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A p-form F is VSI (i.e., all its scalar invariants of arbitrary order vanish) in a n-
dimensional spacetime if and only if it is of type N, its multiple null direction ℓ is
“degenerate Kundt”, and £ℓF = 0. This recent result is reviewed in the present con-
tribution and its main consequences are summarized. In particular, a subset of VSI

Maxwell fields possesses a universal property, i.e., they also solve (virtually) any gener-
alized (non-linear and with higher derivatives) electrodynamics, possibly also coupled to
Einstein’s gravity.

1. Introduction

The present contribution is summary of the main results of our recent work1. It is

useful to start by defining the VSI property for a general tensor, i.e.,

Definition 1.1 (VSI tensors). A tensor in an n-dimensional spacetime with met-

ric gab is VSII if all the scalar polynomial invariants constructed from the tensor

itself and its covariant derivatives up to order I (I = 0, 1, 2, 3, . . . ) vanish. It is VSI

if all its scalar polynomial invariants of arbitrary order vanish.

As a generalization of the notion of null fields2 to arbitrary p-forms, it is natural

to introduce the following

Definition 1.2 (p-forms of type N). At a spacetime point, a p-form F is of

type N if it satisfies

ℓaFab1...bp−1
= 0, ℓ[aFb1...bp] = 0, (1)

where ℓ is a null vector (this follows from (1) and need not be assumed). The second

condition can be equivalently replaced by ℓa ∗Fab1...bn−p−1
= 0.

This is equivalent to the type N condition in the set-up of3.

First, with the results of4, it is easy to see that a p-form F is VSI0 iff it is is

of type N. Next, our main result is the VSI condition, given in the next section.

2. Main result: VSI p-forms

The main result of1 is the following

Theorem 2.1 (VSI p-forms1). The following two conditions are equivalent:

(1) a non-zero p-form field F is VSI in a spacetime with metric gab
(2)(a) F possesses a multiple null direction ℓ, i.e., it is of type N

(b) £ℓF = 0
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(c) gab is a degenerate Kundt metric, and ℓ is the corresponding Kundt null

direction.

We observe that, in Theorem 2.1, the p-form F is not assumed to satisfy any

particular field equations and the result is thus purely geometric (on the other hand,

if F is taken to be closed, i.e., dF = 0, then condition 2b automatically follows from

the type N condition 2a, and need not be assumed).

2.1. Adapted coordinates

From Theorem 2.1 with the results of5,6, it follows that coordinates (u, r, xα),

adapted to ℓ = ∂r, exist such that any VSI p-form can be written as

F =
1

(p− 1)!
fα1...αp−1

(u, x)du ∧ dxα1 ∧ . . . ∧ dxαp−1 , (2)

and the corresponding background metric as

ds2 = 2du [dr +H(u, r, x)du+Wα(u, r, x)dx
α] + gαβ(u, x)dx

αdxβ , (3)

Wα(u, r, x) = rW (1)
α (u, x) +W (0)

α (u, x), (4)

H(u, r, x) = r2H(2)(u, x) + rH(1)(u, x) +H(0)(u, x), (5)

where α, β = 2 . . . n− 1, and x denotes collectively the set of coordinates xα.

The degenerate Kundt metric (3)–(5) includes, e.g., all VSI spacetimes7,8, all pp -

waves, and all Kundt Einstein (or aligned pure radiation) spacetimes – in particular,

spacetimes of constant curvature (Minkowski and (A)dS). The corresponding Weyl

and Ricci tensors are both of aligned type II, in general.

If F in (2) is required to obey the source-free Maxwell equations dF = 0 = d∗F ,

the following conditions are obtained

f[α2...αp−1,α1] = 0, (
√

g̃ fβα1...αp−2),β = 0, (6)

where g̃ ≡ det gαβ = − det gab ≡ −g. These are Maxwell’s equations for the (p−1)-

form f in the (n − 2)-dimensional Riemannian geometry associated with gαβ , i.e.,

f must be harmonic (recall, however, that f can also depend on u). For n = 3, 4,

it can be argued that to any F which is VSI, it can always be associated a solution

of the Maxwell equations which is also VSI1. It is also interesting to observe that

the effective Maxwell equations (6) are “immune” to adding a Chern-Simons term

(except when this is linear, see1 for details) to the full Maxwell equations.

2.2. Universal solutions of generalized electrodynamics

It was already known to Schrödinger9,10 that all null Maxwell fields (with n = 4 =

2p) solve the equations for the electromagnetic field in any non-linear electrodynam-

ics. More generally, we observe that a subset of the VSI Maxwell fields described

above possesses a “universal” property, i.e., they solve simultaneously any electro-

dynamics whose field equations can be expressed as dF = 0, ∗d∗F̃ = 0, where F̃
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can be any p-form constructed from F and its covariant derivatives. For example,

any VSI Maxwell F is universal if the background is a Kundt spacetime of Weyl

and traceless-Ricci type III (aligned) with DR = 0 = δiR (an affine parameter and

a frame parallelly transported along ℓ are assumed – cf.1 for the notation employed

here). In particular, Ricci flat and Einstein Kundt spacetimes of Weyl type III/N/O

can occur, the latter including Minkowski and (A)dS.

An explicit simple example is given by the Maxwell field

F = ex/2c(u)du ∧

(

− cos
yeu

2
dx+ eu sin

yeu

2
dy

)

, (7)

defined in the type III vacuum spacetime found by Petrov (eq. (31.40) in11)

ds2 = 2du

[

dr +
1

2
(xr − xex) du

]

+ ex(dx2 + e2udy2). (8)

More general results will be presented elsewhere.

3. Einstein-Maxwell solutions

3.1. General field equations

The previous discussion applies to VSI test fields, since we have not considered the

consequences of the backreaction on the spacetime geometry. In the full Einstein-

Maxwell theory with an arbitrary cosmological constant Λ, one finds that the metric

functions entering (3) must satisfy the following set of equations (obtained in1

refining the results of12)

Rαβ =
2Λ

n− 2
gαβ +

1

2
W (1)

α W
(1)
β −W

(1)
(α||β), (9)

2H(2) =
R

2
−

n− 4

n− 2
Λ +

1

4
W (1)αW (1)

α , (10)

W
(1) β
α||β =

1

2
W (1)β

(

3W
(1)
α||β −W

(1)
β||α

)

+W (1)
α

(

W
(1)β

||β −
1

2
W (1)βW

(1)
β −

2Λ

n− 2

)

, (11)

2H(1)
,α = −gαβ,u

||β + 2W
(0) β
[α||β] − 2W (0)βW

(1)
α||β + (W (0)βW

(1)
β ),α +W (1)

α,u + 2(ln
√

g̃),uα

+W (1)
α

[

W (0)βW
(1)
β −W

(0)β
||β + (ln

√

g̃),u

]

+
4Λ

n− 2
W (0)

α , (12)

∆H(0) +W (1)αH(0)
,α +W

(1)α
||αH

(0) = W (0)βW
(0)
β

(

1

2
W

(1)α
||α −

2Λ

n− 2

)

+H(1)
[

W
(0)α

||α − (ln
√

g̃),u

]

−
1

2
(W (0)αW (1)

α )2 +W (0)[α||β]W
(0)
[α||β] +W (0) ||α

α,u

−W (0)β
(

2W (1)αW
(0)
[α||β] +W

(1)
β,u − 2H

(1)
,β

)

− (ln
√

g̃),uu +
1

4
gαβ,ugαβ,u − κ0F

2. (13)

Heree Rαβ , R and || denote, respectively, the Ricci tensor, the Ricci scalar and

the covariant derivative associated with gαβ , W
(1)α ≡ gαβW

(1)
β , ∆ is the Laplace

operator in the geometry of the transverse metric gαβ , and κ0 is a gravitational

coupling constant. The Maxwell equations (6) must also be satisfied.
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The simplest examples one can construct are electromagnetic and gravitational

“plane-fronted” waves (with W
(0)
α = 0) propagating in a constant curvature back-

ground, giving rise to Kundt waves of Weyl type N (in four dimensions see,

e.g.,13,14). More general (e.g., with W
(0)
α 6= 0) degenerate Kundt metrics with

null Maxwell fields are also known (see11,15,16 and references therein for n = 4).

The case of VSI p-form Maxwell fields in VSI and pp -waves spacetimes have been

discussed in1 (where further references can be found).

3.2. Universal Einstein-Maxwell solutions

Some of the universal Maxwell fields mentioned in section 2.2 can also be used

to construct exact solutions of full general relativity, where the energy-momentum

tensor Tab associated with the electromagnetic field is determined in the generalized

electrodynamics (in terms of F and its covariant derivatives – cf.17 for an example).

For example, as pointed out in1, all VSI spacetimes with Li1 = 0 = L1i (i.e.,

the recurrent ones) coupled to an aligned VSI p-form field that solve the standard

Einstein-Maxwell equations are also exact solutions of gravity coupled to generalized

electrodynamics, provided p > 1 and δiF1j1...jp−1
= 0 (in an “adapted” parallely

transported frame, i.e., such that
i

M jk = 0). Within this family, metrics of Weyl

type N are necessarily pp -waves, for which such a universal property was pointed

out in18–20, at least for certain values of p. But metrics of Weyl type III are also

permitted, including pp -waves (L11 = 0) and also genuinely recurrent (L11 6= 0)

spacetimes (for n = 4, p = 3 this was discussed in21). One explicit example of the

latter solutions in 4D is given by the Maxwell field (7) with the metric

ds2 = 2du

[

dr +
1

2

(

xr − xex − 2κ0e
xc2(u)

)

du

]

+ ex(dx2 + e2udy2), (14)

which is a modification of (8) taking into account the backreaction.

As in section 2.2, the above discussion applies to generalized electrodynamics

with arbitrary higher-order derivative “corrections”. A special instance of this result

is the fact that Einstein-Maxwell solutions with aligned null electromagnetic fields

(not necessarily VSI) are also solution of NLE coupled to gravity, as previously

demonstrated in22–24.

4. Further remarks

For certain purposes, it may be useful to observe that if F is VSI3 then it is neces-

sarily VSI (this follows from the proof of Theorem 2.1 given in1). For completeness,

let us thus also give the necessary and sufficient conditions for a p-form F to be

VSI1 or VSI2 (recall that VSI0 means type N, as mentioned in section 1):

Proposition 4.1 (VSI1 and VSI2 p-forms1). A p-form F is VSI1 iff it is is of

type N, £ℓF = 0, ℓ is Kundt. It is VSI2 iff it is is of type N, £ℓF = 0, ℓ is Kundt

and (at least) doubly aligned with the Riemann tensor.
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vector ℓ p-form F Riemann

VSI0 null N III (N,O)

VSI1 Kundt N, £ℓF = 0, Kundt (*) N,κ = 0, σΨ4=ρΦ22

VSI2 Kundt, Riem II N, £ℓF = 0, Kundt, Riem II III, Kundt

VSI3 degKundt N, £ℓF = 0, degKundt “

... “ “ “

VSI “ “ “

Fig. 1. Comparing various VSII conditions for a 1-form ℓ, a p-form F 1 and the Riemann ten-
sor7,8,25. The quotation marks “ mean that the same conditions as in the next-upper row apply.

The Riemann VSI1 condition (*) needs some comments for two reasons. First, it has been inves-
tigated only in the case n = 425 (and indeed it is given above in the standard 4D NP notation).
Additionally, it is sufficient but not necessary (contrary to the rest of the table): also Kundt
spacetimes of Riemann type III are VSI1 (but not “properly”, i.e., they are in fact VSI, cf. the
lower rows in the same column).

It is also interesting to observe that Theorem 2.1 and Proposition 4.1 apply also

in the limiting case p = 1, i.e., when F is a vector field. In particular, when p = 1,

Theorem 2.1 reduces to: a vector field ℓ is VSI in a spacetime with metric gab iff ℓ

is Kundt and affinely parameterized, and gab is a degenerate Kundt metric w.r.t ℓ.

The above comments are summarized in the first two columns of Fig. 1. The

last column gives corresponding results in the case of the Riemann tensors (i.e., for

the VSII spacetimes)7,8,25. While certain conditions turn out to be similar, there is

also an important difference: for the Riemann tensor one has already V SI2 ⇒ V SI.
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13. A. Garćıa Dı́az and J. F. Plebański, All nontwisting N’s with cosmological

constant, J. Math. Phys. 22, 2655 (1981).
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