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FIRST STEPS IN COMBINATORIAL OPTIMIZATION ON
GRAPHONS: MATCHINGS
(EXTENDED ABSTRACT)

MARTIN DOLEŽAL, JAN HLADKÝ, PING HU, AND DIANA PIGUET

Abstract. Much of discrete optimization concerns problems whose underlying struc-
tures are graphs. Here, we translate the theory around the maximum matching prob-
lem to the setting of graphons, which are limit versions of finite graphs introduced by
Borgs, Chayes, Lovász, Sós, Szegedy, and Vesztergombi. We study continuity prop-
erties of the thus defined matching ratio, limit versions of matching polytopes and
vertex cover polytopes, and deduce a version of the LP duality for the problem of
maximum fractional matching in the graphon setting. To the best of our knowledge,
this is the first time the LP duality has been formulated in the setting of functional
analysis (rather than finite-dimensional vector spaces).

We show an application of these results in property testing.

1. Introduction

The study of matchings is central both in graph theory and in theoretical computer
science. It has three sides: structural, polyhedral, and algorithmic. The structural part
of the theory includes results such as the Gallai–Edmonds matching theorem. The study
of polyhedral aspects — which include the geometry of the matching polytope, the ver-
tex cover polytope and related — is much motivated by linear programming. Finally,
algorithmic questions include, e.g., the study of fast algorithms for finding the maxi-
mum matching, or are motivated by theory related to property testing and parameter
estimation. These three sides are very much intertwined. For example, integrality of
the fractional matching polytope and the fraction vertex cover polytope is equivalent to
König’s matching theorem. Also, most of the algorithms for finding a maximum match-
ing (such as the Ford–Fulkerson algorithm) use non-trivial properties of matchings.

Graphons are analytic object which capture properties of large graphs. They were
introduced in [3, 4, 9] as limit representation of large dense graphs. Since then they have
played a key role in extremal graph theory, theory of random graphs, and other parts
of mathematics. Their most important contribution to computer science is the area of
property testing, see e.g., [10] and more in Section 2.2. Here, we study concepts related
to matchings in the setting of graphons. While our primary motivation comes from
extremal graph theory, we think that the theory provides an interesting contribution to
combinatorial optimization as well.
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umber 628974. Hu: This work has received funding from the European Research Council (ERC)
under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement
No 259385 and from the Philip Leverhulme Prize PLP-2014-401 awarded by the Leverhulme Trust.
Piguet was supported by the Czech Science Foundation, grant number GJ16-07822Y.
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We shall assume the reader’s familiarity with the concept of graphons. Throughout
the paper we shall assume that Ω is an atomless Borel probability space.

2. Matchings in graphons

Let us give our definition of matchings in graphons. In the graphon world, there is
no distinction between integral and fractional matchings. This is why our definition
is actually inspired by the notion of fractional matchings in finite graphs. To see the
analogy, let us recall that for a finite graph G, a function f : V (G)2 → R represents a
fractional matching if

(a) f ≥ 0,
(b) if f(x, y) > 0 then xy ∈ E(G), and
(c) for every x ∈ V (G) , we have

∑
y f(x, y) +

∑
y f(y, x) ≤ 1.

Note that usually fractional matchings are represented using symmetric functions (i.e.,
typically one works with a weight function g defined on unordered pairs xy, g(xy) =
f(x, y) + f(y, x)). This is however only a matter of notation.1

Recall that a support of a function g : X → R is the set supp g = {x ∈ X : g(x) 6= 0}.

Definition 1. Suppose that W : Ω2 → [0, 1] is a graphon. We say that a function
m ∈ L1(Ω2) is a matching in W if

(a) m ≥ 0 almost everywhere,
(b) supp m ⊂ suppW up to a null-set, and
(c) for almost every x ∈ Ω, we have

´
y m(x, y) +

´
y m(y, x) ≤ 1.

As said already, even though Definition 1 is inspired by fractional matchings in finite
graphs, the resulting graphon concept is referred to as “matchings”. Note also that in
Definition 1 the values of W are immaterial, only the support of W matters.

Figure 2.1 shows how to translate a fractional matching on a finite graph G to a
matching on a graphon that represents G.

Given a matching m in a graphon W we define its size, ‖m‖ =
´
x

´
y m(x, y). We write

MATCH(W ) ⊂ L1(Ω2) for the set of all matchings inW . Following the -on word ending
already used for graphons and permutons, we call MATCH(W ) the matching polyton
of W . Last, we define the matching ratio of a graphon W as

(2.1) match(W ) = sup
m∈MATCH(W )

‖m‖ .

There are two connected areas of questions regarding matchings in graphons. One
of them concerns their continuity properties. That is, we have a sequence of graphs
(or graphons) converging to a graphon W in the cut-distance, and we want to know
how their matching ratios/polytons relate to that of W . The other circle of questions

1The current choice for these functions being not-necessarily symmetric is adopted from [8]. In [8],
we have worked out a more general concept of F -tilings, which is a collection of vertex-disjoint copies
of a fixed graph F . When we take F = K2, we get the notion of matchings. If F is on the vertex set
V (F ) = [k] then a fractional F -tiling in a graph G is a function f : V (G)k → R satisfying (1) f ≥ 0,
(2) if f(x1, . . . xk) > 0 then for each ij ∈ E(F ) we have that xixj ∈ E(G), and (3) for every x ∈ V (G),
we have

∑k
i=1

∑
y∈V (G)k,yi=x

f(y) ≤ 1. Observe that if F is not a complete graph then fractional
F -tilings are generally not symmetric under permuting their coordinates, and no symmetrization may
be possible.
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Figure 2.1. A graph with a sample fractional matching on the left. Two
sample matchings in its graphon representation are shown on the two fig-
ures on the right. The “antisymmetric” matching m and the “symmetric”
matching n. The formulas below the figures show the correspondence
between the total weight at the vertex b, and the corresponding integrals
in the representations of the fractional matchings.

lies in investigating the properties of a single matching polyton. The latter is a direct
counterpart to investigating the properties of the fractional matching polytope.

Given a finite graph G, we write match(G) for the matching number of G and
fmatch(G) for the fractional matching number of G. If G has n vertices then we have
0 ≤ match(G) ≤ fmatch(G) ≤ n

2 . Our first (easy) result tells us that the normalized
fractional matching number of G equals to the matching ratio of its graphon represen-
tation.

Proposition 2. Suppose that WG : Ω2 → [0, 1] is a graphon representation of a finite
graph G of order n. Then we have n ·match(WG) = fmatch(G).

2.1. Continuity properties. The bad news is that the matching ratio is not continuous
with respect to the cut-distance. For example, take Zn to be constant 1

n . We have
match(Zn) = 1

2 , but the sequence (Zn)n converges to the zero graphon O for which we
have match(O) = 0. Another example is to take Z∗n to be a graphon representation of a
perfect matching of order 2n (i.e., the n-th graph has 2n vertices and n edges that form
a perfect matching). Again, we have match(Z∗n) = 1

2 , but the sequence (Z∗n)n converges
to the zero graphon O. However, the matching ratio is lower-semicontinuous. We state
this result in two versions: for sequences of graphs and for sequences of graphons. The
graph version reads as follows.

Theorem 3. Suppose that (Gn)n is a sequence of graphs of growing orders converging to
a graphon W : Ω2 → [0, 1] in the cut-distance. Then we have that lim infn

fmatch(Gn)
v(Gn) ≥

lim infn
match(Gn)
v(Gn) ≥ match(W ).

Note that the requirement that v(Gn)→∞ is necessary. Indeed, for example taking
all the graphs Gn to be a copy of a single triangle, we have match(Gn)

v(Gn) = 1
3 , but for

the limit graphon W , which is just a graphon representation of a triangle, we have by
Proposition 2 that match(W ) = 1

3 fmatch(K3) = 1
2 . We shall see that Theorem 3 follows

from Theorem 4, which we state now.
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Theorem 4. Suppose that (Wn)n is a sequence of graphons Wn : Ω2 → [0, 1] converging
to a graphonW : Ω2 → [0, 1] in the cut-distance. Then we have that lim infnmatch(Wn) ≥
match(W ).

There are two possible paths to proving Theorem 4: one from Theorem 5, and one
using the machinery we work out in Section 3. Let us now show how we can use
Theorem 4 to prove Theorem 3.

Sketch of proof of Theorem 3. Suppose that (Gn)n converges to W . Let us consider a
sequence of numbers εn > 0 which tends to zero sufficiently slowly. Let us consider an
εn-regularization (in the sense of the Szemerédi regularity lemma) of each graph Gn.
Let Rn be the corresponding cluster graph. Let hn be the order of Rn. By choosing
(εn) to be decreasing slowly enough, we can achieve that hn grows arbitrarily slowly. In
particular, we can achieve that hn � v(Gn). Let cn be the size of the clusters in Rn.
We have that cnhn ≈ v(Gn).

Suppose that ε > 0 is fixed. Then for n sufficiently large, by Theorem 4 we can find a
(graphon-) matching in the graphon representation of Rn (viewed as a finite graph whose
edges represent regular pairs of positive density) whose size is at least match(W )−ε. By
Propostion 2, we therefore have a fractional matching f : E(Rn) → [0, 1] in Rn whose
size is at least (match(W )− ε)hn. We partition each cluster C ∈ V (Rn) into subsets
(CD : CD ∈ E(Rn)) so that the sizes of these sets are f(CD) ·cn, and a possible leftover
part C0. For each regular pair (X,Y ) (XY ∈ E(Rn)), we thus get a subpair (XY , YX)
of two sets, each of size sXY ≈ f(XY ) · cn. Since a subpair of a regular pair of positive
density is a regular pair of positive density,2 a (non-spanning version of) Blow-up lemma
allows us to find a matching MXY in the graph Gn[XY , YX ] of size approximately sXY .
Taking the union of all such matchings, we obtain a matching M =

⋃
XY ∈E(Rn)MXY in

Gn of size approximately∑
XY ∈E(Rn)

sXY ≈ cn
∑

XY ∈E(Rn)

f(XY ) ≥ cn (match(W )− ε)hn ≈ (match(W )− ε) v(Gn) ,

as was needed.
The oversimplification above was in the statement that a subpair (XY , YX) of an εn-

regular pair (X,Y ) is regular. Indeed, in our setting, |XY ||X| ≈ f(XY ), and it may well
happen that this ratio f(XY ) is below εn. In other words, the sets XY and YX need
not be substantial (in the sense of the Szemerédi regularity lemma). Note that this can
happen even for all regular pairs represented by edges of Rn. However, we can rescue the
situation by using the main result of [7] which asserts that randomly selected subpairs
of regular pairs are with high probability regular, as long as these subpairs are bigger
than a constant (as opposed to size linear in the size of the clusters which is the usual
regime when considering ε-regular pairs). �

Our next theorem tells that the matching polyton of a limit is smaller than the “limit”
of matching polytons of graphons converging to that limit.

Theorem 5. Suppose that (Wn)n is a sequence of graphons,Wn : Ω2 → [0, 1], converging
to a graphon W : Ω2 → [0, 1] in the cut-norm. Then for every m ∈ MATCH(W )

2Here we oversimplify, see below.
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there exists a sequence (mn ∈ MATCH(Wn))n which converges to m in the cut-norm. In
particular, (mn)n converges weakly to m.

Proof sketch. Let m ∈ MATCH(W ) be arbitrary. Let ε > 0 be given. Let us find a
partition Ω = Ω1 t . . . tΩk (for a suitable number k) into sets of measure 1/k such that
the step-functions defined as the averages of m and W on the partion Ω2 =

⊔
i,j Ωi×Ωj

approximate m and ofW in L1(Ω2), up to an error at most ε2. Such an approximation is
possible since squares generate the sigma-algebra Ω2. We shall write mij for the average
of m on Ωi ×Ωj . Similarly, we write W ij for the average of W on Ωi ×Ωj . It is easy to
see that for all but at most εk2 many pairs (i, j), we have that

(2.2)
ˆ

Ωi×Ωj

∣∣m(x, y)−mij
∣∣ ≤ ε

k2
and

ˆ
Ωi×Ωj

∣∣W (x, y)−W ij
∣∣ ≤ ε

k2
.

In this simplified sketch, let us assume that all the pairs (i, j) satisfy (2.2). The informal
interpretation of the second half (2.2) is that W is “quasirandom with density W ij” on
Ωi × Ωj .

Suppose now that n is large. We want to come up with a matching mn ∈ MATCH(Wn)
which is close to m in the cut-norm. Since ‖Wn −W‖� is small, for each pair (i, j) we
have that

´
Ωi×Ωj

Wn(x, y) ≈ W ij

k2
. Furthermore, for all x ∈ Ωi (for some small δ > 0)

but a set of measure at mostδ/k we have
ˆ
y∈Ωj

Wn(x, y) ≈ W ij

k
,(2.3)

and that for all y ∈ Ωj but a set of measure at most δ/k we have
ˆ
x∈Ωi

Wn(x, y) ≈ W ij

k
.(2.4)

This follows from the above quasirandomness of W on Ωi × Ωj and from the fact that
‖Wn − W‖� is small (which gives that Wn must also be quasirandom on Ωi × Ωj).
Simplifying again, let us assume that (2.3) and (2.4) hold for all x and y with an exact
equality.

Let us now define mn on the rectangle Ωi×Ωj . For (x, y) ∈ Ωi×Ωj , we set mn(x, y) =
Wn(x,y)
W ij · mij . We claim that mn is a matching in Wn. Condition (a) of Definition 1 is

obvious. Condition (b) follows from the fact that one of the factors in the defining
formula for mn(x, y) is Wn(x, y). For Condition (c), let us first observe that for i ∈ [k]
and each x ∈ Ωi (except a set of a small measure) we haveˆ

y∈Ω
mn(x, y) =

∑
j

ˆ
y∈Ωj

mn(x, y) =
∑
j

ˆ
y∈Ωj

Wn(x, y)

W ij
·mij

(2.3)
≈

∑
j

mij

ˆ
y∈Ωj

1
(2.2)
≈
∑
j

ˆ
y∈Ωj

m(x, y) =

ˆ
y∈Ω

m(x, y) ,

and that we also have for each j ∈ [k] and each y ∈ Ωj that
´
x∈Ω mn(x, y) ≈

´
x∈Ω m(x, y).

Thus, the fact that Condition (c) is satisfied for the matching m implies that it is
approximately satisfied for mn (again, the issue of slight imprecisions can be dealt with
in a pedestrian way).
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So, it remains to show that ‖mn−m‖� is small for large n. This is a routine calculation
which relies on (2.2) and the fact that ‖Wn −W‖� is small. �

The example of the sequences (Zn)n and (Z∗n)n from the beginning of Section 2.1
shows that the matching ratio is not upper-semicontinuous. However, it is “upper-
semicontinuous in the cut-distance after suitable L1-perturbations”. This is stated below.

Proposition 6. Suppose that W : Ω2 → [0, 1] is a graphon. Then for an arbitrary
ε > 0 there exists a number δ > 0 such that each graphon U with ‖W − U‖� < δ can
be decreased in the L1(Ω2)-distance by at most ε (in a suitable way) so that we obtain a
graphon U∗ for which match(U∗) ≤ match(W ) + ε.

2.2. Application in parameter estimation. The two main models for estimating
parameters (which is the parameter counterpart to testing properties) of graphs and
functions are the dense and the bounded-degree models. We first describe the bounded-
degree model. This is for comparison only, and our results do not have any applications
in this model. Suppose that D is an absolute constant, and let GD be the class of all
finite graphs (modulo isomorphism) with maximum degrees at most D. Let us also
write BD for the class of all rooted graphs of maximum degree at most D. We say that
a parameter f : GD → R is estimable if for each ε > 0 there exists a number r = r(ε)
and a function g : (BD)r → R such that for each G ∈ GD,

P [|f(G)− g(B1, B2, . . . , Br)| > ε] < ε ,

where B1, . . . , Br are r many r-balls in G (in the metric induced by the graph structure)
rooted at randomly selected vertices. A result of Nguyen and Onak [11] asserts that for
each D, the matching ratio is estimable in the class GD. This result was reproven by
different methods by Elek and Lippner [6] and by Bordanave, Lelarge, and Salez [2].

Let us now turn to the dense model. This model is used for testing properties and
estimating parameters of dense graphs. Formally, let G be the class of all graphs (modulo
isomorphism). We say that a parameter f : G → R is estimable if for each ε > 0 there
exists a number r = r(ε) and a function g : G → R such that for each G ∈ G

(2.5) P [|f(G)− g(H)| > ε] < ε ,

whereH = G[X] is the subgraph of G induced by a randomly selected setX of r vertices.
The study of property testing and parameter estimation culminated in [1] where they

showed that related questions are equivalent to questions about Szemerédi regularity
partitions of graphs. An even more concise characterization of estimability of parameters
was provided in [4] in the language of graph limits: A graph parameter f is estimable if
and only if it is continuous in the cut-distance. Note that in that case, we may extend
continuously f to all graphons, and the function g can be chosen as g = f .

From the examples of sequences (Zn)n and (Z∗n)n from the beginning of Section 2.1
we see that the matching ratio is not estimable. However, Theorem 4 and the proof
method from Propositon 6 can be used to obtain that the following “robust version” of
the matching ratio is estimable. Given an n-vertex graph G and ε > 0 we define

matchε(G) = min match(G′) ,

where G′ ranges over all subgraphs of G where at most εn2 edges are deleted. Then we
have the following.
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Theorem 7. For each ε > 0, the parameter G 7→ matchε(G)
v(G) is estimable.

The parameter matchε has the following practical interpretation: we want to get the
best possible guarantee on the size of a matching in a network, but even when a certain
number of links in that network becomes dysfunctional. Related “robustness” questions
were considered in [10].

2.3. Structure of matching polyton. For a finite graph G, there are two objects
that capture the structure of its matchings, the matching polytope MATCH(G) ⊂ RE(G)

(which is the convex hull of the set of all matchings) and the fractional matching poly-
tope FMATCH(G) ⊂ RE(G) (which is the set of all fractional matchings). Obviously
MATCH(G) ⊂ FMATCH(G), but the most important result on their structure is that
equality holds if and only if G is bipartite. Since for graphons, there is no distinction be-
tween MATCH and FMATCH, there is no such meaningful characterization.3 So, instead
we focus on much simpler properties of MATCH(W ). Namely, we want to understand
to which extend we have a counterpart of the fact that MATCH(G) and FMATCH(G)

are compact convex subsets of RE(G). It is easy to see that MATCH(W ) ⊂ L1(Ω2) is a
convex set. However, it is not compact. Indeed, consider the graphon U : Ω2 → [0, 1],
where Ω = [0, 1], defined as

U(x, y) =

{
1 if x+ y ≤ 1

0 if x+ y > 1
.

It is easy to see that each function mn ∈ L1(Ω2) defined as

mn(x, y) =

{
n/2 if 1− n−1 ≤ x+ y ≤ 1

0 if x+ y < 1− n−1 or x+ y > 1

is a matching in U . However, it is obvious that there is no accumulation point of the
sequence (mn)n (in the space L1(Ω2)). Observe also that ‖mn‖ = 1

2 −
1

4n , but it can
be shown that there exists no matching in U of size 1

2 . This shows that the supremum
in (2.1) need not be attained.

3. Vertex covers

We proceed now with the definition of fractional vertex covers of a graphon. Recall
that given a finite graph G, a function c : V (G)→ [0, 1] is a fractional vertex cover if for
each edge xy of G we have c(x) + c(y) ≥ 1. If G is a finite graph then we write fcov(G)
for the size of the minimum fractional vertex cover of G. The graphon counterpart of
these concepts is as follows.

Definition 8. Suppose that W : Ω2 → [0, 1] is a graphon. We say that a function
c ∈ L∞(Ω) is a fractional vertex cover of W if 0 ≤ c ≤ 1 and the set

suppW \ {(x, y) : c(x) + c(y) ≥ 1}

has measure 0.

3In Section 3 we shall however see that such a characterization is possible for the dual notion of
vertex covers.
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Given a fractional vertex cover c of a graphon W we define its size, ‖c‖ =
´
x c(x).

We write FCOV(W ) ⊂ L∞(Ω) for the set of all fractional vertex covers which we call
the fractional vertex cover polyton. The fractional vertex cover ratio of a graphon W is
defined as

fcov(W ) = inf
c∈FCOV(W )

‖c‖ .

As with the concept of matchings, we shall investigate the continuity properties of
these notions and the structure of a fractional vertex cover polyton of a single graphon.
However, the most important result which connects fractional vertex cover ratio and
(fractional) matching ratio is the linear programming duality.

3.1. LP duality. Recall that for a finite graphG, the LP duality asserts that fmatch(G) =
fcov(G). The graphon version has exactly the same form.

Theorem 9. Suppose that W is a graphon. Then match(W ) = fcov(W ).

We shall sketch a proof of Theorem 9 in Section 3.2.
Let us remark that all the versions of the LP duality we have found in the literature

were formulated in terms of matrices and vectors in finite-dimensional vector spaces.
Thus, Theorem 9 seems to be the first instance of an “analytic LP duality” in which
the usual “k × `-matrix” becomes a measurable function with domain Ω × Λ for two
measurable spaces Ω and Λ. It is interesting to study such an analytic LP duality in
general.

3.2. Continuity properties. Combining Theorem 4 and Theorem 9 we immediately
get that if a sequence of graphons Wn converges to a graphon W in the cut-distance
then lim infn fcov(Wn) ≥ fcov(W ). Our next theorem is somewhat more descriptive.

Theorem 10. Suppose that (Wn)n is a sequence of graphonsWn : Ω2 → [0, 1] converging
to a graphon W : Ω2 → [0, 1] in the cut-norm. Suppose that for each n, cn is a fractional
vertex cover of Wn. Then any accumulation point of the sequence (cn)n in the weak∗
topology on L∞(Ω) is a fractional vertex cover of W .

Theorem 10 has a pedestrian and self-contained proof, which we omit here.
Note that Theorem 10 indeed proves that if a sequence of graphons Wn converges to

a graphon W in the cut-distance then lim infn fcov(Wn) ≥ fcov(W ). To see this, let us
apply on the graphons Wn measure-preserving bijections so that the modified sequence
(Wn)n converges to W in the cut-norm. By selecting a suitable subsequence, let us
assume that lim infn fcov(Wn) = limn fcov(Wn). For each n, consider a fractional vertex
cover cn of W which is of size at most fcov(Wn) + 1/n. Since the unit ball in L∞(Ω) with
the weak∗ topology is sequentially compact, there exists at least one accumulation point
c of (cn)n, say cni −→ c for a suitable sequence (ni). By lower-semicontinuity of the
norm in the weak∗ topology, we have that ‖c‖ ≤ limi ‖cni‖ = limn ‖cn‖. By Theorem 10,
c is a fractional vertex cover of W . Therefore, lim infn fcov(Wn) ≥ fcov(W ).

So, the most straightforward path to proving Theorem 4 would be to prove Theorem 10
and Theorem 9 first. Let us show that with Theorem 10, the proof of Theorem 9 is not
hard.

Sketch of proof of Theorem 9. The “≤”-direction is easy and its proof mimics the equally
easy proof of this direction in the usual LP duality for finite graphs. So, the difficulty
lies in the “≥”-direction.
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We approximate W by a step-function R (in the cut-norm) with steps of the form
Ωi × Ωj for a suitable partition Ω = Ω1 t . . . t Ωk. We select the approximation R
carefully in such a way that any matching in R can be into a matching in W with only
a small loss in size.4 R can be interpreted as a finite graph GR (actually, it is a cluster
graph ofW ), in which the sets Ωi are vertices, and an edge is present if the value of R on
Ωi × Ωj is positive. If this approximation was taken fine enough, we have by the above
discussion that fcov(GR) ' k · fcov(W ). Note that the right-hand side denotes the size
of the smallest fractional vertex cover of a finite graph. Thus, we can employ the usual
LP duality and get that fcov(GR) = fmatch(GR). In particular, we have a fractional
matching f on the graph GR of size s ' k · fcov(W ). By rescalling, we can turn f into a
matching f on the graphon R of size exactly s/k ' fcov(W ). By our careful choice of R,
we can turn f into a matching whose size is still approximately at least fcov(W ). This
concludes the proof. �

3.3. Structure of fractional vertex cover polyton. We begin with the following
basic result.

Lemma 11. For each graphon W , the set FCOV(W ) is a convex compact in the weak∗
topology on L∞(Ω).

Indeed, convexity is obvious, and compactness follows from Theorem 10 when applied
on the constant sequence (W )n. Let us move to some more advanced properties of
FCOV(W ). For finite graphs, the most important such property is that the vertices
of the fractional vertex cover polytope FCOV(G) of a graph G are all half-integral,
and they are integral if and only if G is bipartite. To formulate a counterpart of this
statement, we need to have a counterpart of vertices of a polytope. Suppose that L is
a vector space, and suppose that X ⊂ L is a convex set. Recall that a point x ∈ X
is called an extreme point of X if the only pair x′, x′′ ∈ X for which x = 1

2(x′ + x′′) is
the pair x′ = x, x′′ = x. We shall write E(X) to denote the set of all extreme points
of X. The analogy between vertices of polytopes in finite-dimensional vector space and
extreme points of a closed compact set X ⊂ L∞(Ω) is provided by the Krein–Milman
Theorem. Indeed, the Krein–Milman Theorem asserts that X equals to the closure of
the convex hull of E(X).

A fractional vertex cover c ∈ FCOV(W ) is half-integral if c(x) ∈
{

0, 1
2 , 1
}
for almost

every x ∈ Ω. Integral vertex covers are defined analogously. Thus, our results are as
follows.

Theorem 12. Let W be a graphon. Then all the extreme points of FCOV(W ) are
half-integral. Further, they are integral if and only if W is bipartite.

The proof of Theorem 12 is inspired by the well-known proof of the finite graph
version of this result. Let us illustrate the technique on sketching one (and the easiest)
substatement, if W is a bipartite graphon with bipartition Ω = AtB then all its extreme
points are integral. To this end, let us consider c ∈ FCOV(W ). For an arbitrary number
x ∈ [0, 1], define ∂(x) = min(x, 1− x). It can be checked that

c1(x) =

{
c(x) + ∂(c(x)) for x ∈ A
c(x)− ∂(c(x)) for x ∈ B

and c2(x) =

{
c(x)− ∂(c(x)) for x ∈ A
c(x) + ∂(c(x)) for x ∈ B

,

4The choice of the approximation R is non-trivial. Indeed, the fact that the matching ratio is not
upper-semicontinuous on graphons tells us that not every choice R is good.
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defines two fractional vertex covers of W . We have c = 1
2(c1 + c2). If c is not integral,

then c1 6= c2. Thus, in that case c is not an extreme point of FCOV(W ).
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