3.1. Let T be a tree with £ vertices of degree at least three. Then T has at least £ + 2 leaves.

Proof. Let D1 be the set of leaves, Do the set of vertices of degree two and D3 be the set of vertices
of degree of at least three. Then

2(|D1| + |Dof + |Ds|) =2 =20(T) —2=2¢(T) = Y deg(v) > |D1| + 2|Da| + 3| D3],
veV(T)

and the statement follows. ]

Let T be a tree rooted at r, inducing the partial order < on V(T') (with r as the minimal
element). If a < b and ab € E(T) then we say that b is a child of a and a is the parent of b. Ch(a)
denotes the set of children of a, and the parent of a vertex b # r is denoted Par(h). For a set
U C V(T) write Par(U) := {Par(u) : u € U\ {r}} \ U and Ch(U) := J,eyy Ch(u) \ U.

The next simple fact has already appeared in [Zhall, HP15] (and most likely in some more
classic texts as well). Nevertheless, for completeness we give a proof here.

Fact 3.2. Let T be a tree with colour-classes X and Y, and v(T) = 2. Then the set X contains at
least | X| — |Y| 4+ 1 leaves of T

Proof. Root T' at an arbitrary vertex r € Y. Let I be the set of internal vertices of T" that belong
to X. Each v € I has at least one immediate successor in the tree order induced by r. These
successors are distinct for distinct v € I and all lie in Y \ {r}. Thus |I| < |Y| — 1. The claim
follows. ]



We say that a tree T" C T is induced by a vertex = € V(T') if V(T") is the up-closure of z in
V(T), e, V(T") ={v e V(T) : x 2v}. We then write 7" = T(r,1 z), or T = T'(1 z), if the root
is obvious from the context and call 77 an end subtree. Subtrees of T' that are not end subtrees are
called internal subtrees.

Let T be a tree rooted at r and let 7" C T be a subtree with r € V(T”). The seed of T' is the
=<-maximal vertex x € V(T) \ V(T") for which x < v for all v € V(T"). We write Seed(T") = x.
A fruit in a rooted tree (T, r) is any vertex v € V(T') whose distance from r is even and at least
four.

We can now state the most important definition of this section, that of a fine partition of a tree.
The idea behind this definition is that it will be easier to embed the tree if we do it piecewise. So
we partition the tree T" into small subtrees (Sa4 U Sp in (a) below) of bounded size (see (e)), and a
few cut-vertices (sets W4 and Wg in (a) below). These cut-vertices lie between the subtrees. The
partition of the cut-vertices into W4 and Wp is inherited from the bipartition of T" (see (d)). The
partition Sy and Sp is given by the position (in W4 or in Wg) of the cut-vertex (i.e., seed) of the
small subtree (see (f) and (g)).

It is of crucial importance that there are not too many seeds (cf. (c)), as they will have to be
embedded in special sets. Namely, the set that will accommodate W4 needs to be well connected
both to the set reserved for Wg, and to the area of the graph considered for embedding the subtrees
from S4. Another intuitively desirable property is (k), as the internal subtrees will be more difficult
to embed than the end subtrees. This is because they are adjacent to two seeds from W, U Wp
and after embedding (a part) of the internal subtree, we need to come back to the sets reserved for
W4 UWpg to embed the second seed.

Definition 3.3 (/-fine partition). Let T' € trees(k) be a tree rooted at r. An ¢-fine partition of T’
is a quadruple (Wa,Wpg,84,8p), where Wa, W C V(T) and Sa and Sg are families of subtrees
of T such that

(a) the three sets Wa, W and {V(T*)}r+cs,usp partition V(T') (in particular, the trees in T* €
Sa USp are pairwise vertex disjoint),

(b) 1€ WiUWsg,
(c) max{|W4|, |Wg|} < 336k/,

(d) for wi,wy € Wa U Wpg the distance dist(wi,ws) is odd if and only if one of them lies in W4
and the other one in Wg,

(e) v(T*) < C for every tree T* € S4 U Sp,

(f) V(I'*)NN(Wpg) =0 for every T* € Sq and V(T*) "NN(Wa) =0 for every T* € Sp,
(9) each tree of S4 USp has its seeds in W4 UWpg,

(h) IN(V(T*)) N (WaUWBg)| <2 for each T* € S4 U Sp,

(i) if N(V(T*))N(WaUWBR) contains two distinct vertices z1 and za for some T* € S4USg, then
distT(zl, ZQ) =6,

(G) if Th,To € Sa U Sp are two internal subtrees of T such that vy € Ty precedes vy € Ty then
disty(vy,v9) > 2,



internal trees in S4

end trees in Sy

trees in Sp

Figure 3.1: A part of an ¢-fine partition of a tree. Some of the properties from Definition 3.3
are illustrated. The parities obey (d) and (f). The distance between z; and 2o is at least 6
as required in (i). The distance between v; and vy is more than 2 as required in (j) (since
the corresponding subtrees precede one another). On the other hand, (j) does not require the
distance between vy and v3 to be more than 2.

(k) Sp does not contain any internal tree of T', and
(l) ZT*GSA, T*end subtree ofTv(T*) > ZT*ESB U<T*) :
An example is given in Figure 3.1.

Remark 3.4. Suppose that (W, Wg,S4,SB) is an £-fine partition of a tree (T,r), and suppose
that T* € S4 U Sp is such that |V (T*) NN(W4UWpg)| = 2. Let us root T* at the neighbour r1 of
its seed, and let ro be the other vertex of V(T*) N N(W4 U Wp). Then (d), (f), and (i) imply that
ro is a fruit in (T*,r1).

The following is the main lemma of this section.

Lemma 3.5. Let T € trees(k) be a tree rooted at v and let ¢ € [k]. Then T has an {-fine partition.



Proof. First we shall use an inductive construction to get candidates for W, Wp, S4 and Sp,
which we shall modify later on, so that they satisfy all the conditions required by Definition 3.3.

Set Ty := T. Now, inductively for ¢ > 1 choose a <-maximal vertex z; € V(T;_1) with the
property that v(T;—1(1 z;)) > £. We set T; := T;—1 — (V(Ti—1(T x:)) \ {zi}). If, say at step ¢ = iend,
no such z; exists, then v(T;—1) < ¢. In that case, set x; := r, set W := {xz}zi‘f and terminate.
The fact that v(T;—1 — V(T;)) > £ for each i < ignq implies that

(W] — 1= iena — 1 < k/L. (3.1)

Let C be the set of all components of the forest T'— Wj. Observe that by the choice of the z;
each T* € C has order at most /.

Let A and B be the colour classes of T" such that » € A. Now, choosing W4 as Wi N A and Wpg
as W1 N B and dividing C adequately into sets S4 and Sg would yield a quadruple that satisfies
conditions (a), (b), (c), (d), (e) and (g). To ensure the remaining properties, we shall refine our
tree partition by adding more vertices to Wi, thus making the trees in S4 U Sp smaller. In doing
so, we have to be careful not to end up violating (c). We shall enlarge the set of cut vertices in
several steps, accomplishing sequentially, in this order, also properties (h), (j), (f), (i), and in the
last step at the same time (k) and (1). It would be easy to check that during these steps none of
the previously established properties is lost, so we will not explicitly check them, except for (c).

For condition (h), first define 7" as the subtree of T' that contains all vertices of W; and all
vertices that lie on paths in T" which have both endvertices in Wj. Now, if a subtree T € C does
not already satisfy (h) for Wy, then V(T%*) N V(T’) must contain some vertices of degree at least
three. We will add the set Y (T™) of all these vertices to W;. Formally, let Y be the union of the
sets Y(T™) over all T* € C, and set Wy := W; UY. Then the components of T — W5 satisfy (h).

Let us bound the size of the set Ws. For each T* € C, note that by Fact 3.1 for T* N'T", we
know that |Y(7T*)] is at most the number of leaves of 7*NT" (minus two). On the other hand, each
leaf of T* N'T" has a child in Wi (in 7). As these children are distinct for different trees T* € C,
we find that |Y| < |[W;| and thus

|Wa| < 2|[W] . (3.2)

Next, for condition (j), observe that by setting W3 := Wy UPary(Ws) the components of T'— W3

fulfill (j). We have
(3.2)
|Ws3| < 2|Wa| < 4|W]. (3.3)

In order to ensure condition (f), let R* be the set of the roots (<-minimal vertices) of those
components T of T'—Wj3 that contain neighbours of both colour classes of T'. Setting Wy := W3UR*
we see that (f) is satisfied for Wy. Furthermore, as for each vertex in R* there is a distinct member
of W3 above it in the order on T', we obtain that

(3.3)
|W4‘ < Q‘Wgy < 8|W1|. (3.4)
Next, we shall aim for a stronger version of property (i), namely,
(1) EN(V(T*))N(WAUWE) = {21, 29} with 21 # 29 for some T* € S4USp, then disty (21, 22) = 8.

The reason for requiring this strengthening is that later we might introduce additional cut vertices
which would “shorten T™ by two”.



Consider a component T* of T'— W, which is an internal tree of T'. If W, contains two distinct
neighbours z; and 22 of T such that disty (21, 22) < 8, then we call T short. Observe that there
are at most |Wy| short trees, because each of these trees has a unique vertex from W, above it.
Let Z(T*) C V(T™) be the vertices on the path from z; to z2 (excluding the end vertices). Then
|Z(T*)| < 7. Letting Z be the union of the sets Z(T™) over all short trees in 7" — Wy, and set
Wy := W4 U Z, we obtain that

(3.4) (3.1)
Ws| < [Wa| +7|Wal < 64|W3| < 64k/C+ 1. (3.5)

We still need to ensure (k) and (1). To this end, consider the set C’ of all components of T' — W5.
Set C!y :={T* € C' : Seed(T™) € A} and set Cj :=C’\ C;. We assume that

> o(T*) > > o(T™) (3.6)

T*eC!y : T* end tree of T' T*eCly : T* end tree of T'

as otherwise we can simply swap A and B. Now, for each T* € C; that is not an end subtree of T,
set X(T™) := V(T*) N Np(W5). Let X be the union of all such sets X (7). Observe that

1X| < 2|Ws N B| < 2|Ws|. (3.7)

For W := W5 U X, all internal trees of T'— W have their seeds in A. This will guarantee (k), and,
together with (3.6), also (1).

Finally, set W4 := WNA and Wp := WNB, and let S4 and Sp be the sets of those components
of T'— W that have their seeds in W4 and Wp, respectively. By construction, (W, Wg,S4,Sp)
has all the properties of an ¢-fine partition. In particular, for (c), we find with (3.5) and (3.7) that
|W| < |Ws| + 2|Ws5 N B| < 336k/¢. O

For an /(-fine partition (W4, Wp,Sa,Sp) of a rooted tree (T,7), the trees T* € Sy U Sp are
called shrubs. An end shrub is a shrub which is an end subtree. An internal shrub is a shrub which
is an internal subtree. A hub is a component of the forest T'[W4 U Wg]. Suppose that T* € Sy
is an internal shrub, and r* is its <,-minimal vertex. Then T* — r* contains a unique component
with a vertex from Np(W,4). We call this component principal subshrub, and the other components
peripheral subshrubs.

Remark 3.6. (i) In our proof of Theorem 1.2, we shall apply Lemma 3.5 to a tree Tpio €
trees(k). The number (1,35 will be linear in k, and thus (c) of Definition 3.3 tells us that the
size of the sets W4 and Wy is bounded by an absolute constant (depending on ari.2 only).

(i) Each internal tree in Sa of an £-fine partition has a unique vertex from Wy above it. Thus
with 35 as above also the number of internal trees in S4 is bounded by an absolute constant.
This need not be the case for the number of end trees. For instance, if (Tr1.2,7) is a star with
k —1 leaves and rooted at its centre r then W4 = {r} while the k — 1 leaves of Tr1.9 form the
end shrubs in Sy4.

Definition 3.7 (ordered skeleton). We say that the sequence (Xo,Xl, e ,Xm) is an ordered
skeleton of the (-fine partition (W, Wp,S4,SB) of a rooted tree (T,r) if

e X¢ is a hub and contains r, and all other X; are either hubs or shrubs,



o V(U< Xi) = V(T), and
e for eachi=1,...,m, the subgraph formed by XoU X1 U...UX; is connected in T'.
Directly from Definition 3.3 we get:

Lemma 3.8. Any (-fine partition of any rooted tree has an ordered skeleton.

4 Necessary facts and notation from [HKP*a, HKP*b, HKP (]

4.1 Sparse decomposition

We now shift our focus from preprocessing the tree to the host graph. This is where we build on
results from the earlier papers in the series. We first recall the notion of dense spots and related
concepts introduced in [HKP'a], [HKP'b], and [HKP*¢].

Definition 4.1 ((m,~)-dense spot, (m,y)-nowhere-dense). Suppose that m € N and v > 0.
An (m,~y)-dense spot in a graph G is a non-empty bipartite subgraph D = (U, W; F) of G with
d(D) > v and mindeg(D) > m. We call G (m,~y)-nowhere-dense if it does not contain any (m,~y)-
dense spot.

Definition 4.2 ((m,y)-dense cover). Suppose that m € N and v > 0. An (m,)-dense cover of
a graph G is a family D of edge-disjoint (m,~)-dense spots such that E(G) = Jpep E(D).

The proofs of the following facts can be found in [HKP D).

Fact 4.3. Let (U,W; F) be a (vk,~)-dense spot in a graph G of maximum degree at most Qk. Then
max{[U[, W]} < k.

Fact 4.4. Let H be a graph of mazimum degree at most Qk, let v € V(H), and let D be a family
of edge-disjoint (vk,~)-dense spots. Then fewer than % dense spots from D contain v.

In the following definition, note that a subset of a (A,e,, k)-avoiding set is also (A,¢,~, k)-
avoiding.

Definition 4.5 ((A, ¢, v, k)-avoiding set). Suppose that k € N, e, > 0 and A > 0. Suppose that
G is a graph and D is a family of dense spots in G. A set E C |Upep V(D) is (A, €,7, k)-avoiding
with respect to D if for every U C V(G) with |[U| < Ak the following holds for all but at most ek
vertices v € E. There is a dense spot D € D with |[U NV (D)| < 7%k that contains v.

In the next two definitions, we expose the most important tool in the proof of our main result
(Theorem 1.2): the sparse decomposition. It generalises the notion of equitable partition from
Szemerédi’s regularity lemma. This is explained in [HKP*a, Section 3.8]. The first step to this end
is defining the bounded decomposition.

Definition 4.6 ((k,A,~,¢e,v, p)-bounded decomposition). Suppose that k € N and e,v,v,p > 0
and A > 0. Let V = {Vi,Va,...,Vs} be a partition of the vertex set of a graph G. We say
that (V, D, Greg, Gexp, E) is a (k,A,7,¢e,v, p)-bounded decomposition of G with respect to V if the
following properties are satisfied:

1. Gexp 15 a (vk,y)-nowhere-dense subgraph of G with mindeg(Gexp) > pk.



4.1 Sparse decomposition

2. The elements of V are pairwise disjoint subsets of V(G).

3. Greg is a subgraph of G — Gexp on the vertex set |JV. For each edge xy € E(Greg) there are
distinct Cy 3 x and Cy 3 y from 'V, and G[Cy, Cy| = Greg[Cy, Cy]. Furthermore, G[Cy, Cy]
forms an e-regular pair of density at least v2.

4. We have vk < |C| = |C'| < ek for all C,C" € V.

5. D is a family of edge-disjoint (vk,~y)-dense spots in G — Gexp. For each D = (U, W; F) € D
all the edges of GIU, W] are covered by D (but not necessarily by D ).

6. If Greg contains at least one edge between C1,Co € 'V, then there exists a dense spot D =
(UW; F) €D such that C; CU and Cy CW.

7. For all C € V there is V €V so that either C CV NV (Gexp) or C €V \ V(Gexp). For all
CeVand D= (UW;F) €D wehawe CNU,CNW € {0,C}.

8. Eis a (A, e,v, k)-avoiding subset of V(G) \ UV with respect to dense spots D.

We say that the bounded decomposition (V, D, Greg, Gexp, E) respects the avoiding threshold b
if for each C € V we either have maxdeg(C,E) < b, or mindeg,(C,E) > b.

The members of V are called clusters. Define the cluster graph Gieg as the graph on the vertex
set V that has an edge C1C5 for each pair (C1,Cs) which has density at least 42 in the graph Greg-

Definition 4.7 ((k, Q**,Q* A, v, ¢, v, p)-sparse decomposition). Suppose that k € N ande,~y,v, p >
0 and A, Q*, 0 > 0. Let V = {V1,Va,...,Vs} be a partition of the vertex set of a graph G. We
say that V = (H,V, D, Greg, Gexp, E) is a (k, 2, Q% A, v,e,v, p)-sparse decomposition of G with
respect to Vi, Va, ..., Vs if the following holds.

1. H C V(G), mindeg,(H) > Q*k, maxdegy(V(G) \ H) < Q*k, where H is spanned by the
edges of |UD, Gexp, and edges incident with H,

2. (V,D,Greg, Gexp, E) is a (k, A, v,e,v, p)-bounded decomposition of G —H with respect to Vi \
H,Vo\H,...,V,\H.

If the parameters do not matter, we call V simply a sparse decomposition, and similarly we
speak about a bounded decomposition.

Fact 4.8 ((HKP*a, Fact 3.11]). Let V = (H, V, D, Greg, Gexp, E) be a (k, X, Q*, A, ~, e, v, p)-sparse
decomposition of a graph G. Let x € V(G) \ H. Assume that V # 0, and let ¢ be the size of each
of the members of V. Then there are fewer than
2(0%)%k - 2(02%)2
2 S 42

clusters C' € V with degg, (x,C) > 0.

Definition 4.9 (captured edges). In the situation of Definition 4.7, we refer to the edges in
E(Greg)UE(Gexp) UEG(H, V(G))UEG(E,EU{J V) as captured by the sparse decomposition. Denote
by Gv the spanning subgraph of G whose edges are the captured edges of the sparse decomposition.
Likewise, the captured edges of a bounded decomposition (V,D, Greg, Gexp, E) of a graph G are those
in E(Greg) UE(Gexp) U Egp (E,EUJV).



4.2 Shadows

The last definition we need is the notion of a regularized matching.

Definition 4.10 ((e,d, ¢)-regularized matching). Suppose that { € N and d,e > 0. A collection
N of pairs (A, B) with A, B C V(H) is called an (,d, {)-regularized matching of a graph H if

(i) |A| = |B| = ¢ for each (A,B) € N,
(i1) (A, B) induces in H an e-reqular pair of density at least d, for each (A, B) € N, and
(i4i) all involved sets A and B are pairwise disjoint.

Sometimes, when the parameters do not matter we simply write regularized matching.

We say that a regularized matching N absorbes a reqularized matching M if for every (S,T) €
M there exists (X,Y) € N such that S C X and T C Y. In the same way, we say that a
family of dense spots D absorbes a reqularized matching M if for every (S,T) € M there exists
(UW;F) €D such that S CU and T C W.

Fact 4.11 ([HKP*b, Fact 4.3]). Suppose that M is an (g, d, £)-reqularized matching in a graph H.
Then |C] < %eg(m for each C € V(M).

4.2 Shadows

We recall the notion of a shadow given in [HKP*¢|. Given a graph H, a set U C V(H), and a
number ¢ we define inductively

shaLdowg)(U7 ¢) :=U, and
shadowg)(U, 0):={veV(H) : degH(v,Shadowg_l)(U, 0)) > ¢} fori > 1.

We call the index i the exponent of the shadow. We abbreviate shadowg)(U, ¢) as shadowp (U, ().
Further, the graph H is omitted from the subscript if it is clear from the context. Note that the
shadow of a set U might intersect U.

The proofs of the following facts can be found in [HKP*¢].

Fact 4.12. Suppose H is a graph with maxdeg(H) < Qk. Then for each a > 0,7 € {0,1,...}, and
each set U C V(H), we have

A 0\°¢
shadow™ (U, ak)| < <a> U] .
Fact 4.13. Let a,v,Q > 0 be three numbers such that 1 < Q < %. Suppose that H is a (vk,7)-
nowhere-dense graph, and let U C V(H) with |U| < Qk. Then we have

16Q%y

|shadow (U, ak)| < k.
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5 Configurations

5.1 Common settings

Recall the definitions of S, 1,(G) and L, ;(G) given in Section 2.3. We repeat some common settings
that already appeared in [HKP*¢] and are outputs of [HKP*b, Lemma 5.4]. The reader can find
explanations in [HKP*h, Section 5.1] why the set XA (defined again in (5.3)) has excellent prop-
erties for accommodating cut-vertices of 179, and the set XB has “half-that-excellent properties”
for accommodating cut-vertices. In particular, the formula defining XB suggests that we cannot
make use of the set S, 1(G) \ (V(Gexp) UEU V(M4 U Mp) for the purpose of embedding shrubs
neighbouring the cut-vertices embedded in XB. In [HKP "¢, Setting 3.5] we gave some motivation
behind the definition of the sets Vi, Ly, Vyood, YA, YB, Vi, Ji, J, J1, J2,J3, and F in Setting 5.1,
below.

Setting 5.1. We assume that the constants A, Q*, Q** kg and Q,~,¢e,¢',n,m, p, T,d satisfy

1 R 1
Sp>y>d>——ezxrzazed zrv>T>—>0, (5.1)

1
n> — > 0 e

Q* Q**

and that k > kg. By writing ¢ > a1 > ao > ... > ap > 0 we mean that there exist suitable

non-decreasing functions f; : (0,¢)* — (0,¢) (i =1,...,£—1) such that for each i € [{ — 1] we have

ai+1 < filai,...,a;). A suitable choice of these functions in (5.1) is explicitly given in Section 7.
Suppose that G € LKSsmall(n, k,n) is given together with its (k,Q**, Q* A, ~,&,v, p)-sparse

decomposition
V= (Hv V7 Dv Greg’ Gexp7 E) )

with respect to the partition {S, 1(G), Ly, x(G)}, and with respect to the avoiding threshold %.
We write

and V.g:={CeV :CCV.g}. (5.2)

pk
g = sh (B, L
V.. := shadowgg —m( 100(2*)

The graph Gyeg is the corresponding cluster graph. Let ¢ be the size of an arbitrary cluster in v.!
Let Gy be the spanning subgraph of G formed by the edges captured by the sparse decomposition V.
There are two (g,d,mc)-reqularized matchings My and Mp in Gp, with the following properties.
Following [HKP'b, (5.3)] we write

XA =L, x(G)\V(Mp),
XB := {U e VIMp)NL,x(G) : d/e\g(v) < (14 T])l;} , (5.3)
XC:=L,x(G)\ XAUXB),

where d/e\g(v) on the second line is defined by
deg(v) := degg (v, S k(G) \ (V(Gexp) UEU V(M4 U Mp)) .

Then we have

!The number ¢ is not defined when V = (). However in that case ¢ is never actually used.

11



5.1 Common settings

(1) V(Ma)NV(Mp) =0,

(2) Vi(Mp) C S°, where
59 = $,4(C) \ (V(Gexp) UE) (5.4)

(3) for each (X,Y) € Mg UMp, there is a dense spot (U,W;F) € D with X CU andY C W,
and further, either X C S, x(G) or X C L, x(G), and Y C S, (G) orY C L, 1(G),

(4) for each X1 € Vi(Ma U Mp) there exists a cluster Cy € V such that X; C Cy, and for each
Xy € Vo(M4 UMp) there exists Co € V U {Ly, x(G) NE} such that Xo C Co,

5) each pair of the reqularized matching Myooq := {(X1, X2) € M4 : X1U Xy C XA} corresponds
g
to an edge in Greg,

(6) ecy (XA, S\ V(M) < vkn,
(7) €Gree(V(G)\ V(M4 UMBp)) < v?kn,

(8) for the regularized matching Ng = {(X,Y) € My UMp : (XUY)NE # 0} we have
€Greg (V(G)\ V(MAUMp), V(Ng)) < 7%kn,

(9) |E(G)\ E(GV)| < 2pkn,
(10) |E(Gp) \ (E(Greg) U EG[E,EUU V])| < §vkn.

We write
Vi = V(G)\ (87 \ V(MaUMp)) (5.5)
=L, k(G) UV (Gexp) UEUV (M4 UMp) , (5.6)
Ly :=Lyr(G)\ Ly, (Gv) , and (5.7)
V:good = V+ \ (H U L#) s (5'8)
o A N
YA := shadowc, (v+ \ Ly, (1+ 10)k> \ shadowg_go (V(G), 100k> , (5.9)
n.\k n
YB := shadowg. (v+ \ Ly, (1+ 10)2> \ shadowg_cq (V(G), mk) , (5.10)
— N
Vo := (XA UXB) N shadowg (H, - k) , (5.11)
Jg := shadowg,,, (V(NE),7k) \ V(M4 UMp),
J1 := shadowg,,, (V(G) \ V(MaUMB),vk) \ V(MasUMp),
J:=(XA\ YA)U ((XAUXB)\ YB) U Vg ULy UJ;
2
k
U shadowg,uay (Ve U Ly U Jg U T, %) ,
Js := XA Nnshadowgy, (S°\ V(Ma), k) ,
J3 := XA N shadowg, (XA, 7°k/10%)
F={CeVMy,):CCXA}UWV(Mp) . (5.12)

12



5.1 Common settings

For the embedding procedure to run smoothly, the vertex set is split into several classes the
sizes of which have given ratios. It will be important that most vertices have their degrees split
according to these ratios. Lemma 5.2 allows us to do so. The motivation behind Lemma 5.2 and
Definition 5.3, below, is explained more in details at the beginning of [HKP*¢, Section 3.2].

Lemma 5.2. For each p € N and a > 0 there exists kg > 0 such that for each k > ko we have the
following.

Suppose G is a graph of order n > ko and maxdeg(G) < Q*k with its (k,A,~v,e, k=% p)--
bounded decomposition (V,D, Greg, Gexp, E). As usual, we write Gy for the subgraph captured by
(V,D, Greg, Gexp, E), and Gp for the spanning subgraph of G consisting of the edges in D. Let
M be an (g,d, k%%)-regularized matching in G, and By,...,B, be subsets of V(G). Suppose that
Q* > 1 and Q* /vy < K%L,

Suppose that q1,...,q, € {0} U [a,1] are reals with ) q; < 1. Then there ezists a partition
A U...UA, =V(G), and sets V CV(G), V CV(M), and V C V with the following properties.

(1) [V] < exp(=k*)n, [UV| < exp(=k*")n, [UV] < exp(=£*)n.
(2) For each i € [p] and each C € V\ 'V we have |C N A;| > q;|A;| — £%°.
(3) For each i € [p| and each C € V(M) \ V we have |C N A;| > q;|A;| — k%9.
(4) For each i € [p|, D = (U,W;F) € D and mindeg,(U \ V,W N A;) > qivk — k*2.
(5) For each i,j € [p] we have |A; NB;| > q;|B;| — n2.
(6) For each i € [p] each J C [p] and each v € V(G) \ V we have
degy (v, Ai NBy) > q;degy (v, By) — 277k
for each of the graphs H € {G, Gy, Gexp, Gp, GyUGp}, where By := (ﬂjEJBj)\(Uje[p]\J IB%j).
(7) For each i,i,j,j € [p] (j # 7' ), we have
e (A NBy, Ay NBy1) > qiqeen (B;,Bjr) — k%5n0
er(Ai NBj, Ay NB)) > qique(HB,]) — k%n®C  ifi £ 4, and
e(H[As N By]) > q2e(HIB;]) — K¥6n0
for each of the graphs H € {G,Gv, Gexp, Gp, Gv U Gp}.
(8) For each i € [p] if q; = 0 then A; = 0.

Definition 5.3 (Proportional splitting). Let po, p1,p2 > 0 be three positive reals with ), p; < 1.
Under Setting 5.1, suppose that (Ao, A1, A9) is a partition of V(G) \ H which satisfies assertions
of Lemma 5.2 with parameter prso = 10 for graph Gis, := (Gv —H) U Gp (here, by the union,
we mean union of the edges), bounded decomposition (V,D,Greg, Gexp, E), matching Mysa =

Z
>

My U Mp, sets By = good>B2 = XA\ (HUJ), Bs = XB\J, By = V(Gexp); Bs = E,
Bg := Vg, By := Jg, Bg := Ln,k(G)7 By := L#, Big := Viug and reals q1 := Po,q2 := p1, q3 = p2,
g4 :=...q10 = 0. Note that by Lemma 5.2(8) we have that (Ao, A1, As) is a partition of V(G) \ H.

We call (Ag, A1, Ag) proportional (pg : p; : p2) splitting.

We refer to properties of the proportional (po : p1 : p2) splitting (Ag, A1, As) using the numbering
of Lemma 5.2; for example, “Definition 5.3(5)” tells us among other things that |(XA \ J) N Ag| >
po|XA \ (JUH)| — n09.
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5.2 The ten configurations

Setting 5.4. Under Setting 5.1, suppose that we are given a proportional (po : p1 : p2) splitting
(Ao, A1, A2) of V(G) \ H. We assume that

> 1 1
Po, P1, P2 100 (5 3)

Let V., V,V be the exceptional sets as in Definition 5.3(1).

We write 2
\ ) BE X/ 77
F := shadowg,, (Uv ulJvruyv, 1010) , (5.14)
where V* are the partners of V in M4 U Map.
We have
F| <en. (5.15)

For an arbitrary set U C V(G) and for i € {0,1,2} we write U for the set U N A,.

For each (X,Y) € MU Mgp such that X,Y ¢ V we write (X,Y)!" for an arbitrary fived pair
(X' C X,Y' CY) with the property that |X'| = |Y'| = min{|X?|,|Y|}. We extend this notion of
restriction to an arbitrary reqularized matching N C M4 U Mp as follows. We set

NE=1(X, V) (X,Y) € N with X,Y ¢ V} .
In [HKP"¢] it was shown that the above setting yields the following property.

Lemma 5.5 ([HKP*c, Lemma 3.9]). Assume Setting 5.4. Then for each i € {0,1,2}, and for each

N C My UMp we have that N is a (4(;]05, g, 355 ¢)-reqularized matching satisfying

VN = pil VN[ = 26%Pn . (5.16)
Moreover for allv ¢ F and for all i = 0,1,2 we have degg, (v, V(N)"\ V(N1%)) < 717%];.

5.2 The ten configurations

Here, we recall the configurations introduced in [HKP*c, Section 4.1]. Recall also that saying that
“we have Configuration X”, “the graph is in Configuration X”, or “Configuration X occurs” is the
same.

We start by giving the definition of Configuration (¢1). This is a very easy configuration in
which a modification of the greedy tree-embedding strategy works.

Definition 5.6 (Configuration (¢1)). We say that a graph G is in Configuration (¢1) if there
exists a non-empty bipartite graph H C G with mindeg,(V (H)) > k and mindeg(H) > k/2.

We now introduce the configurations (¢2)—(¢5) which make use of the set H. These configura-
tions build on Preconfiguration ().

14



5.2 The ten configurations

Definition 5.7 (Preconfiguration (&)). Suppose that we are in Setting 5.1. We say that the
graph G is in Preconfiguration (&)(2*) if the following conditions are met. G contains two non-
empty sets L' C L' C H“%n «(Gv) \ H, and a non-empty set H' C H such that

1 b

k
dego (L', H\ H') < -1 1
max egGv( ’ \ ) <1 100 ° (5 7)
mindegq (H', L") > Q*k , and (5.18)
7 nk
maxdeg ., (L vl‘%n,k(GV) \(HU L)) < <100 (5.19)

Definition 5.8 (Configuration (02)). Suppose that we are in Setting 5.1. We say that the graph
G is in Configuration (¢2)(Q2*, Q,B) if the following conditions are met.

The triple L", L' ;' witnesses preconfiguration (&)(Q*) in G. There exist a non-empty set
H" CH, a set Vi CV(Gexp) NYBNL", and a set Vo C V(Gexp) with the following properties.

mindeg_ (H”, V1) > Ok
mindegg (V1,H") > Bk ,
mindegg,  (V1,V2) = Bk,
mindegg, (V2,V1) = Bk .

Definition 5.9 (Configuration (¢3)). Suppose that we are in Setting 5.1. We say that the graph
G is in Configuration (03)(Q*,Q, ¢, 0) if the following conditions are met.

The triple L", L', H' witnesses preconfiguration (&)(2*) in G. There exist a non-empty set
H'"CH, aset Vi CENYBNL", and a set Vo C V(G) \ H such that the following properties are
satisfied.

mindeg . (H”, V1) > Qk
mindegg (V1,H") > 6k ,

maxdegg, (Vi, V(@) \ (V2 UH)) < Ck | (5.20)
mindegg, (V2, V1) > 0k . (5.21)

Definition 5.10 (Configuration (¢4)). Suppose that we are in Setting 5.1. We say that the
graph G is in Configuration (04)(Q*, €, (,d) if the following conditions are met.

The triple L", L' ,H' witnesses preconfiguration (&)(Q*) in G. There exists a non-empty set
H’" CH', sets Vi CYBNL", E' CE, and Vo C V(G) \ H with the following properties

mindegq_ (H", V1) > Qk ,

mindeg, (Vl, " > 6k,
mlndegGvUGD(Vl, " =k, (5.22)
mindeggo e, (E', V1) > 0k, (5.23)
mindegg e, (Vo, E') > 0k, (5.24)
maxdegqo g, (B, V(G) \ (HU V2)) <k . (5.25)

Definition 5.11 (Configuration (05)). Suppose that we are in Setting 5.1. We say that the
graph G is in Configuration (¢5)(Q*,$, 0, (, ) if the following conditions are met.
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5.2 The ten configurations

The triple L", L' ,H' witnesses preconfiguration (&)(Q*) in G. There exists a non-empty set
H” CH, and a set Vi C(YBNL"NUYV)\V(Gexp) such that the following conditions are fulfilled.

mindegg (H', V1) > Qk , (5.26)
mindegg, (V1, H") > ok , (5.27)
mindegg, (V1) = (k. (5.28)
Further, we have
CnVi=0or|CnW|=7C| (5.29)

for every C € V.

In remains to introduce configurations (¢6)—(¢10). In these configurations the set H is not
utilized. All these configurations make use of Setting 5.4, i.e., the set V(G) \ H is partitioned
into three sets Ay, A; and Ay. The purpose of Ag,A; and Ay is to embed the hubs, the internal
shrubs, and the end shrubs of T o, respectively. Thus the parameters pg, p; and ps are chosen
proportionally to the sizes of these respective parts of T 2.

We first introduce four preconfigurations (V1), (©2), (exp) and (reg) which are building bricks
for configurations (¢6)—(¢9). The preconfigurations (V1) and (©2) will be used for embedding end
shrubs of a fine partition of the tree Tt 2, and preconfigurations (exp) and (reg) will be used for
embedding its hubs.

An M-cover of a regularized matching M is a family F C V(M) with the property that at
least one of the elements S and Sy is a member of F, for each (S, 52) € M.

Definition 5.12 (Preconfiguration (01)). Suppose that we are in Setting 5.1 and Setting 5.4.
We say that the graph G is in Preconfiguration (V1)(y/,h) of V(G) if there are two non-empty sets

Vo, Vi C Ap \ (IF U shadowg, (Voom, 7{%)) with the following properties.
mindeggy (Vo, Virg) > h/2, and (5.30)
mindegg, (Vi,Ving) > A (5.31)
Further, there is an (M4 U Mp)-cover F such that
maxdeg g <V1, U]—") <Ak (5.32)

Definition 5.13 (Preconfiguration (©2)). Suppose that we are in Setting 5.1 and Setting 5.4.
We say that the graph G is in Preconfiguration (©2)(h) of V(G) if there are two non-empty sets

Vo, Vi € Ap \ (IF U shadowg, (Voom, 71'27];)) with the following properties.

mindegg,, (Vo UVA, Vyg) > h. (5.33)

Definition 5.14 (Preconfiguration (exp)). Suppose that we are in Setting 5.1 and Setting 5.4.
We say that the graph G is in Preconfiguration (exp)(3) if there are two non-empty sets Vy, Vi C Ag
with the following properties.

mindegg,, (Vo, V1)

mindegg, (1, Vo)

k, (5.34)

B
Bk . (5.35)

ARV
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5.2 The ten configurations

Definition 5.15 (Preconfiguration (reg)). Suppose that we are in Setting 5.1 and Setting 5.4.
We say that the graph G is in Preconfiguration (reg)(¢,d’,u) if there are two non-empty sets
Vo, Vi C Ag and a non-empty family of vertex-disjoint (£,d')-super-reqular pairs {(Qéj),ng)}jey
(with respect to the edge set E(G)) with Vp := UQSj) and Vi = Ung) such that

min {1Q§"1, 1Q"} > uk (5.36)

Definition 5.16 (Configuration (¢6)). Suppose that we are in Settings 5.1 and 5.4. We say that
the graph G is in Configuration (¢6)(d,&,d’, u, 7', ha) if the following conditions are met.

The vertex sets Vi, Vi witness Preconfiguration (reg)(&,d’, u) or Preconfiguration (exp)(d) and
either Preconfiguration (V1)(y',ha) or Preconfiguration (V2)(hg). There exist non-empty sets
Vo, V3 C Ay such that

mindegq(V1, Va) = 0k , (5.37)
mindegg(Va, V1) > ok , (5.38)
mindegg, (V2,V3) = 0k , and (5.39)
mindeg, (V3,V2) > 0k . (5.40)

Definition 5.17 (Configuration (¢7)). Suppose that we are in Settings 5.1 and 5.4. We say that
the graph G is in Configuration (¢7)(d, p/,&,d’, pu, 7', ha) if the following conditions are met.

The sets Vi, Vi witness Preconfiguration (reg)(&,d’, u) and either Preconfiguration (V1)(v/, ha)
or Preconfiguration (V2)(hs). There exist non-empty sets Vo CEM\ V and V3 C A1 such that

mindegq(V1, Va) = 0k , (5.41)
mindegq(Va, V1) = 0k , (5.42)
maxdegg, (Va, A1\ V3) < p'k an (5.43)
mindegg, (V3,V2) > 0k . (5.44)

Definition 5.18 (Configuration (¢8)). Suppose that we are in Settings 5.1 and 5.4. We say that
the graph G is in Configuration (¢8)(0, p’,e1,e2,d1, da2, p1, p2, h1, ha) if the following conditions are
met.

The vertex sets Vo, Vi witness Preconfiguration (reg)(e2,da, pi2) and Preconfiguration (©2)(hz).
There exist non-empty sets Vo C Ay, V3, V4 C Ay, with V5 CE\V, and an (e1,d1, p1k)-regularized
matching N absorbed by (Ma U Mp)\ Ng, with V(N) C Ay \ V3 such that

mindeg,(V1, Va) > 0k , (5.45)

mindeg,(Va, Vi) = 0k , (5.46)

mindegq (V2, V3) > 0k, (5.47)

mindegq (V3, V2) > 0k, (5.48)
maxdegq (Va, A1\ Vi) < o'k, (5.49)
mindegg, (Va, V3) > 0k , and (5.50)

degq,, (v, V3) + degg,, (v, V(N)) = hy for each v € V5. (5.51)
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Definition 5.19 (Configuration (¢9)). Suppose that we are in Settings 5.1, and 5.4. We say
that the graph G is in Configuration (©9)(9,v/, h1, ha, €1, d1, p1, €2, da, n2) if the following conditions
are met.

The sets Vi, Vi together with the (M U Mp)-cover F' witness Preconfiguration (V1)(v/, hs).
There exists an (e1,dy, u1k)-reqularized matching N absorbed by Ma U Mp, with V(N) C A;.
Further, there is a family {( (()J), gj))}jey as in Preconfiguration (reg)(e2,ds, p2). There is a set
Vo CVIN)\UF CUV with the following properties:

hy (5.52)
ok . (5.53)

Our last configuration, Configuration (¢10), will lead to an embedding very similar to the one in
the dense case (as treated in [PS12]; this will be explained in detail in Subsection 6.1.6). In order
to be able to formalize the configuration we need a preliminary definition. We shall generalize
the standard concept of a regularity graph (in the context of regular partitions and Szemerédi’s
regularity lemma) to graphs with clusters whose sizes are only bounded from below.

Definition 5.20 ((¢,d, {1, {2)-regularized graph). Let G be a graph, and let V be an ¢1-ensemble
that partitions V(G). Suppose that G[X] is empty for each X € V and suppose G[X,Y] is e-reqular
and of density either O or at least d for each X,Y € V. Further suppose that for all X €V it holds
that ||UNg(X)| < la. Then we say that (G,V) is an (g,d, {1, ¢3)-regularized graph.

A regularized matching M of G is consistent with (G,V) if V(M) C V.

Definition 5.21 (Configuration (010)(¢,d’, 41, (2,7')). Assume Setting 5.1. The graph G con-
tains an (€,d', l1,ls)-reqularized graph (G, V) and there is a (¢,d’, 1)-regularized matching M con-
sistent with (G,V). There are a family L* CV and distinct clusters A, B € V with

(a) B(G[A,B]) #9,

(b) degg (v, V(M)UUL*) = (1+ 1)k for all but at most &|A| vertices v € A and for all but at
most €| B| vertices v € B, and

(c) for each X € L* we have degs(v) = (14 1')k for all but at most £|X| vertices v € X.

6 Embedding trees

In this section we provide an embedding of a tree Tty 5 € trees(k) in the setting of the configurations
introduced in Subsection 5.2. In Section 6.1 we first give a fairly detailed overview of the embedding
techniques used. In Section 6.3 we introduce a class of stochastic processes which will be used for
some embeddings. Section 6.4 contains a number of lemmas about embedding small trees, and use
them for embedding hubs and shrubs of a given fine partition of Ty 5. Embedding the entire tree
T2 is then handled in the final Section 6.5. There we have to distinguish between particular
configurations. The configurations are grouped into three categories (Section 6.5.1, Section 6.5.2,
and Section 6.5.3) corresponding to the similarities between the configurations.
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6.1 Overview of the embedding procedures

6.1 Overview of the embedding procedures

We outlined the high-level embedding strategy in based on the previous work in the dense setting
(c.f. [PS12]) in [HKP*D, Section 5.1]. In this section we however have already a finer structure
given by one of the configurations.

Recall that we are working under Setting 5.1. Given a host graph Gri2 with one of the
Configurations (¢2)—(¢10), we have to embed in it a given tree T'= Ty o € trees(k), which comes
with its (7k)-fine partition (W4, Wp,S4,Sp). The Tk-fine partition of 7' will make it possible to
combine embeddings of smaller parts of 1" into one embedding of the whole tree. This means that
we will first develop tools for embedding singular shrubs and hubs of the (7k)-fine partition in
various basic building bricks of the configurations: the avoiding set E, the expander Geyp, regular
pairs, and vertices of huge degree H. Second, we will combine these basic techniques to embed the
entire tree T'. Here, the order in which different parts of T" are embedded is important. Also, it will
be crucial at some points to reserve places for parts of the tree which will be embedded only later.

In the following subsections, we sketch our embedding techniques. We group them into five
categories comprising related configurations?: Configurations (¢2)-(¢5), Configurations (¢6)—(o7),
Configuration (¢8), Configuration (¢9), and Configuration (¢10), treated in Sections 6.1.1, 6.1.2,
6.1.4, 6.1.5, 6.1.6, respectively.

To illustrate our embedding techniques in more detail, and how they combine, we chose to
explain the embedding procedure for Configuration (¢7) (exp) (V1) even more in details. This
is done in Section 6.1.3. Not all the techniques are used in (¢7) (exp) (V1); in particular that
configuration does not deal with huge degree vertices (as we do in Section 6.1.1) and does not make
use of Greg. Yet, at least in this configuration, it may be a useful intermediate step between the
description in Section 6.1.2 and the full proof in Lemma 6.25.

6.1.1 Embedding overview for Configurations (¢2)—(¢5)

In each of the Configurations (¢2)—(¢5) we have sets H', H”, L”, L’ and V4. Further, we have some
additional sets (V4 and/or E') depending on the particular configuration.

A common embedding scheme for Configurations (¢2)—(¢5) is illustrated in Figure 6.1. There
are two stages of the embedding procedure: the hubs, the shrubs $4 and some parts of the shrubs Sp
are embedded in Stage 1, and then in Stage 2 the remainders of Sp are embedded. Recall that Sy
contains both internal and end shrubs while Sp contains exclusively end shrubs (Definition 3.3 (k)).
We note that here the shrubs Sg are further subdivided and some parts of them are embedded in
Stage 1 and some in Stage 2.

e In Stage 1, the hubs of T" are embedded in H” and V; so that W, is mapped to H” and Wg
is mapped to V.

e In Stage 1, the internal and end shrubs of S are embedded using the sets Vi, V5 and E’ which
are specific to the particular Configurations (¢2)—(¢5). The vertices of S4 neighbouring the
seeds W4 are always embedded in V;. Parts of the shrubs Sp are embedded while the ancestors
of the unembedded remainders are embedded on vertices which have large degrees in H'.

e In Stage 2, the embedding of Sp is finalized. The remainders of Sp are embedded starting
with embedding their roots in H'.

2Configuration (o1) is trivial (see Section 6.5.1) and needs no draft.

19



6.1 Overview of the embedding procedures

cut vertices W4

ancestors of “suspended” part of Sg

ut vertices Wiy

shrubs Sa

Figure 6.1: An overview of embedding of a tree T' € trees(k) given with its fine partition
(W4, Wg,84,S8p) using Configurations (¢2)—(¢5). The hubs are embedded between H” and
V1, all the shrubs S4 are embedded in sets specific to particular configurations so that the
vertices neighbouring the seeds W4 are embedded in V;. Parts of the shrubs Sp are embedded
directly (using various embedding techniques), while the rest is “suspended”, i.e., the ancestors
of the unembedded remainders are embedded on vertices which have large degrees in H’. The
embedding of Sp is then finalized in the last stage.

A hierarchy of the embedding lemmas used to resolve Configurations (¢2)—(¢5) is given in Table 6.1.

6.1.2 Embedding overview for Configurations (¢6)—(¢7)

Suppose Setting 5.1 and 5.4 (see Remark 6.1 below for a comment on the constants pg,p1,p2).
Recall that we have in each of these configurations sets Vo U V; C Ay, sets Vo U V3 C Ay and Vgrfo 4
A common embedding scheme for Configurations (¢6)—(¢7) is illustrated in Figure 6.2. The

embedding has three parts.

e The hubs of T are embedded between Vj and V; so that W4 is mapped to Vi and Wg is
mapped to Vj using either the Preconfiguration (exp) or (reg). Thus the seeds W4 U Wp
are mapped to Ag.

e The internal shrubs of T" are embedded in V5 U V3, always putting neighbours of W4 into V5.
Note that the internal shrubs are therefore embedded in A, and thus there is no interference
with embedding the hubs. We need to understand why a mere degree of dk (from V; to
Va, ensured by (5.37) and (5.41), with 0 < 1) is sufficient for embedding internal shrubs of
potentially big total order, that is, how to ensure that already embedded internal trees do
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6.1 Overview of the embedding procedures

’ Main embedding lemma: Lemma 6.20 ‘

fr
Shrubs S | Shrubs Sp (Stage 1): Lemma 6.19 | [ Shrubs Sp (Stage 2): Lemma 6.18 |
(¢2): Lemma 6.5
(¢3): Lemma 6.15
(04): Lemma 6.16
(05): regularity

Table 6.1: Embedding lemmas employed for Configurations (¢2)—(¢5).

; cut vertices W4
internal shrubs

cut vertices Wp

Figure 6.2: An overview of embedding a fine partition (Wa, Wg,Sa,Sp) of a tree T' € trees(k)
using Configurations (¢6)—(¢7). The hubs are embedded between Vj and V7, the internal shrubs

are embedded in V5 U V3, and the end shrubs are embedded using Vg[OQOd.

not cause a blockage later. Here the expansion® ruling between the Vi and V3 comes into
play. This property (together with other properties of Preconfigurations (exp) and (reg))
will allow that, once finished embedding an internal tree, the follow-up hub can be embedded
in a place (in V7) which sees very little of the previously embedded internal shrubs.

This is the only part of the embedding process which makes use of the specifics of Configu-
rations (¢6) and (¢7). For this reason we will be able to follow the same embedding scheme
as presented here also for Configuration (¢8), the only difference being the embedding of the
internal shrubs (see Section 6.1.4).

e The end shrubs are embedded in the yet unoccupied part of G. For this we use the properties
of Preconfigurations (©1) or (©2). The end shrubs are embedded using (but not entirely

into) the designated vertex set Vg[go 4

The above embedding scheme is divided into two main steps: first the hubs and the internal trees
are embedded (see Lemma 6.21), and this partial embedding is then extended to end shrubs (see

3This expansion is given by the presence of Gexp in Configurations (06) (cf. (5.39)—(5.40)), and by the presence
of the avoiding set E in Configurations (o7) (Vo C E'\ V).
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6.1 Overview of the embedding procedures

’ Main embedding lemma: Lemma 6.25

) r
Internal part End shrubs
(¢6), (¢7): Lemma 6.21 (©1): Lemma 6.23
(¢8): Lemma 6.22 (©2): Lemma 6.24
) f
Kubs Internal shrubs
(exp): Lemma 6.5 (¢6): Lemma 6.13
(reg): Lemma 6.9 (¢7): Lemma 6.14
(¢8): Lemmas 6.14, 6.10, 6.7

Table 6.2: Embedding lemmas employed for Configurations (¢6)—(¢8) when embedding a tree
T € trees(k) with a given fine partition.

Lemmas 6.23 and 6.24). A more detailed hierarchy of the embedding lemmas used is given in
Table 6.2.

Remark 6.1. In Configuration (¢6), the number p; will be approzimately the proportion of the
total order of the internal shrubs of a given fine partition (Wa, Wp,Sa,Sp) of T while ps will be
approximately the proportion of the total order of the end shrubs. The number pg is just a small
constant.

These numbers — scaled up by k — determine the parameter hy =~ p1k (in Configurations (08)
and (©9)) and hy = pok (in Configurations (06)—(¢9)). The properties of these configurations will
then allow to embed all the internal shrubs and end shrubs. Note that the parameter hy does not
appear in Configurations (06) and (7). This suggests that the total order of the internal shrubs is
not at all important in Configurations (06)—(o7). Indeed, we would succeed even embedding a tree
with internal shrubs of total order say 100k.*

In view of this it might be tempting to think that the end shrubs in Sa could also be embedded
using the same technique as the internal shrubs into the sets Vo UV3 provided by these configurations
(cf. Figure 6.2). This is however not the case. Indeed, the minimum degree conditions (5.37), (5.41),
and (5.45) allow embedding only a small number of shrubs from a single cut-vertex x € W while
there may be many end shrubs attached to x; cf. Remark 3.6(ii).

6.1.3 Detailed overview of the embedding process for Configuration (¢7) (exp) (V1)

The purpose of this section is to further detail the embedding described in Section 6.1.2 in the case
of Configuration (¢7) (exp) (V1). We decided to choose this particular subconfiguration since the
corresponding embedding exhibits many new features that come with the sparse decomposition.

We assume the same setting as in Section 6.1.2 (in particular, recall Remark 6.1).

The embedding process will first deal with hubs and internal shrubs of 7. Only after having
embedded all those we turn our attention to end shrubs. We remind the reader that the sets VUV,
Vo U V3 and V:g[fo q are disjoint and thus the embedding into these respective parts do not interfere
with each other.

4Configuration (¢8) has this property only in part. We would succeed even embedding a tree with principal
subshrubs of total order say 100k provided that the total order of peripheral subshrubs is somewhat smaller than h;.
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6.1 Overview of the embedding procedures

defining formula for sets F; ‘ formula for sets F; using purely the sets U;

Fy C shadow (Us, ©(k)) Fy C shadow (Us, ©(k))
F, C shadow (U1 U Fy,0(k)) | Fy C shadow (U1, ©(k)) U shadow'® (Us, ©(k))
F3 C shadow (U U Fy, ©(k)) | F3 C shadow (Us, ©(k)) U shadow® (U1, ©(k)) U shadow® (U, O(k))

Table 6.3: Hierarchy of shadows defining the sets F; as used in Section 6.1.3. Some of these
shadows are with respect to the graph Gp and some with respect to the graph Gy — H.

Figure 6.3: An example of a path-like tree. Cut vertices of its fine partition drawn bigger.
Shrubs are drawn by a dashed line. Internal shrubs are drawn on gray background.

For the purpose of this overview, the sets U;, ¢ = 0,1, 2, 3, will refer to the set of vertices in V;
already used by the embedding at the very moment of the embedding procedure we are presently
dealing with. Apart from the sets U; of used vertices, we define also sets of forbidden vertices
F, CV,;, for i = 1,2,3, which contain vertices whose use could possibly lead to a situation where
we would be stuck with no possibility to extend the given partial embedding. More precisely,
the set F; will consist of those vertices of V; that send ©(k) (where the hidden constant in O(k)
is much smaller than 1) edges to one of the sets Uj;, and/or to one of the sets Fj. So, F; can
be expressed using shadows. More precisely, we set F; = Vi N shadowg,—m (U2, O(k)), Fo =
Vo Nshadowgg—m (U U F1,©(k)), and F3 = V3 Nshadowg, (Uz U F, ©(k)). These definitions are
shown in Table 6.3. It can be seen from Table 6.3 that each set F; can be expressed purely in terms
of the sets U; using shadows of exponent at most 3. Note that ), |U;| < k. As we do not use the
set H of large degree vertices, the sizes of the sets F; will be at most linear in k. Indeed,

|Fi| < UshadowGDU oo UU],@ =2 0(k) - (6.1)
s=1

This is crucial in order to use the properties of the expanding graph Gexp and the avoiding set [E.

In order not to clutter this overview with too many technical details, we chose to explain the
embedding procedure on a rather simple type of trees: “path-like” trees. With the term path-like
trees we mean trees having the property that the deletion of the external shrubs and the contraction
of the internal shrubs, with respect to their fine-partition, leads to a path. See Figure 6.3. Our
motivation for working with path-like trees in this overview is that if the tree T' is more complex
we face the complication of parallel branching of the embedding procedure. (This complication is
handled by using the stochastic process Duplicate as outlined in [HKP"a, Section 3.6].) Note that,
however, the family of path-like trees is general enough that it contains trees with any given ratio
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6.1 Overview of the embedding procedures

of internal shrubs and end shrubs.

At every step of the embedding procedure, we will avoid the sets U; and F;, making an exception
for the roots of internal shrubs, which may be mapped even to F, \ Us. It will be clear from the
following, why we need this exception and why we can afford it. Note that at the beginning of our
embedding procedure, the sets U;, F; are all empty, and thus trivial to avoid.

As outlined in Table 6.2,we shall make use of the setting of (exp) to embed hubs, of (V1)
to embed the end shrubs, and the specifics of Configuration (¢7) will be used for embedding the
internal shrubs.

Embedding the first hub We start by embedding the hub containing a fixed root R of T
mapping W4 to Vi and mapping Wp to V. The hubs are only of size O(1) by Definition 3.3(c).
So, the mere minimum degree conditions (5.34) and (5.35) are sufficient for embedding the hub
while avoiding the sets Uy and U;. In addition, we wish to avoid the set F}. While embedding the
first hub , we have not embedded any internal shrub yet. Therefore, initially, the set Us is empty,
and so is the set F].

Figure 6.4: Embedding an internal shrub in Section 6.1.3. A suitable dense spot D shown
dashed.

The rest of the embedding combines three techniques: embedding internal shrubs, embedding
hubs, and embedding end shrubs.

Embedding an internal shrub Assume that we are at a given time of the embedding process
when we have just finished embedding some hub and are about to embed the next internal shrub 7.
A picture corresponding to the description below is given in Figure 6.4. As the predecessor p of
the root r of the shrub is mapped to V1, (5.41) tells us that the image of p has a substantial degree
into V5. Since p was mapped outside of Fi, the image of p has a substantial degree to Vo \ Us. The
set V5 \ Uz has the avoiding property (see Definition 4.5), and therefore only very few candidates
should not be used for the accomodating r, as they are ezceptional with respect to the set Us U Fj
(which is of size O(k) by (6.1)). Therefore, we can map r to some non-exceptional vertex in Va\ Us.
In order to embed the children ¢, ..., gy of r we shall use the property of the avoiding set, i.e., we
use that there is a dense spot D containing the image of r such that

DN (UsU F3)| <~% . (6.2)
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6.1 Overview of the embedding procedures

As the image of r has substantial minimal degree in D N A; by Setting 5.4(4) and only a very
small portion of it goes outside of V3 (by (5.43)) or to Us U F3 (by (6.2)), we can map qi, ..., qs to
V3 \ (Us U F3) (recall that £ < 7k, and 7 is the smallest constant in our hierarchy).

The minimum degree condition (5.44) together with the fact that the children gy, ..., g, were
embedded outside of F3 this will ensure that we can map the grandchildren ¢i,...,q} of r to V
while avoiding the set Us U F5.

As we have seen above, it is enough to avoid Us and the set of exceptional vertices in V5 (in
the sense of the avoiding set) to be able to further extend the embedding of the internal shrub,
by finding (possibly different) dense spots D1, ..., Dj, containing qj,...,qy, respectively, such that
|DiN (Us UF —3)| < +*k. We repeat this process until the embedding of T* is finished.

The idea behind defining the set F5 is to prevent getting stuck when we need to map the next
seed from Wy to the set V4 \ (U1 U F), as here again we have no structural information on V5 or
between V5 and V; we can exploit (the avoiding property is useful only to go from V5 to V3, as it
can be combined with the negligible loss of degree outside V3).

Before we turn our attention to further parts of the embedding process let us meditate on
the reason for allowing the embedding of the root r of T* in F» and why we can afford such an
exception. If we had to avoid the set F5 for the embedding of the roots of the internal shrubs, we
would need to include a shadow of F5 in Fj. On the other hand, the set F5 includes a shadow
of F1, so this would create a loop in the definitions. We can afford this exception for the following
reason. For any vertex mapped to V5 \ F», we can ensure that if it has a child belonging to Wy,
then this child can be mapped to V4 \ (U; U Fy). This however is not guaranteed for the roots of
the internal shrubs. Therefore, it is important that no root of internal shrub has a child belonging
to Wa. This is the reason behind Property (i) of Definition 3.3.°

Embedding further hubs Recall that the first hub has already been embedded. We shall now
explain how we make use of the expanding property of Gy, from Preconfiguration (exp) to embed
any further hub X. First, note that the first vertex of X we are about to embed can be mapped
to a suitable w € Vi \ (Uy U Fy), as its predecessor ¢ (which was a part of a previous internal
shrub) does not belong to 5.5 Hence, let us assume that any vertex z € Wy is mapped to some
vertex w € V1 \ (U1 U F1). We want to pick a prospective candidate among the neighbours of w to
which we shall map any given child of . The only properties required from this candidate is to
be unused and to have substantial degree to V; \ (U; U F1). Only a tiny fraction of the neighbours
of w lie in Up, as the size of W4 U Wp is O(1) by Definition 3.3(c). By (5.34), any vertex in
N(w) N (Vo \ Up) is a suitable prospective candidate, except those that send many edges to Uy U F}
(in Gexp). However, there are only very few such vertices by Fact 4.13. Thus, (5.34) tells us that
we can accomodate x.

One could argue that while embedding the hubs and internal shrubs, the sets U;, and thus Fj,
do increase dynamically. However, this is not a real problem and can easily be dealt with. Indeed,
in every step of our embedding process, we have a substantial number of candidates we can choose
from (of the order of magnitude dk). The size of one hub, respectively of one internal tree, is of a
much smaller order. Therefore, it is enough to update the sets U; and F; only at certain times.

®Actually, a slightly weaker condition would be sufficient here. Configuration (¢8), however, is more complex,
justifying the necessity of the stronger condition given in Property (i) of Definition 3.3.
5The only hub without a predecessor contains the root R, and we have explained how to embed it.
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6.1 Overview of the embedding procedures

Embedding Sp-shrubs Once we have embedded all hubs and all internal shrubs, we start
embedding shrubs that are adjacent to Wp. By Definition 3.3(k) these are end shrubs. As explained
in [HKP*b, Section 5.1.1], the embedding of the end shrubs is much easier since we do not have to
return to Vp and V; for embedding cut vertices.

Let us note that at this stage of the embedding process no vertex of As, and thus of Vgozo 4 has
been used. The total order of the end shrubs is about hy &~ pak. Definition 3.3(1) tells us that
the total order of Sp is at most ho/2. Display (5.30) tells us that the degree of the vertices in Vp
to Vg[fo g is at least ha/2. As we suspend the embedding of the end shrubs adjacent to vertices in Wy

until the last stage, there are always enough unused neighbours of vertices from Vj lying in Vgrfo a4
To extend the embedding from a root to the entire end shrub it corresponds to, we use our basic
techniques that build on the avoiding property, on the properties of the nowhere-dense graph,” or
on exploiting regular pairs. The definitions (5.8) and (5.5) indeed provide us with a setting in which
it is possible to extend the embedding from Vgooq as explained in [HKP*b, Section 5.1]. The order
in which we embed the Sp-shrubs is important in order to fill the end-clusters of regular pairs of

(M4 UMBp)? at the same pace as long as possible.

Embedding Ss-end shrubs It remains to embed the end shrubs from S4. We shall use the
same techniques we used for Sg-shrubs.

By (5.31), the minimum degree from V; to ngod is at least hg and the total order of all end
shrubs (including those from Sp) is slightly less than hy. Therefore, there are always sufficient
unused neighbours of vertices from V; in ngo a4
whether we fill of the end-clusters of regular pairs of (M4 U Mp)!? in a balanced way.

Finally, (5.32) means that we do not need to care

6.1.4 Embedding overview for Configuration (¢8)

Suppose we are in Setting 5.1 and 5.4. We are working with sets Vg, V1, Vg[fod, V5, V3 and V; and
with a regularized matching N coming from the configuration.

The embedding scheme follows Table 6.2, and is illustrated in Figure 6.5. The embedding of the
hubs and of the external shrubs is done in the same way as in Configurations (¢6)—(¢7). We only
describe here the way the internal shrubs are embedded. Their roots are embedded in V5. From that
point we proceed embedding subshrub by subshrub. Some of the subshrubs get embedded between
V3 and V. This pair of sets has the same expansion property as the pair V5, V3 in Configuration (¢7).
In particular, it allows to avoid the shadow of the already occupied set so that the follow-up hub
can be embedded in a location almost isolated from the previous images, similarly as described
in Section 6.1.2. For this reason we make sure that principal subshrubs get embedded here. The
degree condition from V5 to V3 is too weak to ensure that all remaining subshrubs are embedded
between V3 and Vj. Therefore we might have to embed some subshrubs in N. Condition (5.51)
— where h is approximately the order of the internal shrubs, as in Remark 6.1 — indicates that
it should be possible to accommodate all the subshrubs. For technical reasons, the order in which
different types of subshrubs are embedded is very important.

"The two are explained in [HKPTa, Section 3.5], and in [HKP*a, Section 3.6].
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internal shrubs

(principal subshrubs and some peripheral subshrubs)

roots of internal shrubs

cut vertices W4

¢~0
‘

cut vertices Wp end shrubs

internal shrubs
(remaining peripheral subshrubs)

Figure 6.5: An overview of embedding a fine partition (W4, Wg,Sa,Sp) of a tree T' € trees(k)
using Configuration (¢8). The hubs are embedded between Vy and V;. The roots of the internal
shrubs are embedded in V5. Some of the subshrubs of the internal shrubs are embedded in
V3 UV, and some in N; principal subshrubs are always embedded in V3 U V. The end shrubs

. . 12
are embedded using the properties of Vgood.

6.1.5 Embedding overview for Configuration (¢9)

The embedding process in Configuration (¢9) follows the same scheme as in Configurations (¢6)—
(¢8), but the embedding of the internal shrubs follows the regularity method. Assuming the simplest
situation F = Vo(N) and V2 = V4 (N), we would have mindegg, ., (V1, Vi(N)) = Ry (cf. (5.52)). See
Figure 6.6 for an illustration. Similarly as above, the hubs are embedded between Vy and V.
The internal shrubs are accommodated using the regularity method in A/, and the end shrubs are
embedded in ngod using Preconfiguration (©1). The embedding lemma for this configuration is
given in Lemma 6.26.

6.1.6 Embedding overview for Configuration (¢10)

Configuration (¢10) is very closely related to the structure obtained by Piguet and Stein [PS12] in
their solution of the dense approximate case of Conjecture 1.1.%

Theorem 6.2 (Piguet—Stein [PS12]). For any g > 0 and o > 0 there exists a number ng such that
for any n > ng and k > qn the following holds. Fach n-vertex graph G with at least n/2 vertices of
degree at least (1 4+ a)k contains each tree of order k + 1.

8In [HKP™b, Section 5.1] we described in quite some detail how our main “rough structural result”, [HKP'b,
Lemma 5.4] relates to and differs from the Piguet—Stein structure. The description in this section, however, goes
in a different direction since Configuration (¢10) is much narrower that the general structure asserted in [HKP b,
Lemma 5.4].
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C

O
T

internal shrubs

cut vertices Wy

cut vertices Wg jend shrubs

Figure 6.6: An overview of embedding a fine partition (W4, Wp,Sa,Sp) of atree T € trees(k)
using Configuration (¢9). The hubs are embedded between V; and V;, the internal shrubs using

. . . 12
the regularity method in N and the end shrubs are embedded using Vgo od-

Let us describe their proof first. Piguet and Stein prove that when k > gn (for some fixed
g > 0 and k sufficiently large) the cluster graph? Gyeg of a graph G € LKS(n, k,n) contains the
following structure (cf. [PS12, Lemma 8]). There is a set of clusters L C 'V such that each cluster
in L contains only vertices of captured degrees at least (1 + g)k There is a matching M C Gyeg,
and an edge AB, with A, B € L. One of the following conditions is satisfied

(H1) M covers Ng,,, ({4, B}), or

(H2) M covers Ng,(A), and the vertices in B have captured degrees at least (1 + 1) into
UL UV (M)). Further, each edge in M has at most one endvertex in Ng,,, (A).

Piguet and Stein use structures (H1) and (H2) to embed any given tree T € trees(k) into
G using the regularity method; see Sections 3.6 and 3.7 in [PS12], respectively. Actually, a slight
relaxation of (H1) and (H2) would be sufficient for the embedding to work, as can be easily seen
from their proof: Again, there is a set of clusters L C V such that each cluster in L contains only
vertices of captured degrees at least (1 + )k, there is a matching M C Gyeg, and an edge AB,
A, B € L. One of the following conditions is satisfied

(H1’) the vertices in AU B have captured degrees at least (143 )k into the vertices of [ J(LUV (M)),
or

(H2’) the vertices in A have captured degrees at least (1 + 3)k into the vertices of (JV (M), and
the vertices in B have captured degrees at least (1 + 2)% into (J(L U V(M)). Further, each
edge in M has at most one endvertex in Ng,,, (A4).

It can be seen that Configuration (¢10) is a direct counterpart to (H1’).!* (The counterpart
of (H2’) is contained in Configuration (¢9) and the similarity is somewhat weaker.)

9ordinary, in the sense of the classic regularity lemma
90bserve that some parts of G,eg are irrelevant in the embedding process of [PS12]. The objects Greg, L, and M
in the structural result of [PS12] correspond to (G, V), L*, and M in Configuration (¢10).
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6.2 The role of random splitting

The embedding lemma for Configuration (¢10) is stated in Lemma 6.27.

6.2 The role of random splitting

The random splitting as introduced in Setting 5.4 is used in Configurations (¢6)—(¢9); the set Ag
will host the cut-vertices W U Wp, the set A; will host the internal shrubs, and the set Aoy will
(essentially) host the end shrubs of a (7k)-fine partition of Ty 9.

The need for introducing the random splitting is dictated by Configurations (¢6)—(¢9). To see
this, let us try to follow the embedding plan from, for example, Section 6.1.2 without the random
splitting, i.e., dropping the conditions C Ag, C A;, C Ay from Definitions 5.12-5.17. Then the
sets Vo and V3 in Figure 6.2, which will host the internal shrubs, may interfere with V and V
primarily designated for W4 and Wp. In particular, the conditions on degrees between V; and
V1 given by (5.34)—(5.35) in Definition 5.14, or given by the super-regularity in Definition 5.15 (in
which fps.14 > 0, or db5_15,uD5_15 > 0 are tiny) may be insufficient for embedding greedily all the
cut-vertices and all the internal shrubs of Trr1 9. It should be noted that this problem occurs even in
Preconfiguration (exp), i.e., the expanding property does not add enough strength to the minimum
degree conditions. ! Restricting Vy and V; to host only the cut-vertices (only O(1/7) = o(k) of
them in total, cf. Definition 3.3(c)), resolves the problem.

The above justifies the distinction between the space A for embedding the cut-vertices and the
space A1 U As for embedding the shrubs. There are some other approaches which do not need to
further split A; U As but doing so seems to be the most convenient.

6.3 Stochastic process Duplicate(?)

Let us introduce a class of stochastic processes, which we call Duplicate(¢) (¢ € N). These are
discrete processes (X1, Y1), (X2, Y2), ..., (X Yy) € {0,1}? (where ¢ € N is arbitrary) satisfying the
following.

e For each i € [¢], we have either
(a) X; =Y; =0 (deterministically), or
(b) X; =Y; =1 (deterministically), or
(c) exactly one of X; and Y; is one, and in that case P[X; = 1] =

N[

e If the distribution of (X}, Y;) is according to (c), then the random choice is made independently
of the values (X;,Y;) (5 <1).
e We have Y7 |(X;+Y;) <.

We note that this definition is not deep and its purpose is only to adopt the language we shall use
later. The following lemma asserts that the first and second components of a process Duplicate(?)
are typically balanced.

Lemma 6.3. Suppose that (X1,Y1),(X2,Y2),...,(Xy,Yy) is a process in Duplicate(€). Then for

any a > 0 we have
q q 2
< exp L
= 20) "

Y Xg=> Yyza

i=1 i=1

P

"See [HKP*a, Section 3.6] for details.
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6.4 Embedding small trees

Proof. We shall use the following version of the Chernoff bound for sums of independent random
variables Z;, with distribution P[Z; = 1] = P[Z; = —1] = 1.
2

ZZi >a| <exp (_a) . (6.3)
— 2n

Let J C [g] be the set of all indices ¢ with X; +Y; = 1. By the definition of Duplicate(¢), we

have |J| < ¢. By (6.3) we have
< _i < _a72
< exp 217] ) S exp 5 )

We shall use the stochastic process Duplicate to guarantee that certain fixed vertex sets do not
get overfilled during our tree embedding procedure. Duplicate is used in Lemmas 6.13 and 6.14
through Lemma 6.12. The way we use Duplicate was sketched in [HKPTa, Section 3.6].

| o

P> (X;-Y)>a

J

O]

6.4 Embedding small trees

When embedding the tree Tmq .2 in our proof of Theorem 1.2 it will be important to control where
different bits of T2 go. This motivates the following notation. Let Xi,..., X, C V(T) be
arbitrary vertex sets of a tree T, and let Vi,...,V; C V(G) be arbitrary vertex sets of a graph G.
Then an embedding ¢ : V(T) — V(G) of T in G is an (X; — Vi,..., Xy — V;)-embedding if
#(X;) CV; for each i € [(].
We provide several sufficient conditions for embedding a small tree with additional constraints.
The first lemma deals with embeddings using an avoiding set.

Lemma 6.4. Let A,k € N and let £, € (0, %) with v* > €. Suppose E is a (A, e,7, k)-avoiding set
with respect to a set D of (vk,~y)-dense spots in a graph H. Suppose that (Th,r1),...,(Ty,7¢) are
rooted trees with ||J; T;| < vk/2. Let U C V(H) with |U| < Ak, and let U* C E with |U*| > ek + L.
Then there are mutually disjoint (r; — U*, V(T;)\{ri} — V(H)\U)-embeddings of the trees (T;,1;)
in H.

Proof. Since E is (A, g, 7, k)-avoiding, there exists a set Y C E with |Y| < ek, such that each vertex
vin E\ Y has degree at least vk into some (7k,7)-dense spot D € D with |U NV (D)| < 72k.
In particular, U* \ Y is large enough so that we can embed all vertices r; there. We successively
extend this embedding to an embedding of | J; T}, at each step finding a suitable image in V(D) \ U
for one neighbour of an already embedded vertex v € |J; V(T;). This is possible since the image of
v has degree at least vk — |[U NV(D)| > ~k/2 = >, v(T;) into V(D) \ U. O

The next lemma deals with embedding a tree into a nowhere-dense graph, a prime example of
which is the graph Gexp.

Lemma 6.5. Let k € N, let Q > 1 and let v, € (0,1) be such that 128Qy < (2. Let H
be a (vk,~y)-nowhere-dense graph. Let (Th,r1),...,(Ty,1¢) be rooted trees of total order less than
Ck/4. Let V1,Vo,U,U* C V(H) be four sets with U* C Vi, |U| < Qk, |U*| > %k+€, and
mindeg (V;, Va—;) = Ck for j = 1,2. Then there are mutually disjoint (r; — U™, Veyen(T;) —
Vi\ U, Voaa(T;) — Vo \ U)-embeddings of the trees (T;,r;) in H.
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6.4 Embedding small trees

Proof. Set B := shadowy (U, (k/2). By Fact 4.13, we have |B| < 32?”1{: < Ck/4. In particular,
U*\ B is large enough to accommodate the images ¢(r;) of all vertices r;.

Successively, extend ¢, in each step mapping a neighbour u of some already embedded vertex
v e lJ; V(T;) to a yet unused neighbour of ¢(v) in V; \ (BUU), where j is either 1 or 2, depending
on the parity of disty(r,v). This is possible as ¢(v), lying outside B, has at least (k/2 neighbours

in V;\U. Thus ¢(v) has at least (k/4 neighbours in V; \ (U U B), which is more than ), v(7;). O

The next three lemmas (Lemma 6.7-6.9) deal with embedding trees in a regular or a super-
regular pair. Before stating them, we give an auxiliary lemma that will be used in the proof of
Lemma 6.8.

Lemma 6.6. Let {z;};_,, {yi};_, be two families of reals in [0, K], with ), x; > 0. Write X :=
Yoixi, Y =),y and v:=Y/X. Then for each X' € [0, X] there is a set I C [s] such that

() Yierwi S X' < Y jepvi + K, and

Proof. Inductively construct sets J; C [s] as follows for £ = 1,...,s. We start by setting J; = 0.
In step ¢, if v .5 2 D2, Yj» then choose j, € [s] \ J; such that yaj, < y;,. Otherwise,
take jo € [s] \ Jy with yz;, > y;,. The existence of such an index j, follows by averaging. Set
Jov1 := Jo U {je}. Our procedure ensures that for each ¢ we have

Zw—KéwaéZw—i—K. (6.4)

JE€Je JE€Je JE€Jg

Now for a given X', let p be the largest integer such that Zjer z; < X'. Setting I := Jp, we
clearly have (a), while the first inequality in (b) holds because of (6.4) (first inequality) for ¢ = p.
For the second inequality in (b), it is enough to focus on the case p # s, as otherwise X = X’ and
consequently yX" = 3"._;y;. But then, by the definition of p and by (6.4) (second inequality) for
L=p+1,

VX< Y wi< Y, vt K<) yi+2K,

i€Jpt1 i€Jpt1 iel

as desired. ]

Lemma 6.7. Let ¢ > 0 and 8 > 2¢. Let (C,D) be an e-regular pair in a graph H, with |C| =
|D| =: £, and with density d(C, D) > 35. Suppose that there are sets X CC,Y C D, and X* C X
satisfying min{| X[, [Y|} > 43¢ and [ X[ > gﬂ. Let (T,r) be a rooted tree of order v(T) < el. Then
there exists an (r — X, Veyen(T) — X, Voaa(T') — Y)-embedding of T in H.

Proof. We shall construct an embedding ¢ : V(T) — X UY satisfying the requirements of the
lemma. Fact 2.1 implies that (X,Y) is B/2-regular of density greater than 28. By Fact 2.2,
there are sets X’ C X and Y/ C Y with |X'| > (1 — 3/2)|X]| and [Y’| > (1 — 8/2)]Y| such that
mindeg(X',Y) > 34|Y|, mindeg(Y’, X) > 338|X|. Then

mindeg(H|[X',Y']) > Bmin{|X|,|Y]|} > 2¢¢ > v(T). (6.5)

Choose any vertex in X* N X’ (which is non-empty by the above calculations) for ¢(r). By (6.5)
we can greedily extend ¢ to an embedding ¢ : V(T) — X' UY". O
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6.4 Embedding small trees

Lemma 6.8. Let 3,6 > 0 and £ € N be such that ¢ < %/8. Let (C, D) be an e-regular pair with
|C| = |D| = £ of density d(C,D) > 33 in a graph H. Let (11,71),(12,72),...,(Ts,rs) be rooted
trees with v(T;) < el for alli € [s]. Let U C V(H) fulfill |CNU| = |DNU|, and let X* C (CuD)\U
be such that

1 X*| = w(Ty) + 5080 . (6.6)
i=1
Then there are mutually disjoint (r; — X*,V(T;) — (C U D) \ U)-embeddings of the trees (T;,r;)
in H.

Proof. Let us write M := | X*NC| and m := |X* N D|. Without loss of generality, we assume that
M > m. For each i € [s], let us write a; and b; for the number of vertices of T; at even and odd
distance from 74, respectively. Furthermore, we write A := 5. a;, B:=),b;, and 7v:= B/A. In a
first step, we shall partition the set [s] into three sets I, I, and I”, according to three cases:

(C1) m < 4p¢,
(C2) m > 4p¢, and 2(m —450) > A+ B,
(C3) m > 486, and 2(m — 460) < A + B.

Once this has been done, we will show how to embed the rooted trees T;, using this partition.

In Case (C1), we set I} = I := (), and I"” := [s]. For Cases (C2), and (C3), we first partition [s]
into two sets I and I” and will make use of an auxiliary set I’ in order to obtain I; and I as
follows. In Case (C2), set [ :=[s], I" := 0, and I’ := I In Case (C3), we apply Lemma 6.6 with
input (2i)ic(s = (@i)icfs)y Wi)icls) = (bi)icps)y X' = A+B (m — 45¢), and the bound K := gﬁ. The
bound X’ < X = A required in Lemma 6.6 follows from the second property of Case (C3). The
lemma yields a set I C [s] such that

EI: a; < A2+AB (m — 450) | (6.7)

A2fB (m — 480) < ; a; + gé : (6.8)
ZI: b — ge < ;fB (m — 4p¢) , and (6.9)
Asz (m — 480) < ; b + ge . (6.10)

Bound (6.8) can be used to bound ), a; for the complementary set I” := [s] \ I as follows.

24 B\ 20m — 480\ B
ZaigA—<A+B(m—46€)—4€>—A<1—A+B >+4z

2Am—450) \
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6.4 Embedding small trees

where we employed the bound A < A+B < M +m—508¢ from (6.6). Likewise, we have from (6.10)
that

> b <M —m—408¢ . (6.12)
I//

The main feature of Lemma 6.6 is that the ratio ), b; : > a; is almost exactly 7. In order to even
out a small imperfection we may have, let us introduce a dummy pair (ag, bg), with 0 < ag, by < 5¢/2
such that for I’ := I U {0}, we have

> rbi

AL
The existence of such a pair (ag, by) follows from the properties of Lemma 6.6.
In Cases (C2), and (C3), we apply Lemma 6.6 to further partition the set I. More specifically,
the input of Lemma 6.6 consists of X’ := AJFLB(m —4B0), ()icr = (ai)ier, Yi)icr = (bi)ier,
and K := gé. Lemma 6.6 gives an index set J; C I'. Set I := J; \ {0} C I. We have that

; i< AB(m 460) , (6.13)
5480 < Z a; + B¢, (6.14)
Z bi — 5 < f 5 (m —4p0) , and (6.15)
o (m — 48¢) < Zb + ,BE (6.16)

Set Iy := I\ I;. From (6.7) and (6.14) we have

2A A A
gja v ) (A = (m—450) ~ B€> T pm 480 + 80 (6.17)
2
Similarly, (6.9) and (6.16) give
> b < = ( )+ 28¢ . (6.18)
A+ B
Ip)
We shall now see how the partition [s] = I; U Iy U I” gives us instructions to embed the trees

Ti,...,Ts one by one. The trees T;, i € I; are embedded in the bipartite graph (W, (DN X*)\ U),
where W is an arbitrary subset of C' N X™* of size m, with the root r; embedded in W. The trees
T;, i € Iy are embedded in the bipartite graph (DN X*, W), with the root r; embedded in D N X*.
Finally, the trees T;, i € I"” are embedded in ((CNX*)\ W, D\ (X*UU)), with the root embedded
in (CNX*)\W. We can embed the trees (7;);cr,ur, as described above, by repetitively using
Lemma 6.7, as we have enough space for the embeddings: summing up (6.13) and (6.18) we have

Zaz—i-Zb m— 480+ 280 = |W| — 280,
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6.4 Embedding small trees

and similarly from (6.15) and (6.17) we have
3
b; i < — 480+ =L < | DN X*| —28¢.
> b+ ;a m—4BL+ SBL< | | —28

Likewise, the trees (T;);c;» can be embedded in ((C' N X*)\ W,D \ (X* UU)) with the help
of Lemma 6.7, as (6.11) says that >, a; < |[(C N X*)\ W| — 4084, and as (6.12) says that
Db < (CNX*)\W|—4080 < |D\ (X*UU)| —40p¢. O

Lemma 6.9. Let d > 10e > 0. Suppose that (A, B) forms an (e,d)-super-reqular pair with
|A|,|B| = €. Let Uy C A, Ugp C B be such that |Uy| < |A|/2 and |Ug| < d|B|/4. Let (T,r)
be a rooted tree of order at most dl/4, and let v € A\ Uy be arbitrary. Then there exists an
(r = v, Veyen(T',7) = A\ Ua, Voaa(T,r) — B\ Up)-embedding of T'.

Sketch of the proof. The lemma is a variant of Lemma 6.7 with only two qualitative differences.
Firstly, the assumptions of the lemma are stronger in that we now have super-regularity rather
than regularity. Secondly, the assertion of the lemma is stronger in that we can map the root of the
tree on a specific vertex r < v, rather than into a specified set 1167 < X{ ;. The proof scheme of
Lemma 6.7 indeed gives this stronger assertion under the current assumptions. To see this, note that
in the proof of Lemma 6.7, it was enough to map r to an arbitrary vertex which had enough degree
to the destination set (B \ Up, in the present lemma) of its children. In the current setting, any
v € A\ Uy can serve as such a vertex as deg(v, B\ Ug) > deg(v, B) —|Ug| > d|B|—d|B|/4 = 3d|B],
where the last inequality uses the super-regularity of (A, B). O

Suppose that we have to embed a rooted tree (T, r), and its root was already mapped on a vertex
¢(r). Suppose that r has degree {x + fy in a regular pair (X,Y’), where {x := deg(¢(r), X), by =
deg(¢(r),Y), with x > ly, say. The hope is that we can embed 7" in (X,Y") as long as v(T) is a
bit smaller than £x + ¢y. For this, the greedy strategy does not work (see Figure 6.7) and we need
to be somewhat more careful. We split the embedding process into two stages. In the first stage

(I am @ X X (
AR Spasegii
T l

4 o SEES Wewe e o &‘\\\w
' XX 21 , LR
(0 () (1 (1

Figure 6.7: An example of a rooted tree (T, 7), depicted on the left. The forest T'— r has three
components (I), (IT), (IIT) of total order 12. Say the vertex r is embedded so that for the regular
pair (X,Y’) we have deg(¢(r), X) = 8, deg(¢(r),Y) = 4 (neighbourhoods of ¢(r) hatched).
While the greedy strategy does not work (middle), splitting the process into a balanced and an
unbalanced stage (right) does — here the components (I) and (II) are embedded in the balanced
stage and the component (III) in the unbalanced stage.

we choose a subset of the components of T' — r of total order approximately 2 min (Z X, Ky) = 2y.

When embedding these, we choose orientations of each component in such a way that the image
is approximately balanced with respect to X and Y. In the second stage we embed the remaining
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6.4 Embedding small trees

components so that their roots are embedded in X. We refer to the first stage as embedding in a
balanced way, and to the second stage as embedding in an unbalanced way.
The next lemma says that each regular pair can be filled-up in a balanced way by trees.

Lemma 6.10. Let G be a graph, v € V(QG) be a vertex, M be an (e, d, vk)-reqularized matching in
G, and {fcp}(c,pyem be a family of integers between —7k and Tk. Suppose (T,r) is a rooted tree,

ur) < (1- ) o,

with the property that each component of T —r has order at most Tk. If V(M) C Ng(v) then there
exists an (r — v, V(T —r) — V(M))-embedding ¢ of T such that for each (C,D) € M we have
ICNG(T)| + fep = |[D N o(T)| £ 7k.

The proof of Lemma 6.10 is standard, and is given for example in [HP15, Lemma 5.12].

Lemma 6.10 suggests the following definitions. The discrepancy of a set X with respect to a
pair of sets (C, D) is the number |C N X| —|D N X|. X is s-balanced with respect to a regularized
matching M if the discrepancy of X with respect to each (C,D) € M is at most s in absolute
value.

Lemma 6.11. Let G be a graph, v € V(QG) be a vertex, M be an (e,d, vk)-reqularized matching in
G with an M-cover F, and U C V(G). Suppose (T,r) is a rooted tree with

oT) + U] < degg (0. VN JF) - ).

such that each component of T —r has order at most k. Then there exists an (r — v, V(T —r) —
V(M) \ U)-embedding ¢ of T'.

The proof of Lemma 6.11 is again standard and we again omit it.

The following lemma uses a probabilistic technique to embed a shrub while reserving a set of
vertices in the host graph for later use. We wish the reserved set to use about as much space inside
certain given sets P; as the image of our shrub does. (In later applications the sets P; correspond
to neighbourhoods of vertices which are still ‘active’.)

Lemma 6.12 will find an immediate application in all the remaining lemmas of this subsection.
However it is really necessary only for Lemmas 6.13-6.14, which deal with embedding shrubs in
the presence of one of the Configurations (¢6)—(¢8). For Lemmas 6.15 and 6.16, which are for
Configurations (¢3) and (¢4), a simpler auxiliary lemma (without reservations) would suffice.

Lemma 6.12. Let H be a graph, let X*, X1, X9, P, Ps,..., P, C V(H), and let (T1,r1), ...,
(Ty, ) be rooted trees, such that L < k, |Pj| < k for each j € [L], and | X*| > 2{. Suppose that
mindeg(X1 U X™*, X2) > 2> v(T;) and mindeg(Xs, X1) = 2> v(T;).

Then there exist pairwise disjoint (r; = X*, Veven (T3, 7i) \ {ri} — X1, Voaa(Ti, i) — Xo)-em-
beddings ¢; of T; in G and a set C C (X1 UX2)\U @i(T3) of size > v(T;) such that for each j € [L]
we have

P si(Tl < 1Py n Ol + K (6.19)
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6.4 Embedding small trees

Proof. Let m := Y v(T3).

We construct pairwise disjoint random (r; < X* Veyen (T3, 73) \ {ri} — X1, Voaa(Ti, i) — Xa)-
embeddings ¢; and a set C C V(H)\ | ¢;(T;) which satisfies (6.19) with positive probability. Then
the statement follows.

Enumerate the vertices of |JT; as UV (T;) = {v1,...,vm} such that v; = r; for i = 1,...,¢,
and such that for each j > ¢ we have that the parent of v; lies is the set {vi,...,vj—1}. Pick

pairwise disjoint sets Aq,..., Ay C X* of size two. Choose uniformly and independently at random
an element x; € A;. Denote the other element of A; as y;.
Now, successively for ¢ = ¢+ 1,...,m, we shall define vertices z; and y;. Let r denote the root

of the tree in which v; lies, and let vs = Par(v;) be the parent of v;. We shall choose z;, y; € X,
where j; = dist(r,v;) mod 2+ 1. In step 4, proceed as follows. Since z, € Xj, (or since z, € X¥),
we have
deg(xsﬂin \ U{xhayh}) > 2.
h<i

Hence, we may take an arbitrary subset A; C (N(z5) N Xj,) \ Up<i{@n, yn} of size exactly two. As
above, randomly label its elements as x; and y; independently of all other choices.

The choices of the maps (v; — ;)72 determine ¢1,...,¢,. Then C := {y1,...,ym} has size
exactly m and avoids ( ¢i(T;).

For each j € [L] we set up a stochastic process &) = <(Xi(j),Y;(j))>Til, defined by XZ-(j) =

1(z,ep;) and Yi(j) = 1yy,cp;}- Note that GU) ¢ Duplicate(|P;|) C Duplicate(k). Thus, for a fixed
j € [L], by Lemma 6.3, the probability that |P;N (U ¢:(T;))| > |P;NC|+k3/* is at most exp(—v/k/2).
Using the union bound over all j € [L] we get that Property 6.21 holds with probability at least

1L-exp<\2%> > 0.

This finishes the proof. O

We now get to the first application of Lemma 6.12.

Lemma 6.13. Assume we are in Setting 5.1. Suppose that we are given sets Vo, Vs C V(G) are
such that we have

mindeg (Va,V3) > 6k and mindegy(Va, V) > 0k, (6.20)

where § > 300/k, and H is a (vk,~y)-nowhere dense subgraph of G. Suppose that U,U*, Py, Py, ..., Pr, C
V(G), and L < k, are such that |U| < ﬁﬁk, U* CVa, U = gk, and |Pj| < k for each j € [L].
Let (T,r) be a rooted tree of order at most 0k/8.

Then there exists a (r < U*, Veyen (T, 7) \ {r} — Vo \ U, Voaa(T,r) < V3 \ U)-embedding ¢ of T

in G and a set C C (VaUV3)\ (UU(T)) of size v(T') such that for each j € [L] we have
P01 6(T)| < [Py N O+ k¥, (6.21)

Proof. Set B := shadowg,,, (U, dk/4). By Fact 4.13, we have that |B| < 64%(%)% <%k-2.In
particular, X* := U* \ B has size at least 2. Set X; := V5 \ (UU B) and set Xy := V3 \ (U U B).

Using (6.20), we find that

) 0
mindegq, (X1, X2) > 6k — maxdegg, (X1,U) — |B| > 6k — Zk — Ek > 2u(T) ,
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6.4 Embedding small trees

and similarly, mindegg, (X2,X1) > 20(T). We may thus apply Lemma 6.12 to obtain the desired
embedding ¢ and the set C. O

Lemma 6.14. Assume Setting 5.1 and Setting 5.4. Suppose that we are given sets Y1,Ys C A;\V
with Y1 CE, and

(i) maxdegg, (Vi, A1\ Y2) < 2 and

400 ’

(i) mindeg (Y2, Y1) > 6k.

Suppose that U, U*, Py, Pa,...,Pr, C V(QG) are sets such that |U| < 2%{]{: U* C Yy, with
\U*| > Sk, |Pj| < k for each j € [L], and L < k. Suppose (Tl,rl) , (Ty,7¢) are rooted trees of
total order at most 6k/1000. Suppose further that 6 < ny/100, & < 5/1000, and k > 1000/4.

Then there exist pairwise disjoint (r; < U™, Voyen(Ti,7:) < Y1 \ U, Voqa(Ti, ;) < Yo \ U)-em-
beddings ¢; of T; in G and a set C C V(G —J ¢i(T3)) of size > v(T;) such that for each j € [L]
we have that

1P nJai(T) < 1P nCl+ kY (6.22)

Proof. Set U’ := shadowg,, (U, dk/2) UU. By Fact 4.12, we have |U’| < Ak. AsY; isa (A, €,7,k)-
avoiding set, by Definition 4.5 there exists a set B C Y7, |B| < €’k such that for all v € Y7 \ B there
exists a dense spot D, € D with v € V(D,) and |V(D,) NU'| < 7?k. As Y; is disjoint from V/,
by Definition 5.3(4) and by (5.13), we have that degp, (v,V(Dy)!) > g55k. By (i), we have that
degq, (v, V(Dy)"\ Y2) < 2k, and hence,

nk 2% > nyk

degGD(v,(V(D) ﬂY)\U) 400 — Z 200 -

Thus,

k
mindege, (Y1 \ B, Y2 \ (U' U B)) > Zgo ek>2) o). (6.23)

Further, by the definition of U’ and by (ii), we have
mindegg, (Y2 \ U, Y1\ (UUB)) > >2) u(Ty) . (6.24)

Set X* := U*\ B, and note that |X*| > dk/4 — 'k > 2¢. Set X1 := Y7 \ (U U B) and
Xy := Y2\ (U U B). Inequalities (6.23) and (6.24) guarantee that we may apply Lemma 6.12 to
obtain the desired embeddings ¢;. O

Lemma 6.15. Assume Setting 5.1. Suppose that the sets L', L" H' /H" Vi, Vs witness Config-
uration (©3)(0,0,7/4,0). Suppose that U,U* C V(G) are sets such that |U| < k, U* C Vi,
\U*| > gk. Suppose (T, r) is a rooted tree of order at most 6k/1000. Suppose further that 6 < /100,
g’ < §/1000, and 4% /6 < A.

Then there is an (1 — U*, Veven (T, 7) \ {r} = Vi \ U, Voaa(T,7) < Vo \ U)-embedding of T in G.

Proof. The proof of this lemma is very similar to the one of Lemma 6.14 (in fact, even easier). Set
U’ := shadowg,, (U, 0k/2) UU and note that |U’| < Ak by Fact 4.12. As V; is (A, €, 7, k)-avoiding,
by Definition 4.5 there is a set B C V1, |B| < €’k such that for all v € V4 \ B there exists a dense spot
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6.5 Main embedding lemmas

D, € D with degp, (v,V(Dy)\U’) = vk/2. By (5.20), we know that degq, (v, V(Dy)\ V2) < vk/4,
and hence, degg,, (v, (V(Dy) NV2) \ U’) = vk/4. Thus,

k
mindegg,, (Vi \ B, V2 \ U') > 25 > 20(T). (6.25)
Further, by the definition of U’ and by (5.21), we have
ok
mindegg, (V2 \ U, Vi \U) > 7 > 20(T) . (6.26)

Set X* := U*\ B, and note that |X*| > dk/4 — 'k > 2. Set Xy := V7 \ (U U B) and
Xy := Vo \ (U'U B). Inequalities (6.25) and (6.26) guarantee that we may apply Lemma 6.12 (with
empty sets P;) to obtain the desired embedding ¢. O

Lemma 6.16. Assume Setting 5.1. Suppose that the sets L', L" H'/H" Vi, E' V4 witness Con-
figuration (04)(0,0,v/4,0). Suppose that U C V(G), U* C Vi are sets such that |U| < k and
|U*| > gk. Suppose (T,r) is a rooted tree of order at most 6k/20 with a fruit r'. Suppose further
that 4’ < § < /100, and A > 300(%-)3.

Then there exists an (r — U*,r" = Vi \ U, V(T)\ {r,r'} = (E' U V2) \ U)-embedding of T in G.

Proof. Set
U’ := U Ushadowg,—u(U, 0k/4) U Shadowg)v—H(Uv 0k/4)

and let )
U" := U Ushadowg, (U', 5k /2).

We use Fact 4.12 to see that |U’| < ﬁl\k and |U”| < Ak. We then use Definition 4.5 and (5.25)
to find a set B C E/ of size at most €’k such that

mindegq (E'\ B, V2 \ U") > 2u(T) . (6.27)

Using (6.27), and employing (5.22) and (5.24), we see that we may apply Lemma 6.12 with
Xig12 =U" Xirea2 :=E'\ (BUU’) and Xa16.12 := V2 \ U” (and with empty sets P;) in order
to embed the tree T — T'(r,1 ') rooted at r. Then embed T'(r,1 '), by applying Lemma 6.12 a
second time, using (5.22) and (5.23). O

6.5 Main embedding lemmas

For this section, we need to introduce the notion of a ghost. The idea behind this notion is that
once we used a set U for the embedding of our tree, the remainder of the graph cannot be used as
before. Namely, if U covers part of a cluster of some matching edge, then we will not be able to fill
up the partner cluster using usual regularity embedding techniques.!? The ghost of U will block
the unusable part of the partner cluster, and we will know that we cannot expect to fill it up.

Given a regularized matching N, we call an involution d : V(N) — V(N) with the property
that 9(S) = T for each (S,T) € N a matching involution.

Assume Setting 5.1 and fix a matching involution b for M4 U Mp. For any set U C V(G) we
then define

ghost(U) :==U Ub(UNV(MyUMp)) .

12 An example where this issue arises was given in [HKPTb, Figure 5.1].
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6.5 Main embedding lemmas

Clearly, we have that |ghost(U)| < 2|U]|, and |ghost(U) N S| = |ghost(U) N T| for each (S,T) €
MaUMp.

The notion of a ghost extends to other regularized matchings. If N is a regularized matching
and 0 is a matching involution for A then we write ghost,(U) := U Ud(U NV (N)).

6.5.1 Embedding in Configuration (¢1)

This subsection contains an easy observation that each tree of order k is contained in G if the graph
G contains Configuration (¢1).

Lemma 6.17. Let G be a graph, and let A, B C V(G) be such that mindeg(G[A, B]) > k/2, and
mindeg(A) > k. Then each tree of order k is contained in G.

Proof. Let T € trees(k) have colour classes X and Y, with |X| > k/2 > |Y|. By Fact 3.2, for the
set W of those leaves of T that lie in X, we have | X \ W| < k/2. We embed T'— W greedily in G,
mapping Y to A and X \ W to B. We then embed W using the fact that mindeg(A) > k. O

6.5.2 Embedding in Configurations (¢2)—(¢5)

In this section we show how to embed Ty 5 in the presence of configurations (¢2)—(¢5). As outlined
in Section 6.1.1 our main embedding lemma, Lemma 6.20, builds on Lemma 6.19 which handles
Stage 1 of the embedding, and Lemma 6.18 which handles Stage 2.

Lemma 6.18. Assume we are in Setting 5.1. Suppose L”,L’' and H' witness Preconfiguration
(&)(105%) Let (T,r) be a rooted tree of order at most y*vk/6. Let U C V(G) with |U|+v(T) < k,
and let v e H' \U. Then there exists an (r — v, V(T) < V(G) \ U)-embedding of (T,r).

Proof. We proceed by induction on the order of T. The base v(T) < 2 obviously holds. Let us
assume Lemma 6.18 is true for all trees 7" with v(T") < v(T).

Let Uy := shadowgy (U — H,nk/200), and Us := J{C € V : |[CNU| > |C|}. We have
|Ui| < %k by Fact 4.12, and |Us| < 2|U]|. Set

k
Lg := L" N shadowgy (]E, ZO) ,

k
Ly:=L"nN shadowq, (H, |UNH| + gO) , and
Ly i= 1" N shadowg,, (V(Greg), (14 25)k — U (H]) .

Observe that Lv C [JV and that since L” C Lo, ,(Gv) \ H, we have
109
L’ - V(Gexp) UEULgULgULy .
As by (5.19), we have degq (v, L") > 105% > 5(|[U U U UUs| 4+ v(T) + nk), one of the following

five cases must occur.

Case I: degg (v, V(Gexp) \ U) > v(T') + nk. Lemma 6.5 gives an embedding of the forest T'—r (whose

components are rooted at neighbours of ). The input sets/parameters of Lemma 6.5 are Q6.5 := 1,
CL6.5 = 12ﬂ, UEG.S = (Ng(v) N V(Gexp)) \ U, UL6.5 = U, and V1 = V2 = V(Gexp).
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6.5 Main embedding lemmas

Case II: deg (v, E\ U) > v(T) + nk. Lemma 6.4 gives an embedding of the forest 7' — r (whose
components are rooted at neighbours of 7). The input sets/parameters of Lemma 6.4 are Uy , :=
(Ng(v)NE)\U, Urs.4 := U and e144 := &’ < 7. Here, and below, we implicitly assume parameters
of the same name to be the same, i.e. vy 64 := 7.

Case III: degq (v, Lg \ (U U U1)) > v(T') + nk. We only outline the strategy. Embed the children
of rin Lg \ (UUU) using a map ¢ : Chp(r) — Lg \ (UUU;). By definition of Lg, and U;, we have
deggy (H(w), E\U) > % for each w € Chp(r). Now, for every w € Chp(r) we can proceed as in
Case II to extend this embedding to the rooted tree (T(T,T w),w). That is, Case III is “Case 11
with an extra step in the beginning”.

Case IV: degg (v, Ly \ U) > v(T) 4+ nk. We embed the children Chy(r) of r in distinct vertices of
Ly \ U. This is possible by the assumption of Case IV.

Now, (5.17) implies that mindegq (Ly, H') > |[U NH]| + f’—&. Consequently, mindegq., (L, H' \
U) > %. Therefore, for each w € Chy(r) embedded in Ly \U we can find an embedding of Chz(w)
in H' \ U such that the images of grandchildren of r are disjoint. We fix such an embedding. We
can now apply induction. More specifically, for each grandchild v of r we embed the rooted tree
(T(r,T u),u) using Lemma 6.18 (employing induction) using the updated set U, to which the

images of the newly embedded vertices were added.

Case V: degg(v, Ly \ (UU UL UUs)) = v(T). Let uy,...,up be the children of r. Let us consider
arbitrary distinct neighbours zi,...,2¢ € Lv \ (U U U; U Us) of v. Let T; := T(r,T u;). We
sequentially embed the rooted trees (T;,u;), i = 1,...,¢, writing ¢ for the embedding. In step ¢,
consider the set W; := (U UUj< (;S(TJ)) \ H. Let D; € V be the cluster containing x;. By the
definitions of Ly and of Uy,

nk  nk _ nk
) N> .
degGreg (wz, V(Greg) \ WZ) 50 200 100

Fact 4.8 yields a cluster C; € V for which

2 /
7 ye Y 12&%¢
d i Ci \ Wi) > — - — T T) .
egGreg(az Ci \ W;) 100 2(0°)2 > 5 +o(T) > 2 +(T)

In particular there is at least one edge from E(Gheg) between C; and D;, and therefore, (C;, D;) forms
an &’-regular pair of density at least 72 in Greg. Map u; to x; and let F1, ..., F,, be the components
of the forest T; —u;. We now sequentially embed the trees Fj in the pair (D;, C;) using Lemma 6.7,
with Xy6.7 := C\(WiUU,<; ¢(Fy)), X167 = NG (Tis X16.7), Yie.7 := Di\(WiU{z: }UU,; ¢(Fy)),
€167 :— E,, and BL6.7 = ’}/2/3. ]

We are now ready for the lemma that will handle Stage 1 in configurations (¢2)—(¢5).

Lemma 6.19. Assume we are in Setting 5.1, with L", L', H' witnessing (&)(2*) in G. Let U C
V(G)\ H and let (T,r) be a rooted tree with v(T) < k/2 and |U| + v(T') < k. Suppose that each

component of T —r has order at most k. Let x € (L"NYB)\ U2, shadovv(GZ)v (ghost(U), nk/1000).

Then there is a subtree T" of T with r € V(T") which has an (r — z,V(T") \ {r} — V(G) \ H)-
embedding ¢. Further, the components of T—T' can be partitioned into two (possibly empty) families
C1 and Ca, such that the following two assertions hold.

(a) If C1 # 0, then mindegg (¢(Par(V(UC1))),H') > k + % —o(T"),
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6.5 Main embedding lemmas

(b) Par(V(UCs)) C {r}, and degg (z,H') > & + 1L W —o(T"uJC).

Proof. Let C be the family of all components of T' — r. We start by defining Cs. Then we have to
distribute T'—J C2 between T” and C;. First, we find a set Cpy C C\ C2 which fits into the matching
My UMp (and thus will form a part of 7). Then, we consider the remaining components of C \ Ca:
some of these will be embedded entirely, of others we only embed the root, and leave the rest for
C:1. Everything embedded will become a part of T”.

Throughout the proof we write shadow for shadows, .

Set Viood := Viood \ shadow (ghost(U), %go), and choose C C C such that

I k
degq, (z, Vgood — < Z < 1[118&({0,deggv (ZE, Vgood) — ZO} ) (6.28)
seC

Set Cy := C \ C. Note that this choice clearly satisfies the first part of (b). Let us now verify the
second part of (b). For this, we calculate

k
deggy (2, H') > deggg (z, Vi \ Ly) — deggy (il‘, shadow (ghOSt(U)7 1300))

nk
—degg, (x, Vi\ <L# U shadow <ghost(U) 1000) U ]HI>>

— deggy (z, H \ H')

k k k k k
(by (5.10), @ & shadow(® (ghost(U), 1255), (6.28), (5.17)) = ( + ZO> — 18% — ZU(S) + LA I

k nk

g (TlUUCl) 100

as needed for (b).

Now, set
M= {(X1,X2) € MaUMp : degg, (z,(X1UX2) \E) >0} . (6.29)

Claim 6.19.1. We have |V(M)| < 4(37;)2147.

Proof of Claim 6.19.1. Indeed, let (X1, X2) € M, ie. (X1, X2) € M4 UMp with degg, (z, (X1 U
X3)\E) > 0. Then, using Property 4 of Setting 5.1, we see that there exists a cluster C(x, x,) € V
such that degq, (z,C(x, x,)) > 0, and either X1 C C(x, x,) or X2 C C(x, x,)- In particular, there
exists a dense spot (A(x, x,)» B(x,,x0); F(x1,x,)) € D such that x € A(x, x,), and X1 C Bx, xy)
or Xo C B(x, x,)- By Fact 4.4, there are at most % such dense spots, let Z denote the union

of all vertices contained in these spots. Fact 4.3 implies that |Z]| < Q P k. Thus [V(M)| <
2AV(M)NZ| < 2|1Z] < ‘” k. O
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First we shall embed as many components from C in M as possible. To this end, consider an
inclusion-maximal subset C;; of C with

k
3" 0(S) < deggy (2, V(M) — 178% . (6.30)
SeCpyr

We aim to utilize the degree of x to V(M) to embed Cps in V(M) using the regularity method.

Remark 6.19.2. This remark (which may as well be skipped at a first reading) is aimed at those
readers who are wondering about a seeming inconsistency of the defining formulas (6.29) for M,
and (6.30) for Cps. That is, (6.29) involves the degree in Gp and excludes the set E, while (6.30)
involves the degree in Gy. The setting in (6.29) was chosen so that it allows us to control the size
of M in Claim 6.19.1, crucially relying on Property 4 of Setting 5.1. Such a control is necessary
to make the regularity method work. Indeed, in each regular pair there may be a small number
of atypical vertices', and we must avoid these vertices when embedding the components by the
regularity method. Thus without the control on |M| it might happen that the degree of x is
unusable because = sees very small numbers of atypical vertices in an enormous number of sets
corresponding to M-vertices. On the other hand, the edges z sends to E can be utilized by other
techniques in later stages. Once we have defined M we want to use the full degree to V(M) to
ensure we can embed the shrubs as balanced as possible into the M-edges. This is necessary as
otherwise part of the degree of x might be unusable for the embedding, e.g. because it might go to
M-vertices whose partners are already full.

For each (C, D) € M we choose a family Cop C Cps maximal such that

Z v(S) < deggy (7, (CU D)\ ghost(U)) — (%)3 C, (6.31)
SeCcp

and further, we require Cop to be disjoint from families Covpr defined in previous steps. We claim
that {Cop }(c,p)em forms a partition of Cpy, i.e., all the elements of Cys are used. Indeed, otherwise,
by the maximality of Cop and since the components of T' — r have size at most 7k, we obtain

S 0(8) > deggy (x, (C'U D) \ ghost(V)) — () |€] — h
SeCep (6.32)

(5.1) vy 3
> deggy (@, (CUD) \ ghost(U) =2 () 11,

3The issue of atypicality itself could be avoided by preprocessing each pair (S,T) of M4 U Mp and making it
super-regular. However this is not possible for atypicality with respect to a given (but unknown in advance) subpair
(s, 7).
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for each (C, D) € M. Then we have

dDwE) > > > u(s)

SeCy (C,D)eM SeCcp
3
oy @) =Y (degGv (z.(C'U D)\ ghost(U) =2 () yC|>
(C,D)em
7\ 2(9)°
(by Claim 6.19.1 and Fact 4.11) > degGV (z, V(M) \ ghost(U)) — 2 (§> . - k
nk
(as « ¢ shadow(ghost(U))) 2 dengV ([]j’ V(M)) — ﬁ

ty @y = Y v(S),

SeCn

a contradiction.

We use Lemma 6.8 to embed the components of Cop in (C'U D) \ ghost(U) with the following
setting: Cres := C, Digg := D, Ures := ghost(U), X{ss := (Ngg(z) N (C U D))\ Ures, and
(T}, r;) are the rooted trees from Cop with the roots being the neighbours of r. The constants in
Lemma 6.8 are ergg := €'/8, Bres := Ve, and 15 := |C| > vrk. The rooted trees in Cop are
smaller than 16168 by (5.1). Condition (6.6) is satisfied by (6.31), and since (7/Q*)3 > 50V/¢.

It remains to deal with the components of C \Cas. In the sequel we shall assume that C \Cr #0
(otherwise skip this step and go directly to the definition of 7" and Cy, with p = 0). Thus, by our
choice of Cys, we have

S 0(8) > degg (3, V(M) — % . (6.33)
SeCy

Let Ty, Ty, . . ., Tp be the trees of C\ Cys rooted at the vertices r; € Ch(r) NV (T;) neighbouring 7.
We shall sequentially extend our embedding of Cys to subtrees T/ C T;. Let U; C V(G) be the
union of the images of | JCas U {r} and of T7,..., T/ under this embedding.

Suppose that we have embedded the trees T7, ..., T/ for some i =0,1,...,p— 1. We claim that
at least one of the following holds.

(V1) degg (2, V(Gexp) \ (UUT;)) = 12k
(V2) degg (z,E\ (UUU;)) > 1, or
(V3) deggo (2, L'\ (V(Gexp) UE U U U U; U shadow(ghost(U), 12))) > k.

Indeed, suppose that none of (V1)-(V3) holds. Then, first note that since U C ghost(U) and
since = ¢ shadow(ghost(U), nk/1000), we have

nk
< —. .
degg (7,U) < 1000 (6.34)
Also,
degg, (2, V(MaUMB)) < degg, (z, V(M) UE). (6.35)
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Thus,

k
degq., <ac, Veood \ shadow(ghost(U), 1300))

k
(by (6:54) and (6.35), def of Vyowa) < degre (:p (V(M) UV (Gexp) UE U L) \ (U U shadow(ghost(U), ”))

1000
' nk
+ degGV (:E,Ll%n,k(Gv) \ (H U L )) + m
k
oy 619)) < degg <x, (V(Gexp) UEU L') \ (V(M) U U U shadow(ghost(U), 1300”)

nk  nk
+degg, (2, V(M)) + 100 + 1000

nk : , nk nk nk
y ~(V1), ~(V2), ~(V3), by (6. <3-—+E I:) + E S+ —+ — 4+ ——
(b 2V 20V, 2(VE), by (6.35)) 1000 = o ]) e v(S) 900 100 1000
- M

nk
< Z’U(S) t00
SeC

a contradiction to (6.28).

In cases (V1)—-(V2) we shall embed the entire tree T} | := T;;1. In case (V3) we either embed
the entire tree 717 41 = Tit1, or embed only one vertex T! 11 := rip1 (that will only happen in case
(V3c)). In the latter case, we keep track of the components of Tjy1 — 7541 in the set Cy 41 (we
tacitly assume we set Cy ;41 := () in all cases other than (V3c)). The union of the sets C;; will
later form the set C;. Let us go through our three cases in detail.

In case (V1) we embed T;1 rooted at r; 41 using Lemma 6.5 for one tree (i.e. {165 := 1) with the
following sets/parameters: Higs := Gexp, Unes := U UU;, Uy 5 = Nag (2) N (V(Gexp) \ (U UT;)),
Vi = Vo i= V(Gexp); Ques = 1, (s := p, and Y165 = 7. Note that |[U U U;| < k, that
INGo () N (V(Gexp) \ (U UU;))| = nk/1000 > 32vk/p + 1, that v(T;41) < 7k < pk/4 and that
128y < p?.

In case (V2) we embed T;41 rooted at 741 using Lemma 6.4 for one tree (i.e. 164 := 1) with
the following setting: Hyg4 := G —H, Er64 :=E, Upsa := UUU;, U, = Nag () N(E\ (UUD;)),
Arga = A, Y164 =7, and ep6.4 := €'. Note that |UUU;| < k < Ak, that [Ng (z) V(E\(UUU;))| >
nk/1000 > 2¢'k, and that v(T;41) < 7k < vk/2.

We commence case (V3) with an auxiliary claim.

Claim 6.19.3. There exists a cluster Cy € V such that

nk 4
dege, <5L‘, (Con L)\ <V(Gexp) U U U U; U shadow (ghost(U), 1000))) > ?c .

Proof of Claim 6.19.3. Observe that L' \ (V(Gexp) VEUHU U UU;) C |JV. Furthermore, since
x € |JV, we have

Eq

v

x, L'\ <V(Gexp) UEUU U U; Ushadow (ghost(U), 135(}))] C E(Gp) .
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By Fact 4.8, there are at most 2(272219 clusters C' € V such that degs (z,C) > 0. Using the

assumption (V3), there exists a cluster Cy € V such that

2
degg,, (w (Con L)\ (V(Gexp) UU U U; U shadow (ghost(U) ”k))> > Mk

1000”7 ) 7 1000 2(Q*)2k

(5.1) ¢
= —cC
2

as desired. ]

Let us take a cluster Cy from Claim 6.19.3. We embed the root r;41 of T;41 in an arbitrary
neighbour y of z in (Co N L") \ (V(Gexp) UU U U; Ushadow(ghost(U), #’go)).

Let H C G be the subgraph of G consisting of all edges in dense spots D, and all edges incident
with H'. As by (5.17), y has at most nk/100 neighbours in H\ H', and since y € L’ C Ly, /19 £(Gv)

and y ¢ shadow (U, 17’—0%), we find that

degH(y,v<G>\((Uuwu(H\H’)))>(1+9”)k gy ok

10/)" 1000 " 100
k
>k—|Ui!+%.

Therefore, one of the three following subcases must occur. (Recall that y  E as y € Cy € V.)
(V3a) degg (. E\ (UUT) > %,
(V3b) degg,,, (v, UV \ (UUT:) >, or

(V3c) degq (v, 1) > k — |U;| + &

In case (V3a) we embed the components of T;+1 — 741 (as trees rooted at the children of 7;41)
using the same technique as in case (V2), with Lemma 6.4.

In (V3b) we embed the components of T;11 — ;11 (as trees rooted at the children of r; ;). By
Fact 4.8 there exists a cluster D € V such that

2

nk A ol
d D\NUUU;)) =2 — - . 6.36
egGreg(y7 \ ( )) 6 2(9*)2k > 2 ¢ ( )

We use Lemma 6.7 with input erg7 := €', Brer := v2, Crer := D, Digr := Cy, Xigr = Xre7 =
D\ (UUU;) and Yie7 := Co \ (UUU; U{y}) to embed the tree T;;1 into the pair (Co, D),
by embedding the components of T;;1 — r;+1 one after the other. The numerical conditions of
Lemma 6.7 hold because of Claim (6.19.3) and because of (6.36).

In case (V3c) we set Tz‘/+1 := ;41 and define Cy ;41 as set of all components of Tj11 — 7j41.
Then ¢(Par(UCuiv1) NV(T7,4)) = {y} and
nk
6
When all the trees T1,...,T, are processed, we define 77 := {r} UJCpy U J_; T}, and set
Cy :=UL_, C1;. Thus also (a) is satisfied by (6.37) for i = p, since |T’| = |Up|. This finishes the
proof of the lemma. O

deggy (v, /') > k — |Ui| + (6.37)
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It turns out that our techniques for embedding a tree T' € trees(k) for Configurations (¢2)—(¢5)
are very similar. In Lemma 6.20 below we resolve these tasks together. The proof of Lemma 6.20
follows the same basic strategy for each of the configurations (¢2)—(¢5) and differs only in the
elementary procedures of embedding shrubs of T'.

Lemma 6.20. Suppose that we are in Setting 5.1, and one of the following configurations can be
found in G:

(a) Configuration (02) ((2%)%,5(Q%)%, p?),

(
(b) Configuration (03) ((2%)%,5(€2%)%,~/2,+3/100),
(

(¢) Configuration (o4) (%)%, 5(*)%,~v/2,~4*/100), or

(d) Configuration (o5) (()2,5(2)°,2',2/(2)%, (ohys )
Let (T, 1) be a rooted tree of order k with a (Tk)-fine partition (Wa,Wp,84,8p). Then T C G.

Proof. First observe that each of the configurations given by (a)—(d) contains two sets H” C H and
Vi CV(G) \ H with

mindegg, (H", V1)

5(0%)%k , (6.38)
mindegg, (V1,H") > €'k

Z
>k . (6.39)
For any seed z € W4 U Wp we define T'(z) as the forest consisting of all components of 7' —

(W4 U Wpg) that contain children of z. Throughout the proof, we write ¢ for the current partial
embedding of T" into G.

Overview of the embedding procedure. As outlined in Section 6.1.1 the embedding scheme
is the same for Configurations (¢2)—(¢5). The embedding ¢ is defined in two stages. In Stage 1,
we embed the seeds W4 U Wpg, all the internal shrubs, all the end shrubs of S4, and a part'® of the
end shrubs of Sp. In Stage 2 we embed the rest of Sp. Which part of Sp is embedded in Stage 1
and which part in Stage 2 will be determined during Stage 1. We first give a rough outline of both
stages listing some conditions which we require to be met, and then we describe each of the stages
in detail.

Stage 1 is defined in |W 4 U{r}| steps. First we map r to any vertex in H”. Then in each step we
pick a vertex x € Wy for which the embedding ¢ has already been defined but such that ¢ is not
yet defined for any of the children of z. In this step we embed T'(x), together with all the children
and grandchildren of z in the hub which contains . For each child y € W N Ch(x), Lemma 6.19
determines a subforest 7"(y) C T'(y) which is embedded in Stage 1, and sets C1(y) and Ca(y), which
will be embedded in Stage 2.

The embedding in each step of Stage 1 will be defined so that the following properties hold.

(*1) All vertices from Wy are mapped to H".

(*2) All vertices except for W4 are mapped to V(G) \ H.

in the sense that individual shrubs Sp may be embedded only in part
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Figure 6.8: Stage 1 of the embedding in the proof of Lemma 6.20. Starting from an already
embedded seed x € W4 we extend the embedding (in this order) to

(1) all the children y € Wg of z in the same hub (in grey),

(2) a part T"(y) of the forest T'(y),

(3) all the grandchildren 2’ € W4 of z in the same hub,

(4) the forest T'(z) together with the bordering cut-vertices z* € W4.

(*3) For each y € Wp, for each v € Par(V(|JCi(y))) we have that
degg(¢(v), /') > k + fog — v(T'(1)) -
(*4) For each y € Wp, for each v € Par(V(|JC2(y))) we have that
degg(o(0) H) > 5+ 25 — o (T'(y) L JCi(w) -

In Stage 2, we shall utilize properties (*3) and (*4) to embed 7% = USs — U,ew, T'(v)-
Stage 2 is substantially simpler than Stage 1; this is due to the fact that T consists only of end
shrubs.

The embedding step of Stage 1. The embedding step is the same for Configurations (¢2)—
(05), except for the embedding of internal shrubs. The order of the embedding steps is illustrated
in Figure 6.8.

In each step we select a seed x € W4 already embedded in G but such that none of Ch(x) are
embedded. By (*1), or by the choice of ¢(r), we have ¢(x) € H”. So by (6.38) we have

deggo (¢(z), Vi \U) = 5(2)%k — k. (6.40)

First, we embed successively in |[Wp N Ch(x)| steps the seeds y € Wi N Ch(x) together with
components 7”(y) C T'(y) which will be determined on the way. Suppose that in a certain step we
are to embed y € Wi N Ch(z) and the (to be determined) tree T"(y). Let

2
_ (i) nk
F .= EJOShadOWGVH (ghost(U),lO5> ,

where U is the set of vertices used by the embedding ¢ in previous steps. Since |U| < k, Fact 4.12
gives us that |F| < %k We embed y anywhere in (Ng(é(x)) NVi) \ F, cf. (6.38). Note
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that then (*2) holds for y. We use Lemma 6.19 in order to embed 7"(y) C T'(y) (the subtree T"(y)
is determined by Lemma 6.19). Lemma 6.19 ensures that (*3) and (*4) hold and that we have
H(V(T'(y)) C V(G) \ HL
Also, we map the vertices 2’ € W4 N Ch(y) to H” \ U. To justify this step, employing (*2), it
is enough to prove that
deg(6(y), H') > W] (6.41)

Indeed, on the one hand, we have |IW4| < 336/7 by Definition 3.3(c). On the other hand, we have
that ¢(y) € Vi, and thus (6.39) applies. We can thus embed 2’ as planned, ensuring (*1), and
finishing the step for y.

Next, we sequentially embed the components TofT (). In the following, we describe such an
embedding procedure only for an internal shrub 7', with z* denoting the other neighbour of 7' in
W4 (cf. (¥1)). The case when T is an end shrub is analoguous: actually it is even easier as we do
not have to worry about placing z* well. The actual embedding of T' together with z* depends on
the configuration we are in. We shall slightly abuse notation by letting U now denote everything
embedded before the tree 7.

For Configuration (¢2), we use Lemma 6.5 for one tree, namely T — z*, using the following
setting: Qres := 1,765 := 7, (L5 := p°, Hies = Gexp, Unes := U, and Ufg 5 == (Nag (¢(z)) N
Vi)\U (this last set is large enough by (6.40)). The child of = gets embedded in (Ng, (¢(x))NV1)\U,
the vertices at odd distance from = get embedded in V7, and the vertices at even distance from x
get embedded in V5. In particular, Parp(z*), the parent of x*, gets embedded in V;. After this,
we accomodate x* in a vertex in H” \ U which is adjacent to ¢(Pary(z*)). This is possible by the
same reasoning as in (6.41).

For Configuration (¢3), we use Lemma 6.15 to embed T with the setting v16.15 := 7, 06.15 1=
v2/100,Urg.15 := U and Ut 5 == (Ngg (#(z)) NV1) \ U (this last set is large enough by (6.40)).
Then the child of z gets embedded in (Ng, (¢(z))NV1)\U, vertices of T of odd distance to z (i.e. of
even distance to the root of T') get embedded in Vi \ U, and vertices of even distance get embedded
in V5 \ U. We extend the embedding by mapping z* to a suitable vertex in H” \ U adjacent to
¢(Parp(z*)) in the same way as above.

For Configuration (¢4), we use Lemma 6.16 to embed T with the setting vi6.16 := 7, 016.16 :=
v4/100,Urg.16 := U and Uy 16 := (Ngg(¢(x)) NV1) \ U (this last set is large enough by (6.40)).
The fruit 7 ¢ 5 in the lemma is chosen as Parp(z*). Note that this is indeed a fruit (in T') because
of Definition 3.3 (i). Then the child of = gets embedded in (Ngg (¢(x)) NVi) \ U, the vertex
7 16 = Parp(z*) gets embedded in Vi \ U, and the rest of T gets embedded in (E'UV3)\ U. This
allows us to extend the embedding to z* as above.

In Configuration (05), let W C 'V denote the set of those clusters, which have at least an
m—fraction of their vertices contained in the set U’ := U Ushadowg,,, (U, k/(2*)). We get from
Fact 4.12 that |U’| < 2(2*)*k, and consequently |U’ U|JW| < 4(92*)%k. By (6.40) we can find a
vertex v € (Ng(o(z)) NVy) \ (U UYW).

We use the fact that v ¢ shadowg,,, (U, k/(Q2*)?) together with inequality (5.28) to see that
degg,,, (0, V(Greg) \U) = k/ (2%)3. Now, since there are only boundedly many clusters seen from v
(cf. Fact 4.8), there must be a cluster D € V such that
o2

degg, ., (v, D\U) > 7 ()

D >+ (6.42)
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Let C be the cluster containing v. We have [(CNV;)\U| > ﬁ](ﬂ > ~v3|C| because of (5.29) and
since C' ¢ W. Thus, by Fact 2.1, ((CN V1) \U,D\U) is an 2’ /y3-regular pair of density at least
72/2. We can therefore embed T in this pair using the regularity method. Moreover, by (6.42), we
can do so by mapping the child z of = to v. Thus the parent of z* (lying at even distance to z) will

be embedded in (C'NV;) \ U. We can then extend our embedding to z* as above.

This finishes our embedding of T'(z). Note that in all cases we have ¢(z*) € H” and ¢(V(T)) C
V(G) \ H, as required by (*1) and (*2).

The embedding steps of Stage 2. Fori= 1,2, set Z; := U ¢y, Ch(T"(y)) NUCi(y)-
First, we embed all the vertices z € Z5 in H'. By (*2), until now, only vertices of W4 U Zy are
mapped to H', and using (*4) and the properties (c¢), (k) and (1) of Definiton 3.3, we see that

degg(9(Par(2)), H) > 1oo + 5 — >~ v (TwulJaw)
yeWp
> |Wal + |22 .

So there is space for the vertex z in H' N ¢(Ng(Par(z))).
Next, we embed all the vertices z € Z; in H'. By (*2), until now only vertices of W4 U Zy U Z;
are mapped to H', and by (*3) we have, similarly as above,

degg(¢(Par(2)), H') > [Wal + 22| + | Z1] -

So z can be embedded in H' N Ng(¢p(Par(z))) as planned.

Finally, for z € Z; U Z3, denote by T, the component of C; U Co that contains z. We use
Lemma 6.18 to embed the rest of the rooted tree (T, z). (Note that our parameters work because
of (5.1).) Once all rooted trees (1%, z) with z € Z; U Zy have been processed, we have finished
Stage 2 and thus the proof of the lemma. O

6.5.3 Embedding in Configurations (¢6)—(¢10)

We follow the schemes outlined in Sections 6.1.2, 6.1.4, 6.1.5, and 6.1.6.

Embedding a tree T7; 2 € trees(k) using Configurations (¢6), (¢7), or (¢8) has two parts: first
the internal part of Ty 9 is embedded, and then this partial embedding is extended to end shrubs
of Try 2 as well. Lemma 6.21 (for configurations (¢6) and (¢7)) and Lemma 6.22 (for configuration
(08)) are used for the former part, and Lemmas 6.23 and 6.24 (depending on whether we have (01)
or (©2)) for the latter. Lemma 6.25 then puts these two pieces together.

Embedding using Configurations (¢9) and (¢10) is resolved in Lemmas 6.26 and 6.27, respec-
tively.

Lemma 6.21. Suppose we are in Setting 5.1 and 5.4, and we have one of the following two
configurations:

e Configuration (¢6)(d¢,&,d , 1, 1,0), or

e Configuration (07)(07, 455,€,d’, i1, 1,0),
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with 10°,/4(2%)? < 63 < 1, 102/4(*)3/A < 62 < n343/10°, &' > 10 > 0, and d'urk > 4 - 103
Both configurations contain distinguished sets Vi, Vi C Ag and Vo, V3 C A;.

Suppose that (W, Wg,84,S8B) is a (Tk)-fine partition of a rooted tree (T,r) of order at most k
such that |W4UWpg| < EOL. Let T' be the tree induced by all the cut-vertices Wa UWpg and all the
internal shrubs.

Then there exists an embedding ¢ of T' such that

d(Wa) SVi ¢(Wp) S Vo and ¢(T" — (WaUWp)) C A .

Proof. For simplicity, let us assume that r» € W4. The case when r € Wp is similar. The (7k)-fine
partition (W4, Wg,S4,Sg) induces a (7k)-fine partition in 7’. By Lemma 3.8, the tree T” has an
ordered skeleton (Xo, X1, ..., X,,) where the X; are either shrubs or hubs (X being a hub).

Our strategy is as follows. We sequentially embed the hubs and the internal shrubs in the order
given by the ordered skeleton. For embedding the hubs we use Lemma 6.5 in Preconfiguration (exp),
and Lemma 6.9 in Preconfiguration (reg). For embedding the internal shrubs, we use Lemmas 6.13
and 6.14 if we have Configurations (¢6), and (¢7), respectively.

Throughout, ¢ denotes the current (partial) embedding of (Xo, X1...,X,,). In consecutive
steps, we extend ¢. We define auxiliary sets D; C V(G) which will serve for reserving space for
the roots of the shrubs X;. So the set Z; := {J;;(¢(X;) U D;) contains what is already used and
what should (mainly) be avoided.

Let Wa,; :=WanV(X;), and Wg; := Wp NV (X;). For each y € W4 ; with j < let

Sy = (VaNNg(é(y))) \ Z<i,

except if the latter set has size > k, in that case we choose a subset of size k. This is a target set
for the roots of shrubs adjacent to y.

Also, in the case X; is a shrub, we write r; for its root, and f; for the only other vertex
neighbouring W4 U Wp. Note that f; is a fruit of (X;,r;).

The value h = 6 or h = 7 indicates whether we have configuration (¢6) or (¢7). Define

F; := shadowg_g <Z<i, 51/@) UZs; . (6.43)

Define U; := F; if we have Preconfiguration (exp) (note that in that case we have Configura-
tion (¢6)). To define U; in case of Preconfiguration (reg) we make use of the super-regular pairs

@Y, QY (j € ). Set

) 4) QY|
Ui=Ful J3QY :jey Qi nF|> 21 : (6.44)
In either case, we have |U;| < 2|F;].
Finally, set
k
W, := shadowg_p <U“ 6;) UZs. (645)

We will now show how to embed successively all X;. At each step i, our embedding ¢ will have
the following properties:
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(a)
(b) fo
(c)
(d) Di €A1\ (6(Xi) U Z),
)
)
)

(WA z) W \F and ¢(WB z) C Vo,
or each y € W4 ; with j <4 we have |S, N ¢(X;)| < |Sy N D;| + k3/4,
|Z<z+1‘

e) ¢(X; —r;) is disjoint from (J

]<’L

(
(f

(g

o(f;) € Vo \ W; if X; is a shrub,
¢(X;) C Ay if X; is a shrub.

(We remark that since 7; is not defined for hubs Xj, condition (e) means that ¢(X;) is disjoint
from (J;_; UD; for hubs X;.)

It is clear that conditions (a) and (g) ensure that in step m we have found the desired embedding
for T".

Before we show how to embed each X; fulfilling the properties above, let us quickly derive a
useful bound. By Fact 4.12 and (c), we have that |F;| < 93; k for all i < m. Thus, using |U;| < 2|F}|
and again Fact 4.12 and (c), we get that

38(0%)2

Wil <

k. (6.46)

Now suppose we are at step ¢ with 0 < ¢ < m. That is, we have already embedded all X; with
7 <1, and are about to embed Xj;.

First assume that X; is a hub. Note that if ¢ # 0, then there is exactly one fruit f, with
¢ < ¢ which neighbours X;. Set N; := Ng(¢(f¢)) in this case, and let N; := V(G) for i = 0. We
distinguish between the two preconfigurations we might be in.

Suppose first we are in Preconfiguration (exp). Recall that then we are in Configuration (¢6).

We use Lemma 6.5 to embed the single tree X; with the following setting: (165 :=1, V4 L6.5 =
Vi, VQ,L6.5 = W, Uf6,5 = (NN V)\U; = Iy W)\ F, Ues == U; = Fj, QL65 = 59*
CL6.5 := 06, and Y165 := 7. Note that U} 5 is large enough by (f) for £ and by (5.38) and (5. 42)
respectively. Lemma 6.5 gives an embedding of the tree X; such that ¢(Veyen(X;)) € V1 \ F; and
d(Voaa(X;)) € Vo \ F; , which maps the root of X; to the neighbourhood of its parent’s image. Note
that this ensures (a) and (e) for step i, and setting D; := () we also ensure (c) and (d). Property (b)
holds since V2 N ¢(X;) = 0. Since X; is a hub, (f) and (g) are empty.

Suppose now we are in Preconfiguration (reg). Then let j € ) be such that (V; ﬂQg])) \U; # 0.
Such an index j exists by (f) for ¢ and by (5.38) and (5.42), respectively, if i # 0, and trivially if
i = 0. We shall use Lemma 6.9 to embed X; in (Q; b) Q( )) More precisely, we use Lemma 6.9 with
Argy = ng), Bigg = Qé]), en6.9 =&, dieg =d', ligg = pk, Us :==U;NA, Up := ¢(Wp,<;) N B
(then |Ua| < |A|/2 by the definition of U; and the choice of 7).

Lemma 6.9 yields a (Veven(X;) < Vi \ Fi, Voaa(Xi) < Vp)-embedding of X;, which maps the
root of X; to the neighbourhood of its parent’s image. Setting D; := (), we have (a)—(g).
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So let us now assume that X; is a shrub. The parent y of the root r; of X; lies in W4 4 for some
¢ < i. By (a) for ¢, we mapped y to a vertex ¢(y) € Vi \ Fp. As degq(o(y), V) = dpk (by (5.37)
and (5.41), respectively), and since ¢(y) ¢ Fy, we have

36,k

Syl =
’y’ 4

(6.47)
Using (b) for all j with ¢ < j < ¢, and using that the sets D; are pairwise disjoint by (d), we
see that

|SyNG(XoU. . .UX;1)| = [Syné(Xeu. . UX; 1) < [Syn | Dyl+mk¥* < |Syn () Djl+m-k*%,
<< 0<j<i

Therefore, and as by (d) and (e), the sets ¢(Xo U...X;_1) and [oc,; D; are disjoint except for
the at most m < |[W4 U Wpg| < k%! roots 7; of shrubs X, and since k > 1, we have

1Sy =[Sy Né(XoU...UX; )| +1S,n | Djl—m=2[S,n¢(XoU...UX,; 1) — k7.

0<j<i

Thus,
_ 0.9 (6.47 0.9
15, \ 0K U... U X)) > BB ST 800k BT onk

So for U* := S, \ ¢(Xo U...U X;_1) we have that |U*| > %. If we have Configuration (¢6)
or (07) we use Lemma 6.13 or 6.14, respectively, with input Ure.13—6.14 := Wi, Uf'g 13614 := U™,
Lig13—6.14 := [Wal, 7.6.13-6.14 := 7, the family {P;}r6.13-6.14 := {Sy}yew, ,,j<i> and the rooted
tree (Xj;,r;) with fruit f;. Further, for Configuration (06), set dr6.13 = d¢, Va16.13 = V2 and
V3 1,6.13 := V3 and for Configuration (¢7), set dp6.14 := 07, l16.14 := 1, Y1 16.14 := V2 and Yo 1614 :=
V3. The output of Lemma 6.13 or 6.14, respectively, is the extension of our embedding ¢ to Xj,
and a set D; := Crg13-6.14 € (Vo UV3) \ (W; U@(X;)) for which property (a) (which is empty) and
properties (b)—(g) hold. O

Lemma 6.22. Suppose we are in Setting 5.1 and 5.4 and suppose further we have Configura-
tion (08)(9, 15,1, €2, d1, da, 1, pi2, h1,0), with 2 - 105(Q*)%/A < 6%, § < 4*n*/(10'(Q*)?), dp >
10e2 > 0, dopiotk > 4-103, and max{ey,7/p1} < n?v3d1/(101°(Q*)3). Recall that we have distin-
guished sets Vg, ..., Vy and a reqularized matching N .

Let (WA, Wpg,84,88) be a (Tk)-fine partition of a rooted tree (T,r) of order at most k. Let T"
be the tree induced by all the cut-vertices W4 U Wpg and all the internal shrubs. Suppose that

k
10°

Then there exists an embedding ¢ of T' such that ¢(W4) C Vi, ¢(Wg) C Vy, and ¢(T") C
AgUA;.

o(T') < hy — (6.48)

Proof. We assume that r € W4. The case when r € Wp is similar.

Let K be the set of all hubs of the (7k)-fine partition (W4, Wp,Sa,Sp) of T. For each such hub
K € K set Yi := K UChy/(K). We call the subgraphs Y extended hubs. Set Y := {Yx : K € K}
and W :=V(JY \UK). Since W C V(T"), we clearly have that |[We| < [Wa U Wp|.
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Note that the forest 7" — |J Y consists of the set P of peripheral subshrubs of internal shrubs
of (Wa,Wpg,84,5B), and the set S of principal subshrubs of internal shrubs of (W4, Wpg,S4,Sp).
It is not difficult to observe that there is a sequence (Xg, X1, ..., X,,) such that X; = (M,;,Y;, P;),
M; € § and P; C P for each i < m, and such that we have the following.

(I) Mp =0 and Yj contains r.
(IT) P; are exactly those peripheral subshrubs whose parents lie in Y;.
(ITI) The parent f; of Y; lies in M; (unless i = 0).
(IV) The parent r; of M; lies in some Y; with j <4 (unless i = 0),
(V) Uicn VIM; UY; UUP;) = V(T).

See Figure 6.9 for an illustration.

Legend
BW,UWgs
B We

e other vertices

Figure 6.9: An example of a sequence (Xg, X1, X2, X3,...) in Lemma 6.22.

We now successively embed the elements of X;, except possibly for a part of the subshrubs in
P;. The omitted peripheral subshrubs will be embedded at the very end, after having completed
the inductive procedure we are about to describe now.

We shall make use of the following lemmas: Lemma 6.9 (for embedding hubs), Lemmas 6.10
and 6.7 (for embedding peripheral subshrubs in A'), Lemma 6.14 (for embedding principal subshrubs
in V3UVy).

Throughout, ¢ denotes the current (partial) embedding of 7”. In each step i we embed M; UY;
and a subset of P;, and denote by ¢(X;) the image of these sets (as far as it is defined). We also
define an auxiliary set D; C V(G) which will ensure that there is enough space for the roots of the
subshrubs M, with £ > i. Set

Zi = | J(6(X;) U D).
7<i
Our plan for embedding the various parts of X; is depicted in Figure 6.10, which is a refined version
of Figure 6.5.
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Wei
W, gextended hub Y;
Wgi

part of P;

Figure 6.10: Embedding a part of the internal tree in Lemma 6.22.

Let Wo,; :==Wo NV (Y;) for O=A,B,C. For each y € W ; let

Sy == (VaNNg(e(y))) \ Z<i;

except if this set has size more than k, in which case we choose any subset of size k. Similar as in
the preceding lemma, this is a target set for the roots of the principal subshrub adjacent to y.
Fix a matching involution 9 for AV, and for £ = 1,2 define

ok
Fi(é) = Zi U shadowg)_H (ghosta(Z<i), 8) . (6.49)
We use the super-regular pairs ( (()j), ng)) (j € V) to define
@ () ) g~ 107
Ui:=F7ul QY - jed QY nF| > 21 . (6.50)
We have

;| < 2|F?). (6.51)

Finally, for £ = 1,2 set

ok

Wi(é) = shadow(élH <U,', 2> . (6.52)

We will now show how to define successively our embedding. At each step i, the embedding ¢
will be defined for M; UY; and a subset of P;, and it will have the following properties:

(a) ¢(Way) CVi\F? and ¢(Wg.) C Vo,
(b) (W) € Vo \ FY,

() ¢(fi) € Vo \ (F uw My,
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(d) for each y € W ; with j < i we have |S, N ¢(X;)| < |S, N D;| + 2k3/4,

€ |Z<z+1|

(
(f) Di € V3 \ (¢(Xi) U Z<i),

15
i<i Dj

h) ¢(Xi) € AL UG(Y; U fi),
(i) if P € P; is not embedded in step i then for its parent w € W we have that degq, (¢(w), V3) >
~[6(X:) NV V)|~ T

Note that for (h), since fy is not defined, we assume ¢(fo) = 0.
Before continuing, let us remark that (h) together with (f) implies that at each step i we have

)
)
)
(8) @(Xi\ (V(M;) N Ch(We))) is disjoint from (J
(h)
)

33() 2016 0k
— <

D3.
|Z<iN Aol <3-([Wal +[Wg|) < 3 (6.53)
Also note that by Fact 4.12 and by (e), we have

2 65(Q*)?
IR < (52 ) k, (6.54)

and oy

2 *

W < S0()7, (6.55)

54
By (b) and by (5.47) we have that |S,| > 7%’“. Now, using (d), (f) and (g), we can calculate
similarly as in the previous lemma that at each step ¢ we have

S\ Jo(Xo)| > =~ . (6.56)

<3

Now assume we are at step ¢ of the inductive procedure, that is, we have already dealt with
Xo, ..., X;—1 and wish to embed (parts of) X;

We start with embedding M;, except if i = 0, when we go directly to embedding Yy. We shall
embed M; in V3 U Vy, except for the fruit f;, which will be mapped to V5. The embedding has
three stages. First we embed M; — M;(1 fi), then we embed f;, and finally we embed the forest
M;(t fi) — fi- The embedding of M; — M;(T f;) is an application of Lemma 6.14 analogous to the
case of Configuration (¢7) in the previous Lemma 6.21. That is, set Y] 16.14 := V3, Yo 16.14 := Vi,
let

ULe.14 == Sr; \ U P(X
0<i
where r; lies in W by (IV), and
Urg14 := Fz(2) U Wl(Q) .

5Note that V (M;) N Ch(Wc) contains a single vertex, the root of M;.
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6.5 Main embedding lemmas

Note that 308 .
10°(Q*
< k< k,
|Uvg.14] 5 50
and by (6.56) (which we use for i — 1), also
. 30k
[Ut6.14l 2 3

The family { Py, ..., Pp}16.14 is the same as {Sy}yEUKi We- There is only one tree to be embedded,

namely M; — M;(T f;). It is not difficult to check that all the conditions of Lemma 6.14 are fulfilled.
Lemma 6.14 gives an embedding of M; — M;(T f;) in V3 U Vy C Ay with the property that Par(f;),

the parent of the fruit f;, is mapped to ‘/3\(172-(2) UWZ@)). The lemma further gives a set D’ := Cr6.14
of size v(M; — M;(1 f;)) such that

Sy N ¢(Mi — Mi(1 fi)| < [Sy N D'| + kT

for each y € U;, We5-
Using the degree condition (5.48) we can embed f; to

e\ (EY uw)

(recall that (6.53) asserts that only very little space in V5 is occupied). This ensures (c) for i.
To embed M;(1 f;) — fi we use again Lemma 6.14. The parameters are this time Y7 1,6.14 := V3,
Y2 16.14 := Vi,

Urgaa = (Na(o(fi)) NV3)\ (Z<i U d(M; — M;(1 £i))) , and
Ureaa = Z<i Up(M; — M;(t fi)) U D' .

Note that |[Ufs 14| > % by (5.47), by the fact that ¢(f;) ¢ W"), and as v(T;)+i < 6k/8. The family
{P1,...,Pr}1r6.14 18 {Sy}yGUjQ We.,- The trees to be embedded are the components of M;(1 fi) — fi
rooted at the children of f;. All the conditions of Lemma 6.14 are fulfilled. The lemma provides
an embedding in V3UVy C Ay. Tt further gives a set D" := Cr4.14 of size v(M;(T f;)) — 1 such that

1Sy N o(M;(1 f;) — fi)| < |Sy N D"| + KO

for each y € |J._, We;. Then D; := V3N (D" U D") is such that for each y € J._, W5,

1< 7<i
1S, N o(M;)| < |S, N D;| + 2k%7 (6.57)

as Sy C V3 and ¢(f;) ¢ V3. Note that this choice of D; also ensures (e) for i, and we have by the
choices of Ufg 1, and Ure.14 in both applications of Lemma 6.14 that

D; CVs\ (6(Mi)UZs;) and  ¢(X; \ (V(M;) NCh(We))) N | D = 0. (6.58)

7<t

We now turn to embedding Y;. Our plan is to use first Lemma 6.9 to embed Y; \ W¢ in
(Q(()] ), ng )) for an appropriate index j. After that, we shall show how to embed W¢ ;.
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6.5 Main embedding lemmas

If i = 0 then take an arbitrary j € ). Otherwise note that by (III), the parent f; of the root
of Y; lies in M;. Note that f; is a fruit in M;. Let j € Y be such that (Ng(o(fi)) N ng)) \U; # 0.
Such an index j exists by (5.46) and the fact that ¢(fi) ¢ W 2 by (c) for i.

We use Lemma 6.9 with AL69 = Ql s BLGQ = QO , €L6.9 ‘= &2, dL69 = d2, €L69 = Mgk
Uy :=U; N Argg, U := Z.; N Brgyg. By the choice of j and the definition of U;, we find that
Uy, is small enough, and using (6.53) we see that Up is also small enough. Lemma 6.9 yields
a (Veyen(Y; — We) — Vi \ F ,Voad(Yi — We) < Vp)-embedding of Y; — We. We clearly see
condition (a) satisfied for i.

We now embed successively the vertices of the set We; = {wy : £ = 1,...,|W¢,|}. By the
definition of the set W, we know that the parent = of wy lies in Wy ;. Combining (5.45) with the

fact that ¢(z) € Vi \FZ@ by (a) for i, we have that
76k
N (62,12 \ (FV\ Za)) | = 5

Thus by (6.53) and since Vo C A, we can accommodate wy in Vo '\ Fi(l). This is as desired for (b)
in step i.

We now turn to P;. We will embed a subset of these peripheral subshrubs in A/. This procedure
is divided into two stages. First we shall embed as many subshrubs as possible in N in a balanced
way, with the help of Lemma 6.10. When it is no longer possible to embed any subshrub in a
balanced way in A/, we embed in A/ as many of the leftover subshrubs as possible, in an unbalanced
way. For this part of the embedding we use Lemma 6.7.

By (II) all the parents of the subshrubs in P; lie in W¢;. For w, € W, let P;, denote
the set of all subshrubs in P; adjacent to wy. In the first stage, we shall embed, successively for
Jj=1,...,|Wcyl, either all or none of P; ; in a balanced way in N. Assume inductively that

gb( U Pi,p> is (7k)-balanced with respect to N. (6.59)
p<j

Construct a regularized matching N; absorbed by N as follows. Let N, := {(X],X%)
(X1,X2) € N}, where for (X1,X2) € N we define (X7, X}) as the maximal balanced unoccu-
pied subpair seen from ¢(w;), i.e., for b = 1,2, we take

X} C (Xp N NG, (¢ o(|JPip) U 8(x0)

p<j 0<i

maximal subject to | X{| = |X5|. If [V(N)| > 1079* then we shall embed P; ;, otherwise we do not
embed P; ; in this step. So assume we decided to embed P; ;. Recall that the total order of the
subshrubs in this set is at most 7k. Using the same argument as for Claim 6.19.1 we have

4(9*)2
k.

(U{X UY : (X,Y) € N, degg, (6(w;), X UY) > 0}] <
Thus, there exists a subpair (X1, X5) € N; of some (X1, X2) € N with

2
X1l S wresk P
= 2.7 108(0*)3
] 7 gy 105(@)

(6.60)
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6.5 Main embedding lemmas

In particular, (X{,X}) forms a %—regulat pair of density at least d;/2 by Fact 2.1. We

use Lemma 6.10 to embed P; j in Myg.10 := {(X], X3)}. The family {fcp}re.10 consists of a single
number f(x: y;) which is the discrepancy of |, ; ¢(Pi) with respect to (X1, X2). This guarantees
that (6. 59) is preserved. This finishes the j-th step. We repeat this step until j = |W¢ |, then we
go to the next stage.

Denote by Q; the set of all P € P; that have not been embedded in the first stage. Note that
for each Q € Q;, with Q € P;j, say, and for each (X1, Xa) € N there is a by, x,) € {1,2} such
that for

0i= U (Ko, NN (0(w) )\ | 6l Pip) U 6(X0)

(Xl,XQ)EN p<j (<1

we have that

n’k
107Q*
The fact that O; is small implies that there is an N-cover such that the Greg-neighbourhood of w;
restricted to this cover is essentially exhausted by the image of T".

0;] < (6.61)

In the second stage, we shall embed some of the peripheral subshrubs of Q;. They will be
mapped in an unbalanced way to N'. We will do this in steps j = 1,...,|W¢;|, and denote by R;
the set of those P C Q; embedded until step j. At step j, we decide to embed P; ; if P; ; C Q; and

ot (803, V)V oUP\ @) ~ Rl > Tt (6.62)
Let ) ,YZWQ

N = {(X,Y) eEN  |(XUY)NZ,| < 1()9(Q*)Q|X|} )
As by (b) we know that w; was embedded in V5 \ Fi(l), we have

. 109(0*)2
2-10°)* ok _ 1t (6.:63)

degi, (9(w3). VINAN)) € =5 7 T < {7

Using (6.61), (6.62) and (6.63), similar calculations as in (6.60) show the existence of a pair
(X,Y) € N with

SIX Uy,

degg,., (d)(w]) (XUY)\(OjU¢ UP \ Qi) )—‘ XUY)neo UR] 1 ’/108(9*)

Then by the definition of A, and setting ZL := ghost, (Z«;) we get that

e, (6(w). (XU (22,00;u0 (UPi\Q))) - [(XUY) 16U Rs-)|
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6.5 Main embedding lemmas

By the definition of Oj, all of the degree counted here goes to one side of the matching edge (X,Y),
say to X. So

2,2

degc,, (6(w), X\ (25,00 (UP\ QUUR))) = [V nolJR;-0)| > %pﬂ
(6.64)
> 124X + 7k
dq
(6.65)
We claim that furthermore,
2,.2
‘Y\ (Z;. U JPi\ QiU URj_l))‘ > Wm > 12%|Y\ +rk . (6.66)

Indeed, otherwise we get by (6.64) that

2,2
+ . . + . . bn
0\ (25 uelUP@))] > [\ (22 000U P )] + gl X1
which is impossible by (6.59) and since |X| > u1k.
Hence, by (6.65) and (6.66), we can embed P; ; into the unoccupied part (X,Y’) using Lemma 6.7
repeatedly.'6

Note that if some P; ; has not been embedded in either of the two stages, then the vertex
w; must have a somewhat insufficient degree in A/. More precisely, employing (6.62) we see that

degg,, (6(w;), V(N)) — [¢(X;) N V()| < TE. Combined with (5.51), we find that

n?k

deggy, ($(w;), Va) 2 b — [¢(X:) NVIN)| = 155 »

in other words, (i) holds for i.

This finishes step ¢ of the embedding procedure. Recall that the sets V3 and V(N) are disjoint.
Hence, by (a) and (b), the principal subshrubs are the only parts of 7" that were embedded in V3
(and possibly elsewhere). Thus, using (6.58), we see that (f), (g) and (h) are satisfied for i. Also,
by (6.57), (d) holds for 1.

After having completed the inductive procedure, we still have to embed some peripheral sub-
shrubs. Let us take sequentially those P € P which were not embedded. Say w is the parent of P.
By (i) we have

172k‘ (6;8) 7]2/{7

degg, (6(), Vi \ Im(9)) > b — [Im(9) 1 V)| = [Im(e) Vil = g > T

An application of Lemma 6.14 in which Y1 1614 := V3, Yo 614 := Vi, Ure.1a := Im(¢), U 14 :=
Ngp (p(w)) NV \ Im(¢p), and { P, ..., Pr}re.14 := 0 gives an embedding of P in V3 U Vy C A;.
By conditions (a), (b), (c) and (h) we have thus found the desired embedding for 7". O

16Recall that the total order of Pi,; is at most Tk.
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6.5 Main embedding lemmas

Lemma 6.23. Suppose we are in Setting 5.1 and 5.4, and that the sets Vo and Vi witness Pre-
configuration (V1)(2n%k/103,h). Suppose that U C Ag U A;. Suppose that {xj}§:1 C W and
{yj}glzl C Vi are sets of distinct vertices.'” Let {(T},r;) 521 and {(Tj’, 1";) ﬁlzl be families of rooted
trees such that each component of Tj —r; and ofT]{ — r} has order at most Tk.

If

h 0%k
)< = — .
%:U(TJ) S92 71000 (6.67)
/ 772]€
zjjv(Tj) + ;U(Tj) <h= 1505 > ond (6.68)
U+ o(Ty) + > o(T) <k, (6.69)
J J

then there exist (rj = x;, V(Tj)\{r;} = V(G)\U)-embeddings of Tj and (r; — y;, V(Tj)\{r;} =
V(G)\ U)-embeddings of T in G, all mutually disjoint.

Proof. The embedding has three stages. In Stage I we embed some components of T; — r; (for
all j =1,...,¢) in the parts of (M4 U Mp)-edges which are “seen in a balanced way from x;”.
In Stage II we embed the remaining components of T — r;. Last, in Stage III we embed all the
components 77 — 1} (for all j =1,...,¢).

Let us first give a bound on the total size of (M 4 UM p)-vertices C € V(MaUMp), C C UV
seen from a given vertex via edges of Gp. This bound will be used repeatedly.

Claim 6.23.1. Let v € V(G). Then for U := {C € V(IMaUMp) : C CUV,degg, (z,C) > 0} we
have

2(00)2k
’Uu‘ < (WQ) ,and (6.70)
2(0%)2k
< .
U - (6.71)

Proof of Claim 6.23.1. Let U C V be the set of those clusters which intersect Ng,(x;). Using
the same argument as in the proof of Claim 6.19.1 we get that || JU| < 2(97;2)%, i.e. (6.70) holds.
Also, (6.71) follows since M4 U Mp is (g, d, wc)-regularized. O

Stage I: We proceed inductively for j = 1,...,£. Suppose that we embedded some components
Fi,...,Fj_1 of the forests Th —r1,...,Tj_1 — rj—1. We write F;_1 for the partial images of this
embedding. We inductively assume that

F;_1 is Tk-balanced w.r.t. My U Mp. (6.72)
For each (A4, B) € M U Mp with degg, (z;,(AU B) \ E) > 0 take a subpair (4", B'),

A C (A N NGDUGV (xj))m \ Fj—l and B’ C (B N NGDUGV (xj))rz \ Fj—l )

Y That is, {z;}oy U{y; Yy = £+ 0.
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6.5 Main embedding lemmas

such that
|A'| = |B'| = min {|(AN Neapuay (€)' \ Fj-al, [(B N Nepuay (25)) \ Fj-a]} .
These pairs comprise a regularized matching N;. (Pairs (A, B) € M4 U Mp with
degp (5, (AU B) \ E) = 0

are not considered for the construction of Nj.)
Let M :={(A",B) e N : |A'| > aoA|}, for

. 32

’ 1010(@*)2'
By Fact 2.1 M, is a (2¢/c, d/2, amc)-regularized matching.
Claim 6.23.2. We have |[V/(M;)| = [V (Nj)| — 1K,

Proof of Claim 6.23.2. By (6.70), and by Property 4 of Setting 5.1, we have

2(0%)%k
VM) = VNG —a-2- R
O
Let F; be a maximal set of components of T} — r; for which
n’k
v(Fj) < [V(IM;)| = 109 ° (6.73)
Observe that if F; does not contain all the components of T; — r; then
3k 203k
v(Fj) = [V(Mj)] - 109 Tk > [V(M;)] - 09 (6.74)

Lemma 6.10 yields an embedding of F; in M. Further the lemma together with the induction
hypothesis (6.72) guarantees that the embedding can be chosen so that the new image set Fj is
Tk-balanced w.r.t. M4 U Mp. We fix this embedding, thus ensuring (6.72) for step . If F; does
not contain all the components of T — r; then (6.74) gives

203k

V(M) \ Fj| < 100 (6.75)

After Stage I: Let N* be a maximal regularized matching contained in (M4 UM p)'? which avoids
Fy. We need two auxiliary claims.

Claim 6.23.3. We have

3k
maxdegGD <Vb U Vl,V(MA UMBNQ \ (V(N*) UFZUE)> < ?17@ .
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Proof of Claim 6.23.3. Let us consider an arbitrary vertex x € VU V4. By (6.71) the number of

(Ma UMp)-vertices C C [JV for which degg (z,C) > 0 is at most 2(322?’“.
Due to (6.72), we have for each (M4 U Mp)-edge (A, B) that
‘(AUB)” \ (V(V*) qu)] <k (6.76)

Thus summing (6.76) over all (M4 U Mp)-edges (A, B) with degg, (z, (AU B)\E) > 0 we get

4(0%)2k

-7k .
y2me ’

degg, (a:, VIMAUMB)2\ (VN UF,U IE)> <

The claim now follows by (5.1). O

Claim 6.23.4. Let j € [{] be such that F; does not consist of all the components of T; — r;. Then
there exists an N*-cover &; such that degq, (z;,J X)) < %.
Proof of Claim 6.23.4. First, we define an (M4 U Mp)-cover R; as follows. For an (M4 U Mp)-
edge (A, B) let R; contain A if

(AN Napuay (%'j))[2 \ Fj—l‘ < (BN Napuay (mj))m \ Fj—1’ ]

and B otherwise. Observe that by the definition of N, we have

degg, (zj,URj \ V(Nj)) —0. (6.77)

Also, we have VIN*)NUR; NV(M;) C V(N*) NV (M;) € V(M;)\ F;. In particular, (6.75)
gives that

)V(N*)OURjﬂV(Mj)‘ < (6.78)

Let X; be the restriction of R; to N*. We then have

degg, (fL’j, UXJ) = degg,, (xj, V(N*)N URJ>
ov o < degg,, (25, VN N Ry N VIMy)) + degay, (25, VING) \ V(M)

303k
109 °

(by (6.78), Claim 6.23.2) <

For every j € [{] we define N C N* as those N*-edges (A, B) for which we have

(AuB)\| X)) nE=9.

Stage II: We shall inductively for j = 1,...,¢ embed those components of T; — r; that are not
included in Fj; let us denote the set of these components by K;. There is nothing to do when
K; =0, so let us assume otherwise.

We write L := {C € V : C C L,,(G)}. Let K € K; be a component that has not been
embedded yet. We write U’ for the total image of what has been embedded (in Stage I, and
Stage II so far), combined with U. We claim that z; has a substantial degree into one of four
specific vertex sets.
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Claim 6.23.5. At least one of the following four cases occurs.
(U1) degg,, (2, VN \UA;) = U/ 0 VNG| > Tk,
(U2) degg,, (x;,E\U") > %k,
(U3) deggy (2, V (Gexp) \U") > I,
(U4) degg,, (2, UL\ (Ly UV (Gaxp) UT")) > Tk
Proof. Write U” := (U')I2 = U’ \ U. By (5.30), we have
L < doag (07, V2,)

< degg, (2, VIV 2\ J ) + deggy, (25, B2\ (VNG UV (Gep) U X))

+deggy (27 V(Gerp)) + deggy (25 JL\ (Ly UV (Cerp) UVIN)))

+ degg, (25, V(MaUMp)2\ (VN UE)) + degg, (5, %))
oz coms < deggy, (2, VN A& ) = [0 VNG|

+ degg, (5 B\ (V) U4 UU") ) +deggy, (5 V (Gerp) 2\ U”)

+ degGD (xj’ U L \ (L# U V(Gexp) U V(./\/’]*) U U”))

47]3k "
The claim follows since |U”| < 4 — 1’702—()% by (6.67). O

We now briefly describe how to embed K in each of the cases (U1)-(U4).

e In case (U1) recall that each (M 4UM p)-edge contains at most one N -edge. Thus by (6.70)
we get that there is an (M4 U Mp)-edge (A, B) with

] ) kP

dege, (25, (VN N (AUB)\J ) - IVN)HNU'N(AUB)| > %.Q(Q*)Qk.,A\_ (6.79)
Let us fix this edge (A, B), and let (A’, B) be the corresponding edge in V. Suppose without
loss of generality that B € Xj. We can now embed K in (A’, B’) using Lemma 6.7 with the
following input: Cre7:= A’, Drs7 := B, X167 := A\ U', X{s 7 := Nap (25, A\ U'), Y167 :=
B\U ener = S0 867 = d/6. With the help of (6.79), we get that

2,2
el Al >45L6.7’A/‘ ‘

min{ X167, Y67} = [ X167 = 410402 ~ “Bros

e In Case (U2) we embed K using Lemma 6.4 with the following input: e6.4 := €', Upgq :=U’,
Utes = Nep(zj, E\U'), £ :=1.
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e In Case (U3) we embed K using Lemma 6.5 with the following input: Hi65 := Gexp, Vi 165 :=
Vares = V(Gexp), ULes := U, Ufgs := N, (27, V(Gexp) \ U'), Ques := 1, (Les = p,

lres =1
e In Case (U4) we proceed as follows. As degq (7, Veon) < ’1727]; (cf. Definition 5.12), we have
/ 2772k
degy (2 T\ (L UV(Gop) UV UTY)) > 505

As for (6.79), we use (6.70) to find a cluster A € L with

degg (2, A\ (L UV(Gexp) U V. UU’))>2n2k- g -|A[:ﬂ-1A\ (6.80)
G W # P/ 7105 2(0%)% 105(Q9)2

Recall that by the definition of Ly and V_.g (see (5.7) and (5.11)), we have that

mindegq (A\ (Ly U Vo), V(G) \H) > (1 + 4377)1{: :

Thus, for the set
A* = (NGD (33]) N A) \ (L# @) V(Gexp) uvV.gUu U’)
at least one of the following subcases must occur:

(Uda) For at least §|A*| vertices v € A* we have deggy (v, E\U') > %

(U4b) For at least 1|A*| vertices v € A* we have degg,,, (v, UV\U) > %

In case (U4a) we embed K using Lemma 6.4. The details are very similar to (U2). As
for case (U2b), let us take an arbitrary vertex v € A* with degg, (v, UV \U') > @ In
particular, using (6.70), we find a cluster B € V with

2
' n
degg, ., (v, B\U) > 10(9*)2‘B| . (6.81)
Map the root rx of K to v and embed K — 7 in (A, B) using Lemma 6.7'% with the
following input: CLG.? = B7 DL6.7 = AvXL6.7 = B\U/,YL6_7 = A\U/, XItG.? = NGreg (U, B\
U"), Bre.r = v°n/(10(2%)2),e67 := €. By (6.80) and (6.81) we see that X167, Y167 and
X[ 7 are large enough.

Stage III: In this stage we embed the trees {T]’ 5,:1. The embedding techniques are as in Stage II.
The cover F' from Definition 5.12 plays the same role as the covers X in Stage II. Observe that F’
is universal whereas the covers X; are specific for each vertex z;. A second simplification is that in
Stage III we use the regularized matching (M4 U Mp)!? for embedding (in a counterpart of (U1))
instead of N7

Again we proceed inductively for j = 1,..., ¢ with embedding the components of T]’ — 7“3-, which
we denote by IC;. Let K € IC;- be a component that has not been embedded yet. We write U’ for
the total image of what has been embedded (in Stage I, II, and Stage III so far), combined with U
and let U” = U’ N Ay. We claim that y; has a substantial degree into one of four specific vertex
sets.

18Lemma 6.7 deals with embedding a single tree in a regular pair, whereas K — rx has several components. We
therefore apply the lemma repeatedly for each component.

64



6.5 Main embedding lemmas

Claim 6.23.6. At least one of the following four cases occurs.

(UY) dege, (4, V((MaUMgp)2)\ (EUUF))
— " (UF U(V((MaUMp))\E)| > T,

(U2)) degg, (v, E\U") > Ik,
(U3) deggy (4, V(Gewp) \ U') > Tt
(U4) deggy, (45 UL\ (L UV (Gexp) UT")) 2 Tk
Proof. As y; € V1, we have that
h < deggg (y7, V)2 )
< deggy, (15, VIMaUME)2)\ (BUV (Gexp) U F)) + degy, (3B \ (V(Gexp) U F)
+deggy (43, | F) + degay (43 L2\ (g UV (Gexp) UV (Ma U Mp))
+ degag (17 V(Gexp) ) + degy (7 V(Ma U M)\ V((MAUME)?))
tviss < deggy, (1 VIMAUME))\ (EUV (Gexp) U F))
— | e (UF 00V (Ma U M) )\ B)) \ V(G|

+deggy, (15 E\ (U UV (Goxp) U F)) + deggy (17, V(Gerp)\ U”)
2%k 0’k
10° 1%

+deggy (13 JLP\ (L UV(Gorp) UV (M4 UMp)UU") ) + +1U"].
The claim follows since [U”| < 3 |T] + 32, [T/ < h— k.
L]

Cases (U1')—(U4’) are treated analogously as Cases (U1)—(U4).
O

Lemma 6.24. Suppose we are in Setting 5.1 and 5.4, and that the sets Vo and Vi witness Precon-
figuration (V2)(h). Suppose that U C Ag U Ay and |U| < k. Suppose that {xj}le C VUV are
distinct vertices. Let {(Tj,rj)}§:1 be a family of rooted trees such that each component of Tj — r;
has order at most k.

If520(Ty) < h — n%k/1000 and |U| + > v(Tj) < k then there exist disjoint (rj — x;, V(Tj) \
{rj} = V(G)\ U)-embeddings of T; in G.

Proof. The proof is contained in the proof of Lemma 6.23. It suffices to repeat the first two
stages of the embedding process of that proof. In that setting, we use hrgo3 = 2h. Note that the
condition {z;} C V; in the setting of Lemma 6.23 gives us the same possibilities for embedding as
the condition {z;} C Vo UV in the current setting (cf. (5.30) and (5.33)). O

Lemma 6.25. Suppose we are in Setting 5.1 and 5.4, and at least one of the following configurations
occurs:
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6.5 Main embedding lemmas

. 3 5 v 33
e Configuration (06)(1012( SOLL Am, 2L 329*, 277104, 5103 1),
3.3 21/ 3 3
e Configuration (07)(W, 56> 47, 55 329*, 5501 5103 1Y), o
c tion (o8) (ool M e gr 4 p pime hi,h
e Configuration (08)(5t 15(Q*)5) 7 4007 pp 2 =7 7329*’ 2k =2104’ 1,h).

Suppose that (Wa, Wg,S4,SB) is a (Tk) ﬁne partition of a rooted tree (T, r) of order k. If the total

order of the end shrubs is at most h — 2= °k and the total order of the internal shrubs is at most

103
h1 210§,thenTCG

Proof. Let T' be the tree induced by all the cut-vertices W4 U Wg and all the internal shrubs.
Summing up the order of the internal shrub and the cut-vertices, we get that v(T") < hy — %.
Fix an embedding of 7" as in Lemma 6.21 (in configurations (¢6) and (¢7)), or as in Lemma 6.22
(in configuration (¢8)). This embedding now extends to external shrubs by Lemma 6.23 (in Pre-
configuration (©1), which can only occur in Configuration (¢6) and (¢7)), or by Lemma 6.24 (in
Preconfiguration (©2)). It is important to remember here that by Definition 3.3(1), the total order

of end shrubs in Sg is at most half the size of the total order of end shrubs. O

The next lemma completely resolves Theorem 1.2 in case of Configuration (¢9).

Lemma 6.26. Suppose we are in Setting 5.1 and 5.4, and assume we have Configuration (¢9)(0, %,
h17h2,€1,d1,u1,€2,d2,u2) with do > 10e9 > 0, 4- 103 < d2,u,27'k, max{dl,T/ul} < ")/2772/(4
107(Q%)2), d?2/6 > &1 > 7/u1 and 5k > 103/7.

Suppose that (W4, Wp,Sa,SB) is a (Tk)-fine partition of a rooted tree (T,r) of order k. If the
total order of the internal shrubs of (Wa, Wg,Sa,SgB) is at most hy — (2)5 , and the total order of

the end shrubs is at most hy — 2?015“ then T C G.

Proof. Let Vo, Vi, Vo, N, {Q(()]), Qlj }jey and F' witness (09). The embedding process has two
stages. In the first stage we embed the hubs and the internal shrubs of T'. In the second stage
we embed the end shrubs. The hubs will be embedded in V; U Vi, and the internal shrubs will be
embedded in V(N). Lemma 6.23 will be used to embed the end shrubs.

The hubs of (W4, Wpg,Sa,Sp) are embedded in such a way that W4 is embedded in V4 and Wp
is embedded in V. Since no other part of T" is embedded in VyU V7 in the first stage, each hubs can
be embedded greedily using the minimum degree condition arising from the super-regularity of the
pairs {(Q(()]), gj))}jey using the bound on the total order of hubs coming from Definition 3.3(c),
and using Lemma 6.9 with the following input: erg9 := €2, dig9 := do, f16.9 := usk, U4 U Up is
the image of the seeds W4 U Wp embedded so far and {Arg9, Breo} := {Q(()]) (])} where j € Y
is arbitrary for the first hub, and for all other hubs P has the property that

Nep (¢(Par(P))) N QY \ Ua # 0.

The existence of such an index j follows from the fact that
¢(Par(P)) € Vs, (6.82)

together with condition (5.53). We shall ensure (6.82) during our embedding of the internal shrubs,
see below.
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6.5 Main embedding lemmas

We now describe how to embed an internal shrub 7% € S4 whose parent u € W4 is embedded
in a vertex z € Vi. Let w € V(T™) be the unique neighbour of a vertex from Wy \ {u} (cf.
Definition 3.3(h)). Let U be the image of the part of 7' embedded so far. The next claim will be
useful for finding a suitable AN-edge for accommodating 7.

Claim 6.26.1. There exists an N-edge (A, B), or an N-edge (B, A) such that
min {|Ng, (z) N Va N (A\U)|,|B\U|} = 100d: |A| + Tk .

Proof of Claim 6.26.1. For the purpose of this claim we reorient A so that Vo(N) C |JF'.
Suppose the claim fails to be true. Then for each (4, B) € N we have |Ng, (z)NVanN(A\U)| <
100d1|A| + 7k or |[B\ U| < 100d;|A| + k. In either case we get

NGy (2) N Van A| — |U N (AU B)| < 100d;|A| + 7k . (6.83)
We write S := | {V(D): D € D,z € V(D)}. Combining Fact 4.3 and Fact 4.4 we get that

2(0°)2k
v

5] < (6.84)

Let us look at the number

A= Y (INgp(x)NVaNAl—[UN(AUB)) . (6.85)
(A,B)eN

For a lower bound on A, we write A = [Ng, () N Va| — [UNV(N)|. (Note that Vo C V(N) as we
are in Conﬁguration (¢9).) The first term is at least h1 by (5.52), while the second term is at most
hi — 105 by the assumptions of the lemma. Thus A >

For an upper bound on A we only consider those N —edges (A, B) for which Ng, (z)NA # 0. In

that case A C S (cf. 3 of Setting 5.1). Thus, since N is (&1, d1, u1k)-regularized we get that

S
(A B) €N s Napn A £ 0} < 120 (6.80)
1
Thus,
AS > (NG (z) NVan Al = [UN (AU B)|)
(A,B)EN Ng., (z)NA#D
S
(by (6.83), (6.86) < 100d1|S| + uﬂ{;
pik
~ Qk
(by (6.84)) 105 ,
a contradiction. This finishes the proof of the claim. 0

By symmetry we suppose that Claim 6.26.1 gives an N-edge (A, B) such that min {|N¢,, () N

N(A\U)|,|B\U|} >100d|A| + 7k. We apply Lemma 6.7 with input Ce7 := A, Dyg7:= B
X167 = XE6.7 = NGD(x) NnVeN (A \ U), Yig7:= B \ U, ecLe7:= €1, BLe.7 :i= d1/3 Then there
exists an embedding of 7% in V(N') \ U such that w is embedded in V5. This ensures (6.82).
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6.5 Main embedding lemmas

We remark that there may be several internal shrubs extending from u € Wy. However
Claim 6.26.1 and the subsequent application of Lemma 6.7 allows a sequential embedding of these
shrubs. This finishes the first stage of the embedding process.

For the second stage, i.e., the embedding of the end shrubs of (W4, Wp,S4,Sp), we first recall

that the total order of end shrubs in S4 is at most hy — 2717%,

Sp is at most %(hg — 2717%];) by Definition 3.3(1). The embedding is a straightforward application of
Lemma 6.23. O

and the total order of end shrubs in

The next lemma resolves Theorem 1.2 in the presence of Configuration (¢10).

Lemma 6.27. Suppose we are in Setting 5.1. For every n',d’, > 0 there exists a number & > 0
such that for every v > 0 satisfying
7,’/l//
20082
there exists a number kg such that the following holds for each k > kq.
If G is a graph with Configuration (010)(¢,d’,v'k,Qk,n’) then each tree of order k is contained

mn G.

> T (6.87)

Proof. We give a sketch of a proof, following [PS12]. The main difference was indicated in Sec-
tion 6.1.6.

Suppose we have Configuration (¢10)(¢,d’,v'k,Qk,n’), and are given a rooted tree (T,r) of
order k with a (7k)-fine partition (W4, Wp,S4,Sp) given by Lemma 3.5. By replacing £* by
L*\ V(M),! we can assume that £* and V(M) are disjoint.

For each shrub F' € S4 U Sp, let xp € V(F) be its root, i.e., its minimal element in the
topological order. If F' is internal then we also define yr as its (unique) maximal element that
neighbours W,4. We can partition the regularized matching M and the set £* into two parts:
MU LY and Mp U LY so that the partition satisfies

n'k

degg (v, V(M) U L) = v(Sa) + - and (6.88)
degs (w,V(Mp) U UE*B) > v(Sg) + 77;’“ ; (6.89)

for all but at most 2¢|A| vertices v € A and for all but at most 2&|B| vertices w € B. To see this,
observe that the nature of the regularized graph allows us to treat?’ conditions (6.88), (6.89), or
that of Definition 5.21(b) in terms of average degrees of vertices in A and B, rather than in terms
of individual degrees.?! If A and B were connected to each cluster X € £* U V(M) by regular
pairs of the same density, say dx, it would suffice to split £* and M in the ratio v(S4) : v(Sg). In
the general setting, this can also be achieved, as was done in [PS12, Lemma 9]. Let ha z+, hp g+,
ha,m, and hp aq be the average degrees of vertices of A and B into L, L}, Ma,Mp.

We will now use the regularity to embed the shrubs and the seeds in G. We start with mapping
to A or B (depending on whether r € Wy or r € Wp), and proceed along a topological order on T'.
We denote the partial embedding of T" at any particular stage as ¢. The vertices of W4 are mapped
to A, the vertices of Wp are mapped to B. As for embedding the shrubs, initially we start with

19This does not change validity of the conditions in Definition 5.21.
2%up to a small error
2IThis is also a key property in the classical dense setting of the regularity lemma.
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6.5 Main embedding lemmas

embedding the shrubs of S4 to M4 (we say that A is in the M-mode), and embedding the shrubs
of Sp to Mp (B is in the M-mode). By filling up the M-edges with the shrubs as balanced as
possible we can guarantee that we do not run out of space in M 4 before embedding S4-shrubs of
total order at least ha g — 7'k/100. An analogous property holds for embedding Sp-shrubs. We
omit details and instead refer to a very similar procedure in Lemma 6.26.%2

At some moment we may run out of space in M 4, or in Mp. Say that this happens first with
the matching M 4. Let & C Sj be the set of shrubs not embedded so far. We now describe
how to proceed when A is in the L*-mode. In this mode, we will not embed an upcoming shrub
F € &3, but only reserve a set Up, with |Up| < v(F) which serves as a reminder that we want
to accommodate F later on. Suppose that the parent Par(F) € Wy of F has been mapped to a
typical®® vertex z € A already. We have

'k 'k

degs(z, UEZ) > v(S)) + 100 = Z Up| + 100
F/

where the sum ranges over the already processed S%-shrubs F”. Consequently, there is a cluster

X € V such that x|
. AR
deg; (z X\ 9 Up ) > 15 (6.90)

Let us view I’ as a bipartite graph, and let ag be the size of its colour class that contains xp. Let
Ur be an arbitrary set of (Nz(2) N X)\Up Upr of size ap, and also let us fix an image ¢(zr) € Up
arbitrarily. If F' is an internal shrub, we further define ¢(yr) € Up \ {¢(xp)} arbitrarily. At this
stage we consider F' as processed.

Later, of course, also B can switch to the £*-mode as well. At that moment, we define S}, and
start to only make reservations Ux in clusters of L} instead of embedding shrubs K € Sp.

After all shrubs of S U S5 have been processed we finalize the embedding. Consider a shrub
F € 8% US§. Suppose that Up C X for some X € V. We use Definition 5.21(c) to find a cluster
Y such that

’Y N (lm(¢) U UF’ yet unembedded UF/) 77/
Y] T 1000

As ¢(xr) and ¢(yr) are typical?*, we can additionally require that

d(X,Y) >

dega(d(zrp),Y),dega(d(yr),Y) = (d(X,Y) — VE)|Y].

Therefore, the regularity method allows us to embed F' in the pair (X,Y’) avoiding the already
defined image of ¢, and the sets Ups corresponding to yet unembedded shrubs F’. The fact that
the threshold in (6.90) was taken quite high (compared to the size of the shrubs, see (6.87)) allows
us to avoid atypical vertices. We also need this embedding to be compatible with the existing
placements ¢(zr) and ¢(yr). In particular, we need to find a path of length distp(xp,yr) from
é(xr) to ¢(yr). Here, it is crucial that distp(zp, yr) > 4 (cf. Definition 3.3(i)).2°> We remark, that

22In Lemma 6.26 it was shown how to utilize (5.52) for embedding shrubs of order up to & h; in regular pairs.

23in the sense of Definition 5.21(b)

24in the sense of Definition 5.21(c)

#$Indeed, it could be that N(é(zr)) NN(¢(yr)) = @, which would make it impossible to find a path of length 2 from
¢(xzr) to ¢(yr). If, on the other hand distr(zr,yr) > 4, then we can always find such a path using a look-ahead
embedding in the regular pair (X,Y).
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in general we cannot guarantee that X N ¢(F) = Up. So the set Up should be regarded merely as
a measure of future occupation of X, rather than an indication of exact future placement. ]

7 Proof of Theorem 1.2

The proof builds on the main results from [HKP"a, HKP*b, HKP"c]. We extend our subscript
notation to allow referencing to parameters from [HKP*a, HKP™b, HKP*¢]. For example, n1.13.14
refers to the parameter n from Lemma 3.14 from the I** paper, that is, from [HKP"a].

Let a > 0 be given. We set
e

30’ 2}

We wish to fix further constants satisfying (5.1). A trouble is that we do not know the right choice
of O* and Q** yet. Therefore we take g := LWLJ + 1 and fix suitable constants

7 := min{—

1 N 1
Sp>y>d>——e>m>azd>rv>Tt> —>0.

1 1
n> —>—>...>
ko

O Qo Qg1

=
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where the relations between the parameters are more exactly as follows:

1 < 179
Q 1027
1 27
< 27 36
Q1 10 Qj
9
n
p< TA505 0
1025(294_1

n18p24

Y < TG
109023 |

foreach j=1,...,9,

2,2
d < min {7, Brrrsa(mrrs.a ==, rLs.4 = Qgg1, M54 = 7)} ;

2
10802

1 772472410
— <min{d, L

~ b 36 )
A { 1096036 |

CJ 1 APnddp (Qg11)?
€ < min {A’ W, Er6.27(ML 27 := 1/40,d1 6 97 := 72d/2= Qre.27 == :72) )

7 < min {e, Trr5.4(MLs.4 = 7, 154 = Qgy1,MLL54 = 7V, EILL54 =€)}
2

~ . Y
a < min {W, AI1.1L4.4 (QH.L4.4 = Qg+1apII.L4.4 = Z,€II.L4.4 =T, TILL44 (= 2P )

‘ a2~6 2

g <min{ ————,¢ ( =1,Q =0 =,€ =¢)

< 10304 2ClLL54 TMLL5.4 *= 7], 26ILL5.4 *= 34g+1, VILL5.4 = 7, EILL54 *= )
g+1

~

< : ap / - A = A - ) -
V& min 9775 aVI.L3.14(771.L3.14 = @, ALL3.14 ‘= A, VLL3.14 ‘= 7, €1LL3.14 ‘= &€, PLL3.14 ‘= P) )

g+1
T L 2emy
1 < mi Vondrv 1
— < min ————,— » ,
ko 103Qg+1 kg

with £ set as the maximum of the numbers

/
ko,I.L3.14 (771,L3.14 =, Arn3.14 = A V11314 1= 7, ELL3.14 = €, PLL3.14 1= P) )
2 2
0,I1.L4.4 IILL4.4 = Sig+1, PILL44 = Z75HL4.4 =T, TILLA4 = 4P, HILL4.4 ‘= QG VILL44 = Q )
g+1
ko,H.L5.4 (nII.L5.4 =10, N1L54 = Qg+1, YIL5.4 = 7, €11.L5.4 ‘= &, VIL.LL54 ‘= 1/) >

ko,Ls.2 (PLs.2 := 10, ar5.2 := 1/100),

N Qor1)?
ko,L6.27 (U/L6.27 = 1/40,d1 6 97 == V*d/2,E6.27 = €, Va7 := (‘?;;)a V.ot = WV@) :

In particular, this gives a relation between between a and k.

Suppose now that k > ko, and G € LKS(n, k,«a) is a graph, and T € trees(k) is a tree of
order k. Our goal is to show that T' C G.
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Let us now turn to the proof. First, we preprocess the tree T' by considering any (7k)-fine
partition (W4, Wg,Sa,Sg) of T rooted at an arbitrary root r. Such a partition exists by Lemma 3.5.
Let my and my be the total order of the internal shrubs and the end shrubs, respectively. Set

m; )
Do ::% and p; ::180+(1—|—;ﬂ))k’ fori=1,2.

In particular we have p; € [1{5,1] for i = 0,1, 2.

To find a suitable structure in the graph G we proceed as follows. We apply [HKP"a, Lemma 3.14]
with input graph Gr13.14 := G and parameters nrr,3.14 := o, Ar13.14 = A, Y113.14 =7, €1.03.14 1= €,
pPLL3.14 = p, the sequence (Qj)gii, kirai1a = k and brisq4a = 10’6%. The lemma gives a
graph Gj;5,4 € LKSsmall(n,k,n), and an index i € [g]. Slightly abusing notation, we call
this graph still G. Set Q* := Q; and Q* := Q;1;. Now, [HKPTa, Lemma 3.14(c)] yields a
(k, *, %, \,v,€, v, p)-sparse decomposition V = (H, V, D, Greg, Gexp, E). Let ¢ be the size of any
cluster in V.

We now apply [HKP*b, Lemma 5.4] with parameters ni15.4 := 7, Q1154 := Qgi1, MLL5.4 =7,
E1L.L5.4 = €, krrrsa =k, and Qf; 154 := Q. Given the graph G with its sparse decomposition V
the lemma gives three (e, d, wc)-regularized matchings M, Mp, and Mgooq © M4 which fulfill
the assertion either of case (K1), or of (K2). The matchings M 4 and Mg also define the sets XA
and XB.

The additional features provided by [HKPa, Lemma 3.14] and [HKP"b, Lemma 5.4] guar-
antee that we are in the situation described in Setting 5.1. We apply Lemma 5.2 as described in
Definition 5.3; the numbers pg, p1, po are as defined above. This puts us in the setting described in
Setting 5.4. We now use [HKP "¢, Lemma 4.17] to obtain one of the following configurations.

o (1),

7]27Q** W n9p2
4_1066(9*)11 9 2 9 128-1022-(9*)5

7]27Q** W y 779'72 )

4,1066(9*)11 9 2 ’ 90 128-1022-(9*)5

2.1086(Q")1T) ~ 2 ) 384-1022(Q*)°

(
(

. (04) ( 27 W,% 1%y ))
(

77279** \/W 779 n 7]9
Z1005(QF) T2~ 2 128-1022-(Q%)3° 27 128-1022-(Q)1 )

3,4 ,YSp

n’v_ 3n n
Torr ey 47 3557 107> 0000 P2(1 + 30)k),

[ ]
—
<
2

3.3
73 p v
o (7) (1ot 3000 47> 3 329*7 2101 2. 10?17102(1 + 35)k),
4.4 3
_nap Ny 4008 yp  Mre
o (8)(folsiasys: 2000~ » 47 5 o 008> 2 104’131(1 + 55)k, p2(1+ 56)k),

o (09)

P 400e d nmc 3 nv
1027(9*)37 103,p1( + 260k, p2(1 4 56)k, 555 5, gho5 47, ghekes o 104)

2
e (010)(e ,77 m/elvk, & 72 k,%).

Depending on the actual configuration Lemma 6.17, Lemma 6.20, Lemma 6.25, Lemma 6.26,
or Lemma 6.27 guarantees that T' C (. This finishes the proof of the theorem.
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8 Theorem 1.2 algorithmically

We now discuss the algorithmic aspects of our proof of Theorem 1.2. This discussion also covers
the parts developed in the preceding papers of the series [HKPTa, HKP*h, HKP"¢] (although we
do refer at one point to a discussion from [HKP"a]).

The interesting question is if we can provide a fast algorithm which finds a copy of a given tree
T € trees(k) in any given graph G € LKS(n, k, «). We will sketch below that our proof gives such
an algorithm, with running time O(n®); here the hidden constant in the O(-)-notation depends
on « but not on k. A picture accompanying the discussion is given in Figure 8.1.

It can be verified that each of the steps of our proof — except the extraction of dense spots
in [HKP*a]— can be turned into a polynomial time algorithm. We return to the extraction of
dense spots later, after discussing the other parts of the proof.

e In [HKP*a, Section 3.9] we discussed the algorithmic aspects of obtaining a sparse decompo-
sition of G, which is the main result ([HKP"a, Lemma 3.14]) of [HKP"a]. This part contains
the bottleneck step of the extraction of dense spots (in [HKP*a, Lemma 3.13]).

e In [HKP*b] we find a “rough structure” in G. Here, we need to find a matching in Gieg
that is maximal in a certain way, and we also need to “augment a regularized matching”.
The former step can be done using Edmonds’s blossom algorithm, and the latter by applying
the algorithmic version of the regularity lemma [ADL*94]. (We used [ADL'94] already in
obtaining a sparse decomposition in [HKPTal.)

e In [HKP*c| we apply “cleaning lemmas” to refine the rough structure. The cleaning lemmas
proceed by sequentially removing of “bad” vertices, and the respective badness conditions can
be efficiently tested. The cleaning procedure are then put together in [HKP*c, Lemma 6.1-
6.3]. These lemmas are easily turned into algorithms.

e In the present paper we embed T' in G using one of the configurations obtained in [HKP*c].
The basic ingredients of the embedding are the following:

— Embedding in huge degree vertices (in (¢2)—(¢5))
The two main technical lemmas used are Lemmas 6.18 and 6.19. In these lemmas, in
each step of the embedding we find a vertex having a substantial degree into one of
the specified sets. So, the non-trivial assertions of these lemmas is that these good
vertices exist. On the other hand, testing whether a given vertex is good can be done
algorithmically (in time O(n?)).

— FEmbedding into regular pairs
The exact setting is described in Lemmas 6.7-6.9, but the way we proceed with embed-
ding of small trees is standard. That is, when we extend an embedding of a small tree
or forest in a regular pair (X,Y’), we find a vertex of one cluster that has a substantial
degree to the unused part of the partner cluster (the existence of which is guaranteed
by the regularity). This can be implemented in time O(|X||Y]).

— Embedding into Gexp
The embedding procedure for embedding into Gex, was informally described in [HKPa,
Section 3.6] and the actual setting we use is given in Lemma 6.5. The procedure is
algorithmic. Indeed, when, in the proof of Lemma 6.5, we extend a partial embedding
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of a forest, it is enough to avoid the set called shadow g, , . (Urg 5, CLe.5k/2). This set can
be easily determined algorithmically.

— Embedding using E

Let us recall the elementary embedding procedure for E as described in Lemma 6.4. We
have a small rooted tree (7',7) (or several small rooted trees), a forbidden set U, and a
set U* C E. It is our task to embed T, avoiding the set U, so that r is placed in U*.
For the proof of Lemma 6.4 we only use the “avoiding” feature of the avoiding set given
by Definition 4.5. That is, for each y € U* we test whether there is a dense spot D € D
with |UNV(D)| < 2k such that y sends a substantial degree to D, or whether y belongs
to the bad set Yproofig.4. This test can be made algorithmic by simply ranging over the
at most O(n/k) dense spots in D.

The two randomized steps — random splitting in [HKP ¢, Section 3.2], and the use of the
stochastic process Duplicate in Section 6 — can be also efficiently derandomized using a
standard technique for derandomizing the Chernoff bound.?%

Let us now sketch how to deal with extracting dense spots. The idea is as follows. Initially, we
pretend that Gexp consists of the entire bounded-degree part G —H (cleaned for minimum degree pk
as in [HKP"a, (3.13)]). With such a supposed sparse decomposition V; we go through [HKP*b,
Lemma 5.4] and [HKP "¢, Lemma 4.17] to obtain a configuration. We now start embedding T as in
Section 6. (Note that at this moment G,e, and E are absent, and so, the only embedding techniques
are those involving H and Gexp.) Now, either we embed 7', or we fail. The only possible reason for
failure is that we were unable to perform the one-step look-ahead strategy described in [HKP™a,
Section 3.6], because Gexp Was not really nowhere-dense. (In order to understand fully that this
is indeed the only possible reason, the reader is advised to read the explanatory, two-pages-long
Section 3.6 of [HKP'a].) But then we actually localized a dense spot D;. We get an updated
supposed sparse decomposition Va in which D; is removed from Gey, and added to D (and Greg
and/or E are modified accordingly). We keep iterating. Since in each step we extract at least O(k?)
edges we iterate the above at most e(G)/O(k?*) = O(%) times. We certainly succeed eventually,
since after ©(7%) iterations we get an honest sparse decomposition (i.e., a decomposition that would
be a valid outcome of [HKP"a, Lemma 3.14], with Gex, nowhere-dense).

It seems that this iterative method is generally applicable for problems which employ a sparse
decomposition.
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Input:

— graph G
initial set of dense spots =0
| Update dense spots & :=ZuD
-
[HKP*a] -
Regularity Lemma for locally dense graphs
creating a gap in the degree sequence Lemma 2.5
Lemma 3.2 algorithmic version in time O(n**’®)
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- Lemma 3.13
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[HKP+b] augmenting a matching
Lemma 4.8
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[HKP*d] partitioning T
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Lemma 3.5
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Lemma 6.17 Lemma 6.20 Lemma 6.25 Lemma 6.26 Lemma 6.27 embeddmg TinG
\ /
N
T embedded?
yes N
The embedding got stuck due to a failure of the one
step look-ahead strategy in Gy Then a new dense
spot D was found.

Figure 8.1: A version of [HKP*a, Figure 1.3] showing the iterative algorithm for finding a copy
of T in G.



SYMBOL INDEX

Symbol index

.18

X1 = W,..., Xy — Vp)-embedding, 30

exp), 16
(reg), 17
A;, 14

¢, 11
M-cover, 16
Ch(U), 3
Ch(v), 3
d(G), 2

d(U, W), 2
deg, 2
diSt(’Ul,’Ug)7 3
Duplicate(¢), 29
E(G), 1
e(G), 1
e(X), 2
e(X,Y), 2
F, 12

F, 14

Gy, 11
ghost(U), 38
Greg, 9, 11
Gv, 9

J, 12

Ji, 12

Jo, 12

J3, 12

Jr, 12

Ly, 12
L,x(G), 2
LKS(n,k,n), 2

LKSmin(n, k,n), 2
LKSsmall(n, k,n), 2

maxdeg, 2
mindeg, 2
N 14
N(v), 2

NE, 12

pi, 14
Par(U), 3
Par(v), 3
Spk(G), 2
shadow(U, ¢), 10
Seed, 4
T(r,T x), 4
trees(m), 2
Ui, 14
Vm, 12

V, 14

Y, 14

V*, 14

V, 14

V.., 11
Vg, 11
V(G), 1
v(G), 1

Vi, 12
‘/;}VGH(T7T)7 3
vaooda 12
Voaa(T', ), 3
YA, 12

YB, 12



GENERAL INDEX

General index

(Xl — ‘/1, ..
hub, 7

., Xy — Vp)-embedding, 30

absorb, 10
avoiding (set), 8
avoiding threshold, 9

balanced set, 35

balanced way of embedding, 35
bipartite density, 2

bounded decomposition, 8

captured edges, 9
child, 3

cluster, 9

cluster graph, 9
consistent matching, 18
cover, 16

dense cover, 8
dense spot, 8
density, 2
discrepancy, 35

end subtree, 4
exponent of shadow, 10

fine partition, 4
fruit, 4

ghost, 38

induced tree, 4
internal subtree, 4
irregular, 2

matching involution, 38
nowhere-dense, 8
ordered skeleton, 7

parent, 3

peripheral subshrub, 7
principal subshrub, 7
proportional splitting, 13
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regular pair, 2
regularized matching, 10
regularized graph, 18
rooted tree, 3

seed, 4

shadow, 10

shrub, 7

sparse decomposition, 9
subshrub, 7
super-regular pair, 2

unbalanced way of embedding, 35
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