THE \mathcal{L}_{n}^{m}-PROPOSITIONAL CALCULUS

Carlos Gallardo, Alicia Ziliani, Bahía Blanca

(Received November 20, 2012)

Abstract. T. Almada and J. Vaz de Carvalho (2001) stated the problem to investigate if these Łukasiewicz algebras are algebras of some logic system. In this article an affirmative answer is given and the \mathcal{L}_{n}^{m}-propositional calculus, denoted by ℓ_{n}^{m}, is introduced in terms of the binary connectives \rightarrow (implication), \rightarrow (standard implication), \wedge (conjunction), \vee (disjunction) and the unary ones f (negation) and $D_{i}, 1 \leqslant i \leqslant n-1$ (generalized Moisil operators). It is proved that ℓ_{n}^{m} belongs to the class of standard systems of implicative extensional propositional calculi. Besides, it is shown that the definitions of L_{n}^{m}-algebra and ℓ_{n}^{m}-algebra are equivalent. Finally, the completeness theorem for ℓ_{n}^{m} is obtained.

Keywords: Łukasiewicz algebra of order n; m-generalized Łukasiewicz algebra of order n; equationally definable principal congruences; implicative extensional propositional calculus; completeness theorem

MSC 2010: 03G10, 06D99, 03B60

1. Introduction and preliminaries

In 1977, generalizing De Morgan algebras by omitting the polarity condition (i.e. the law of double negation), J. Berman [2] began the study of what he called distributive lattices with an additional unary operation. Two years later, A. Urquhart in [11] named them Ockham lattices. These algebras are the algebraic counterpart of logics provided with a negation operator which satisfies De Morgan laws. Then, recall that an Ockham algebra is an algebra $\langle L, \wedge, \vee, f, 0,1\rangle$, where the reduct $\langle L, \wedge, \vee, 0,1\rangle$ is a bounded distributive lattice and f is a unary operation satisfying the following conditions:
(O1) $f 0=1$,
(O2) $f 1=0$,
(O3) $f(x \wedge y)=f x \vee f y$,
(O4) $f(x \vee y)=f x \wedge f y$.

Ockham algebras, which are more closely related to De Morgan algebras, are the ones that satisfy the identity $f^{2 m} x=x$ for some $m \geqslant 1$. The variety of these algebras will be denoted by $\mathcal{K}_{m, 0}$. More details on these algebras can be consulted in [3]. Furthermore, for the notions of universal algebra including De Morgan algebras and n-valued Łukasiewicz-Moisil algebras outlined in this paper we refer the reader to [4], [5].

On the other hand, in 2001, T. Almada and J. Vaz de Carvalho [1] generalized Lukasiewicz-Moisil algebras of order n by considering algebras of the same type which have a reduct in $\mathcal{K}_{m, 0}$ instead of a reduct which is a De Morgan algebra. Hence, they introduced the variety \mathcal{L}_{n}^{m} of m-generalized Lukasiewicz algebras of order n which were defined as follows:

An m-generalized Lukasiewicz algebra of order n (or L_{n}^{m}-algebra) is an algebra $\left\langle A, \vee, \wedge, f, D_{1}, \ldots, D_{n-1}, 0,1\right\rangle$ of type $(2,2,1, \ldots, 1,0,0)$ such that
$\left(\mathrm{GL}_{1}\right)\langle A, \vee, \wedge, 0,1\rangle$ is a bounded distributive lattice for which f is a dual endomorphism satisfying the identity $f^{2 m} x=x$,
($\left.\mathrm{GL}_{2}\right) D_{i}\left(x \wedge \bigvee_{p=0}^{m-1} f^{2 p} y\right)=D_{i} x \wedge D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} y\right), 1 \leqslant i \leqslant n-1$,
$\left(\mathrm{GL}_{3}\right) D_{i} x \wedge D_{j} x=D_{j} x, 1 \leqslant i \leqslant j \leqslant n-1$,
$\left(\mathrm{GL}_{4}\right) D_{i} x \vee f D_{i} x=1,1 \leqslant i \leqslant n-1$,
$\left(\mathrm{GL}_{5}\right) D_{i} f\left(\bigvee_{p=0}^{m-1} f^{2 p} x\right)=f D_{n-i}\left(\bigvee_{p=0}^{m-1} f^{2 p} x\right), 1 \leqslant i \leqslant n-1$,
$\left(\mathrm{GL}_{6}\right) D_{i} D_{j} x=D_{j} x, 1 \leqslant i, j \leqslant n-1$,
$\left(\mathrm{GL}_{7}\right) x \vee D_{1} x=D_{1} x$,
(GL 8) $D_{i} x=D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} x\right), 1 \leqslant i \leqslant n-1$,
$\left(\mathrm{GL}_{9}\right)(x \wedge f x) \vee y \vee f y=y \vee f y$,
$\left(\mathrm{GL}_{10}\right) \bigvee_{p=0}^{m-1} f^{2 p} x \leqslant \bigvee_{p=0}^{m-1} f^{2 p} y \vee f D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} y\right) \vee D_{i+1}\left(\bigvee_{p=0}^{m-1} f^{2 p} x\right), 1 \leqslant i \leqslant n-2$.
From the definition it follows that the identities listed below are also verified.

Proposition 1.1 ([1]). Let $A \in \mathcal{L}_{n}^{m}$. Then
$\left(\mathrm{GL}_{11}\right) D_{i}(x \vee y)=D_{i} x \vee D_{i} y, 1 \leqslant i \leqslant n-1$,
$\left(\mathrm{GL}_{12}\right) f^{2} D_{i} x=D_{i} x, 1 \leqslant i \leqslant n-1$,
$\left(\mathrm{GL}_{13}\right) D_{i} x \wedge f D_{i} x=0,1 \leqslant i \leqslant n-1$,
$\left(\mathrm{GL}_{14}\right) f x \vee D_{1} x=1, f\left(\bigvee_{p=0}^{m-1} f^{2 p} x\right) \wedge D_{n-1}\left(\bigvee_{p=0}^{m-1} f^{2 p} x\right)=0$,
$\left(\mathrm{GL}_{15}\right) \bigvee_{p=0}^{m-1} f^{2 p} x \wedge D_{n-1}\left(\bigvee_{p=0}^{m-1} f^{2 p} x\right)=D_{n-1}\left(\bigvee_{p=0}^{m-1} f^{2 p} x\right)$,
$\left(\mathrm{GL}_{16}\right) D_{i} 0=0, D_{i} 1=1,1 \leqslant i \leqslant n-1$.

Let $A \in \mathcal{L}_{n}^{m}$. The set $S_{A}=\left\{x \in A: f^{2} x=x\right\}=\left\{x \in A: \bigvee_{p=0}^{m-1} f^{2 p} x=x\right\}$ plays an important role in the study of these algebras. In particular, as a direct consequence of (GL GL_{8}) it follows that in L_{n}^{m}-algebras the operations $D_{i}, 1 \leqslant i \leqslant n-1$ are determined by its restrictions to S_{A}. Besides, S_{A} is a subalgebra of A and it is the greatest subalgebra of A that belongs to the variety of L_{n}-algebras ([1], Proposition 2.2).

In addition to the properties $\left(\mathrm{GL}_{11}\right)$ through $\left(\mathrm{GL}_{16}\right)$, we show other ones that will be useful throughout this paper.

Proposition 1.2 ([7]). Let $A \in \mathcal{L}_{n}^{m}$. Then the following properties are verified:
$\left(\mathrm{g}_{1}\right) D_{j} f D_{i} x=f D_{i} x, 1 \leqslant i, j \leqslant n-1$,
$\left(\mathrm{g}_{2}\right) f D_{i} x$ is the Boolean complement of $D_{i} x, 1 \leqslant i \leqslant n-1$,
(g3) $D_{i} x \leqslant D_{i} y$ if and only if $f D_{i} x \vee D_{i} y=1,1 \leqslant i \leqslant n-1$,
(g4) $D_{j}\left(D_{i} x \wedge D_{i} y\right)=D_{i} x \wedge D_{i} y, 1 \leqslant i, j \leqslant n-1$,
(g5) $x \wedge f D_{1} x=0$,
$\left(\mathrm{g}_{6}\right)\left(f D_{i} x \wedge f D_{i} y\right) \vee\left(D_{i} x \wedge D_{i} y\right)=\left(D_{i} x \vee f D_{i} y\right) \wedge\left(D_{i} y \vee f D_{i} x\right), 1 \leqslant i \leqslant n-1$,
$\left(\mathrm{g}_{7}\right) z \in S_{A}$ implies $D_{i}(x \wedge z)=D_{i} x \wedge D_{i} z, 1 \leqslant i \leqslant n-1$.
Bearing in mind some unpublished results established by M. Sequeira in the context of congruences on algebras of certain subvarieties of Ockham algebras some of which are $\mathcal{K}_{m, 0}, \mathrm{~J} . \operatorname{Vaz}$ de Carvalho considered certain elements which we will describe in what follows.

Let $A \in \mathcal{L}_{n}^{m}$ and $T=\{0,1, \ldots, m-1\}$. For each $z \in A$ and $s \in\{1, \ldots, m\}$ take

$$
q_{s} z=\bigwedge_{\substack{J \subseteq T \\|J|=s}} \bigvee_{j \in J} f^{2 j} z
$$

The same author asserted that it is straightforward to see the following statements.
Lemma 1.1 ([12]). Let $A \in \mathcal{L}_{n}^{m}$. Then
(i) $f^{2} q_{s} z=q_{s} z, s \in\{1, \ldots, m\}$,
(ii) $q_{s} z \leqslant q_{s+1} z, s \in\{1, \ldots, m-1\}$,
(iii) $q_{1} z=\bigwedge_{p=0}^{m-1} f^{2 p} z$ and $\bigvee_{p=0}^{m-1} f^{2 p} z=q_{m} z$,
(iv) $z \in S_{A}$ implies $q_{s} z=z, s \in\{1, \ldots, m\}$,
(v) $x \leqslant z$ implies $q_{s} x \leqslant q_{s} z, s \in\{1, \ldots, m\}$.

On the other hand, in [7], we introduced a new binary operation \rightarrow on L_{n}^{m}-algebras, called weak implication, as follows:

$$
x \rightarrow y=D_{1} f x \vee y
$$

The deductive systems associated with this implication enable us to establish an isomorphism between the congruence lattice of an m-generalized Lukasiewicz algebra A of order n and the lattice of all the deductive systems of A. This result turns out to be quite useful for characterizing the principal congruences on these algebras. Furthermore, it is worth noting that from this operation the one considered by R. Cignoli [6] for L_{n}-algebras is deduced.

Proposition 1.3. Let $A \in \mathcal{L}_{n}^{m}$. Then the following statements hold:

$$
\begin{aligned}
& \left(\mathrm{W}_{1}\right) x \rightarrow 1=1 \text {, } \\
& \left(\mathrm{W}_{2}\right) x \rightarrow x=1 \text {, } \\
& \left(\mathrm{W}_{3}\right) 1 \rightarrow x=x \text {, } \\
& \left(\mathrm{W}_{4}\right) x \rightarrow(y \rightarrow x)=1 \text {, } \\
& \text { (} \mathrm{W}_{5} \text {) } x \leqslant y \text { implies } x \rightarrow y=1 \text {, } \\
& \left(\mathrm{W}_{6}\right) x \rightarrow(y \rightarrow z)=(x \rightarrow y) \rightarrow(x \rightarrow z) \text {, } \\
& \left(\mathrm{W}_{7}\right) x \rightarrow(x \wedge y)=x \rightarrow y \text {, } \\
& \left(\mathrm{W}_{8}\right)(x \rightarrow y) \rightarrow((x \rightarrow z) \rightarrow(x \rightarrow(y \wedge z)))=1 \text {, } \\
& \left(\mathrm{W}_{9}\right)(x \wedge y) \rightarrow z=x \rightarrow(y \rightarrow z) \text {, } \\
& \left(\mathrm{W}_{10}\right) D_{i} x \rightarrow D_{i} y=f D_{i} x \vee D_{i} y, 1 \leqslant i \leqslant n-1 \text {, } \\
& \text { (} \mathrm{W}_{11} \text {) } D_{i} x \rightarrow D_{i} y=1 \text { if and only if } D_{i} x \leqslant D_{i} y, 1 \leqslant i \leqslant n-1 \text {, } \\
& \left(\mathrm{W}_{12}\right) D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)=1 \text { if and only if } x=y, 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m \text {, } \\
& \left(\mathrm{W}_{13}\right)((x \wedge z) \rightarrow(y \wedge z)) \rightarrow(z \rightarrow(x \rightarrow y))=1 \text {, } \\
& \left(\mathrm{W}_{14}\right) D_{i} q_{s} x \rightarrow D_{1} x=1,1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m \text {, } \\
& \left(\mathrm{W}_{15}\right) D_{i} q_{s}(x \wedge f x) \rightarrow D_{i} q_{s}((x \wedge f x) \wedge(y \vee f y))=1,1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m \text {, } \\
& \left(\mathrm{W}_{16}\right) D_{i} q_{s}\left(\bigvee_{p=0}^{m-1} f^{2 p} x\right) \rightarrow D_{i} q_{s}\left((\bigvee _ { p = 0 } ^ { m - 1 } f ^ { 2 p } x) \wedge \left(\bigvee_{p=0}^{m-1} f^{2 p} y \vee f D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} y\right) \vee\right.\right. \\
& \left.\left.D_{i+1}\left(\bigvee_{p=0}^{m-1} f^{2 p} x\right)\right)\right)=1,1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m, \\
& \left(\mathrm{~W}_{17}\right) D_{i} q_{s} x \rightarrow D_{i} q_{s}\left(x \wedge f^{2 m-1}(f x \wedge f y)\right)=1,1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m, \\
& \left(\mathrm{~W}_{18}\right) D_{i} q_{s}\left(x \wedge f^{2 m-1}(f y \wedge f z) \vee f^{2 m-1}(f(z \wedge x) \wedge f(y \wedge x))\right) \rightarrow \\
& D_{i} q_{s}\left(x \wedge f^{2 m-1}(f y \wedge f z) \wedge f^{2 m-1}(f(z \wedge x) \wedge f(y \wedge x))\right)=1,1 \leqslant i \leqslant n-1, \\
& 1 \leqslant s \leqslant m \text {, } \\
& \left(\mathrm{W}_{19}\right) x \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right)=y \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right), \\
& \left(\mathrm{W}_{20}\right) D_{j} q_{k} x \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right)=D_{j} q_{k} y \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow\right. \\
& \left.D_{i} q_{s}(x \wedge y)\right), 1 \leqslant j \leqslant n-1,1 \leqslant k \leqslant m, \\
& \left(\mathrm{~W}_{21}\right) D_{n-1} q_{1} x \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right)= \\
& D_{n-1} q_{1} y \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right) .
\end{aligned}
$$

Proof. We will only prove $\left(\mathrm{W}_{12}\right),\left(\mathrm{W}_{13}\right),\left(\mathrm{W}_{14}\right),\left(\mathrm{W}_{15}\right),\left(\mathrm{W}_{18}\right),\left(\mathrm{W}_{19}\right)$ and $\left(\mathrm{W}_{20}\right)$ since the proof of the remaining properties is routine.
$\left(W_{12}\right)$: It is a direct consequence of [12], Proposition 4.2.
$\left(\mathrm{W}_{13}\right):$ From $\left(\mathrm{W}_{9}\right)$ and $\left(\mathrm{W}_{6}\right)$ we have that $((x \wedge z) \rightarrow(y \wedge z)) \rightarrow(z \rightarrow(x \rightarrow y))=$ $((x \wedge z) \rightarrow(y \wedge z)) \rightarrow((x \wedge z) \rightarrow y)$. Hence, by $\left(\mathrm{W}_{5}\right)$ and $\left(\mathrm{W}_{1}\right)$ we conclude that $((x \wedge z) \rightarrow(y \wedge z)) \rightarrow(z \rightarrow(x \rightarrow y))=(x \wedge z) \rightarrow 1=1$.
$\left(\mathrm{W}_{14}\right)$: From (ii) in Lemma 1.1 and $\left(\mathrm{GL}_{11}\right)$ we infer that $D_{i} q_{s} x \leqslant D_{i} q_{m} x, 1 \leqslant i \leqslant$ $n-1,1 \leqslant s \leqslant m$. On the other hand, by (iii) in Lemma 1.1, (GL) and (GL GL_{8}) we have that $D_{i} q_{m} x=D_{i} x \leqslant D_{1} x, 1 \leqslant i \leqslant n-1$ and so, by $\left(\mathrm{W}_{11}\right)$ we conclude that $D_{i} q_{s} x \rightarrow D_{1} x=1,1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$.
$\left(\mathrm{W}_{15}\right)$: From (GL$\left.)_{9}\right)$ we have that $x \wedge f x=(x \wedge f x) \wedge(y \vee f y)$ and so, $D_{i} q_{s}(x \wedge f x)=$ $D_{i} q_{s}((x \wedge f x) \wedge(y \vee f y)), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$. Hence, by $\left(\mathrm{W}_{2}\right)$ we conclude the proof.
$\left(\mathrm{W}_{18}\right)$: It is a direct consequence of the fact that $x \wedge f^{2 m-1}(f y \wedge f z)=f^{2 m-1}(f(z \wedge$ $x) \wedge f(y \wedge x))$ and $\left(\mathrm{W}_{2}\right)$.
(W_{19}): By virtue of $\left(\mathrm{g}_{1}\right)$ and the definition of the weak implication we have that $D_{i} q_{s}(x \wedge y) \vee f D_{i} q_{s}(x \vee y)=D_{i} q_{s}(x \wedge y) \vee D_{1} f D_{i} q_{s}(x \vee y)=D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)$, $1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$ and so, by [12], Proposition 3.5, we conclude that $x \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right)=y \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right)$.
$\left(\mathrm{W}_{20}\right)$: Following reasoning analogous to that in $\left(\mathrm{W}_{19}\right)$ we obtain the proof.
Next, in order to simplify reading we will summarize the fundamental concepts we use on the class of standard systems of implicative extensional propositional calculi ([9], VIII).

Let $\mathcal{L}=\left(A^{0}, F\right)$ be a formalized language of zero order ([9], VIII 1). A system $\mathcal{S}=\left(\mathcal{L}, C_{\mathcal{L}}\right)$, where $C_{\mathcal{L}}$ is determined by a set \mathcal{A} of logical axioms and by a set $\left\{r_{1}, \ldots, r_{k}\right\}$ of rules of inference, belongs to the class \mathbf{S} of standard systems of implicative extensional propositional calculi provided that the following conditions are satisfied:
(s1) the set \mathcal{A} of logical axioms is closed under substitutions,
(s2) the rules of inference $r_{i}, i=1, \ldots, k$, are invariant under substitutions,
(s3) for every formula $\alpha \in F, \alpha \Rightarrow \alpha \in C_{\mathcal{L}}(\emptyset)$,
(s4) for all formulas $\alpha, \beta \in F$ and for every set $H \subseteq F$, if $\alpha, \alpha \Rightarrow \beta \in C_{\mathcal{L}}(H)$, then $\beta \in C_{\mathcal{L}}(H)$,
(s5) for all formulas $\alpha, \beta, \gamma \in F$ and for every set $H \subseteq F$, if $\alpha \Rightarrow \beta$, $\beta \Rightarrow \gamma \in C_{\mathcal{L}}(H)$, then $\alpha \Rightarrow \gamma \in C_{\mathcal{L}}(H)$,
(s6) for every formula $\alpha \in F$ and for every set $H \subseteq F$ the condition $\alpha \in C_{\mathcal{L}}(H)$ implies that for every formula $\beta \in F, \beta \Rightarrow \alpha \in C_{\mathcal{L}}(H)$,
(s7) for all formulas $\alpha, \beta \in F$ and for every set $H \subseteq F$ the condition $\alpha \Rightarrow \beta, \beta \Rightarrow$ $\alpha \in C_{\mathcal{L}}(H)$ implies that for each unary connective \circ of $\mathcal{L}, \circ \alpha \Rightarrow \circ \beta \in C_{\mathcal{L}}(H)$,
(s8) for all formulas $\alpha, \beta, \gamma, \delta \in F$ and for every set $H \subseteq F$ the condition $\alpha \Rightarrow$ $\beta, \beta \Rightarrow \alpha, \gamma \Rightarrow \delta, \delta \Rightarrow \gamma \in C_{\mathcal{L}}(H)$ implies that for each binary connective $*$ of $\mathcal{L},(\alpha * \gamma) \Rightarrow(\beta * \delta) \in C_{\mathcal{L}}(H)$.
If \mathcal{S} is a system in \mathbf{S} and there exists a formula α of \mathcal{L} such that $\alpha \notin C_{\mathcal{L}}(\emptyset)$ we will say that \mathcal{S} is consistent.

On the other hand, any system $\mathcal{S} \in \mathbf{S}$ determines a class of algebras called \mathcal{S} algebras in the following way: an algebra $\mathcal{U}=\left\langle A, \Rightarrow, *_{1}, \ldots, *_{k}, o_{1}, \ldots, o_{t}, e_{1}, \ldots\right.$, $\left.e_{m}, V\right\rangle$ associated with the formalized language \mathcal{L} ([9], VIII 1) is an \mathcal{S}-algebra provided that
(a1) if a formula α of \mathcal{L} belongs to the set \mathcal{A} of logical axioms of \mathcal{S}, then $v(\alpha)=\vee$ for every valuation v of \mathcal{L} in \mathcal{U},
(a2) if a rule of inference r in \mathcal{S} assigns to the premises $\alpha_{1}, \ldots, \alpha_{n}$ the conclusion β, then for every valuation v of \mathcal{L} in \mathcal{U} the condition $v\left(\alpha_{1}\right)=\ldots=v\left(\alpha_{n}\right)=\vee$ implies $v(\beta)=\vee$,
(a3) for all $a, b, c \in A$, if $a \Rightarrow b=\vee$ and $b \Rightarrow c=\vee$, then $a \Rightarrow c=\vee$,
(a4) for all $a, b \in A$, if $a \Rightarrow b=\vee$ and $b \Rightarrow a=\vee$, then $a=b$.
Let $\mathcal{S}=\left(\mathcal{L}, C_{\mathcal{L}}\right)$ be a consistent system in \mathbf{S}. A formula $\alpha \in \mathcal{L}$ is valid in an algebra \mathcal{U} associated with \mathcal{L} provided that $v(\alpha)=\vee$ for every valuation v of \mathcal{L} in \mathcal{U}. Furthermore, α is \mathcal{S}-valid if it is valid in every \mathcal{S}-algebra. Taking into account that if α is derivable in \mathcal{S} ([9], VIII 5), then $v(\alpha)=\vee$ for every valuation v of \mathcal{L} in every \mathcal{S}-algebra \mathcal{U} ([9], VIII 6.1), every formula derivable in \mathcal{S} is \mathcal{S}-valid. The converse statement is also true and this equivalence is known as the completeness theorem for propositional calculi in the class \mathbf{S} ([9], VIII 7.2).

2. The standard implication

In order to establish an implicative extensional propositional calculus (see [9]) which has \mathcal{L}_{n}^{m}-algebras as the algebraic counterpart, we introduce another implication operation \rightarrow on these algebras by means of the formula

$$
x \rightarrow y=D_{n-1} q_{1} y \vee \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right)
$$

and we call it standard implication. Furthermore, this implication allows us to obtain a new description of the congruence lattice $\operatorname{Con}(A)$ of an \mathcal{L}_{n}^{m}-algebra A which plays an important role in what follows.

Proposition 2.1. Let $A \in \mathcal{L}_{n}^{m}$. Then the following statements hold:
(S1) $x \rightarrow 1=1$,
(S2) $x \rightarrow x=1$,
(S3) $1 \rightarrow x=D_{n-1} q_{1} x$,
(S4) $D_{n-1} q_{1} x \wedge(x \rightarrow y)=D_{n-1} q_{1} y \wedge(y \rightarrow x)$,
(S5) $x \wedge(x \rightarrow y) \wedge(y \rightarrow x)=y \wedge(x \rightarrow y) \wedge(y \rightarrow x)$,
(S6) $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z))=1$,
(S7) $\left(D_{n-1} q_{1} x \wedge(x \rightarrow y)\right) \rightarrow y=1$,
(S8) $f^{2}(x \rightarrow y)=x \rightarrow y$,
(S9) $D_{i}(x \rightarrow y)=x \rightarrow y, 1 \leqslant i \leqslant n-1$.
Proof. We will only prove (S4), (S5), (S6) and (S9), since the proof of the others is straightforward.
(S4): Taking into account the definition of the standard implication and (W_{21}) we have that $D_{n-1} q_{1} x \wedge(x \rightarrow y)=\left(D_{n-1} q_{1} x \wedge D_{n-1} q_{1} y\right) \vee\left(D_{n-1} q_{1} x \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee\right.\right.$ $\left.\left.y) \rightarrow D_{i} q_{s}(x \wedge y)\right)\right)=\left(D_{n-1} q_{1} x \wedge D_{n-1} q_{1} y\right) \vee\left(D_{n-1} q_{1} y \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow\right.\right.$ $\left.\left.D_{i} q_{s}(x \wedge y)\right)\right)=D_{n-1} q_{1} y \wedge(y \rightarrow x)$.
(S5): Taking into account (i) and (iii) in Lemma 1.1 we infer that $D_{n-1} q_{1} x \leqslant q_{1} x \leqslant$ x and so we have that $x \wedge(x \rightarrow y) \wedge(y \rightarrow x)=x \wedge\left(D_{n-1} q_{1} y \vee \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow\right.\right.$ $\left.\left.D_{i} q_{s}(x \wedge y)\right)\right) \wedge\left(D_{n-1} q_{1} x \vee \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right)\right)=\left(D_{n-1} q_{1} y \vee\right.$ $\left.\bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right)\right) \wedge\left(\left(x \wedge D_{n-1} q_{1} x\right) \vee\left(x \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow\right.\right.\right.$ $\left.\left.D_{i} q_{s}(x \wedge y)\right)\right)=\left(D_{n-1} q_{1} y \vee \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right)\right) \wedge\left(D_{n-1} q_{1} x \vee\right.$ $\left.\left(x \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right)\right)\right)=\left(D_{n-1} q_{1} x \wedge D_{n-1} q_{1} y\right) \vee\left(D_{n-1} q_{1} y \wedge x \wedge\right.$ $\left.\bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right)\right) \vee\left(D_{n-1} q_{1} x \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge\right.\right.$ $y))) \vee\left(x \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right)\right)$.

Analogously, we have that $y \wedge((x \rightarrow y) \wedge(y \rightarrow x))=\left(D_{n-1} q_{1} y \wedge D_{n-1} q_{1} x\right) \vee$ $\left(D_{n-1} q_{1} x \wedge y \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right) \vee\left(D_{n-1} q_{1} y \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow\right.\right.\right.$ $\left.D_{i} q_{s}(x \wedge y)\right) \vee\left(y \wedge \bigwedge_{s=1}^{m} \bigwedge_{i=1}^{n-1}\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)\right)\right.$. Hence, taking into account $\left(\mathrm{W}_{19}\right)$ and $\left(\mathrm{W}_{21}\right)$ we infer that $x \wedge(x \rightarrow y) \wedge(y \rightarrow x)=y \wedge((x \rightarrow y) \wedge(y \rightarrow x))$.
(S6): Let A be a subdirectly irreducible L_{n}^{m}-algebra, then by ([1], Proposition 4.1) we have that the set of Boolean elements of S_{A} is $\{0,1\}$. Hence, by (i) in Lemma 1.1 and $\left(\mathrm{g}_{2}\right)$ we have that $D_{i} q_{s}(a \vee b) \rightarrow D_{i} q_{s}(a \wedge b) \in\{0,1\}$ for all $a, b \in A$. Suppose now that there are $x, y \in A$ such that $D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)=1$. Hence, by $\left(\mathrm{W}_{12}\right)$ it follows that $x=y$ and so, by $\left(\mathrm{W}_{2}\right)$ we have that $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow$ $(x \rightarrow z))=(x \rightarrow x) \rightarrow((x \rightarrow z) \rightarrow(x \rightarrow z))=1$. On the other hand, if we suppose that there are $x, y, z \in A$ such that $D_{i} q_{s}(y \vee z) \rightarrow D_{i} q_{s}(y \wedge z)=1$ or $D_{i} q_{s}(x \vee z) \rightarrow D_{i} q_{s}(x \wedge z)=1$, following an analogously reasoning we prove (S6). Finally, if $D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y)=D_{i} q_{s}(y \vee z) \rightarrow D_{i} q_{s}(y \wedge z)=D_{i} q_{s}(x \vee z) \rightarrow$ $D_{i} q_{s}(x \wedge z)=0$, then $y \rightarrow z=D_{n-1} q_{1} z=x \rightarrow z$ and so, by $\left(\mathrm{W}_{2}\right)$ and $\left(\mathrm{W}_{1}\right)$ we conclude the proof.
(S9): It follows as a consequence of $\left(\mathrm{g}_{1}\right),\left(\mathrm{GL}_{11}\right),\left(\mathrm{GL}_{12}\right),\left(\mathrm{g}_{7}\right)$ and $\left(\mathrm{GL}_{6}\right)$.
For any $A \in \mathcal{L}_{n}^{m}$ we will denote by $\mathcal{D}(A)$ the set of all deductive systems of A associated with \rightarrow, which are defined as usual ([7]).

Lemma 2.1. Let $A \in \mathcal{L}_{n}^{m}$ and $F \in \mathcal{D}(A)$. Then the following conditions are equivalent for all $x, y \in A$:
(i) there is $u \in F$ such that $D_{n-1} u \rightarrow f x=D_{n-1} u \rightarrow f y$,
(ii) there is $w \in F$ such that $x \wedge D_{n-1} w=y \wedge D_{n-1} w$,
(iii) $x \rightarrow y, y \rightarrow x \in F$.

Proof. Taking into account [7], Remark 2.11, we will only prove the equivalence between (ii) and (iii).
(ii) \Rightarrow (iii): From the hypothesis and [7], Theorem 2.14, we have that $(x, y) \in$ $R_{F}=\left\{(a, b) \in A^{2}:\right.$ there is $w \in F$ such that $\left.a \wedge D_{n-1} w=b \wedge D_{n-1} w\right\}$ and so, $\left(D_{i} q_{s}(x \vee y), D_{i} q_{s}(x \wedge y)\right) \in R_{F}$. Hence, $\left(D_{i} q_{s}(x \vee y) \rightarrow D_{i} q_{s}(x \wedge y), 1\right) \in R_{F}$ which implies that $\left(D_{n-1} q_{1} y \vee \bigwedge_{i=1}^{n-1} \bigwedge_{s=1}^{m}\left(D_{i} q_{s}(x \vee y) \rightarrow q_{s}(x \wedge y)\right), 1\right) \in R_{F}$. Therefore, $x \rightarrow y \in F$. Similarly, we get that $y \rightarrow x \in F$.
(iii) \Rightarrow (ii): From the hypothesis and (S8) we have that $w=(x \rightarrow y) \wedge(y \rightarrow x) \in$ $F \cap S_{A}$ and taking into account that S_{A} is an L_{n}-algebra we have that $D_{n-1} w \leqslant w$. Hence, by (S5) we conclude that $x \wedge D_{n-1} w=y \wedge D_{n-1} w$.

From now on, for any $A \in \mathcal{L}_{n}^{m}$ we will denote by A / R the quotient algebra of A by R for any $R \in \operatorname{Con}(A)$. Besides, for $x \in A$ the equivalence class of x modulo R will be denoted by $[x]_{R}$.

Theorem 2.1. Let $A \in \mathcal{L}_{n}^{m}$. Then the following statements hold:
(i) $\operatorname{Con}(A)=\{R(F): F \in \mathcal{D}(A)\}$ where $R(F)=\left\{(x, y) \in A^{2}: x \rightarrow y, y \rightarrow\right.$ $x \in F\}$,
(ii) the lattices $\operatorname{Con}(A)$ and $\mathcal{D}(A)$ are isomorphic considering the applications $\theta \longmapsto$ $[1]_{\theta}$ and $F \longmapsto R(F)$ which are inverse to each other.

Proof. It is a direct consequence of Lemma 2.1 and [7], Theorem 2.14.
Let $A \in \mathcal{L}_{n}^{m}$ and $z \in A$. We will denote by $[z)$ the principal filter of A generated by z (i.e., $[z)=\{x \in A: z \leqslant x\}$).

Lemma 2.2. Let $A \in \mathcal{L}_{n}^{m}$ and $a, b \in A$. If $w=(a \rightarrow b) \wedge(b \rightarrow a)$, then [w) is a deductive system of A.

Proof. Taking into account [7], Proposition 2.6, it only remains to prove that $f D_{n-1} f x \in[w)$ for all $x \in[w)$. By (S8), $\left(\mathrm{GL}_{5}\right),\left(\mathrm{g}_{7}\right)$ and (S9) we have that $f D_{n-1} f w=f D_{n-1} f((a \rightarrow b) \wedge(b \rightarrow a))=f^{2} D_{1}((a \rightarrow b) \wedge(b \rightarrow a))=f^{2}\left(D_{1}(a \rightarrow\right.$ $\left.b) \wedge D_{1}(b \rightarrow a)\right)=f^{2}((a \rightarrow b) \wedge(b \rightarrow a))=w$. From this assertion the proof is straightforward.

Taking into account the above results we obtain a characterization of the principal congruences on L_{n}^{m}-algebras. For any $A \in \mathcal{L}_{n}^{m}$ and $a, b \in A$ we will denote by $\theta(a, b)$ the principal congruence of A generated by (a, b).

Theorem 2.2. Let $A \in \mathcal{L}_{n}^{m}$ and $a, b \in A$. Then $\theta(a, b)=\left\{(x, y) \in A^{2}: x \wedge\right.$ $((a \rightarrow b) \wedge(b \rightarrow a))=y \wedge((a \rightarrow b) \wedge(b \rightarrow a))\}$.

Proof. Let $T=\left\{(x, y) \in A^{2}: x \wedge((a \rightarrow b) \wedge(b \rightarrow a))=y \wedge((a \rightarrow b) \wedge(b \rightarrow\right.$ $a)$) $\}$. By (S5) we have that $(a, b) \in T$. Besides, by (S9) and (S8) it follows that $T=\left\{(x, y) \in A^{2}: x \wedge D_{n-1}((a \rightarrow b) \wedge(b \rightarrow a))=y \wedge D_{n-1}((a \rightarrow b) \wedge(b \rightarrow a))\right\}$ and so, by Lemma 2.2, Lemma 2.1 and [7], Theorem 2.14, we conclude that $T \in \operatorname{Con}(A)$.

On the other hand, let $R \in \operatorname{Con}(A)$ be such that $(a, b) \in R$ and suppose that $(x, y) \in T$. Hence, we have that $((a \rightarrow b) \wedge(b \rightarrow a), 1) \in R$ and so, $(x \wedge(a \rightarrow$ b) $\wedge(b \rightarrow a), x) \in R$ and $(y \wedge(a \rightarrow b) \wedge(b \rightarrow a), y) \in R$. From these last assertions and the fact that $(x, y) \in T$ we conclude that $(x, y) \in R$. Therefore, $T=\theta(a, b)$.

Example 2.1. Let us consider the L_{3}^{2}-algebra A shown in Figure 1, where the operations $f, D_{i}, 1 \leqslant i \leqslant 2$ and $q_{i}, 1 \leqslant i \leqslant 2$ are defined as follows:

If $w=(a \rightarrow b) \wedge(b \rightarrow a)=h$, by Lemma 2.2 we have that $F=[h)=\{h, i, j$, $k, m, n, 1\}$ is a deductive system of A. Hence, by Theorem 2.1 we have that $A / R(F)=$ $\left\{[0]_{R(F)},[1]_{R(F)}\right\}$ where $[1]_{R(F)}=F$ and $[0]_{R(F)}=\{0, a, b, c, d, e, g\}$.

x	0	a	b	c	d	e	g
$f x$	1	n	m	k	i	j	h
$D_{1} x$	0	g	g	g	g	g	g
$D_{2} x$	0	0	0	0	g	g	g
$q_{1} x$	0	0	0	c	c	c	g
$q_{2} x$	0	c	c	c	g	g	g

x	h	i	j	k	m	n	1
$f x$	g	e	d	c	a	b	0
$D_{1} x$	h	1	1	1	1	1	1
$D_{2} x$	h	h	h	h	1	1	1
$q_{1} x$	h	h	h	k	k	k	1
$q_{2} x$	h	k	k	k	1	1	1

On the other hand, by (S1) and (S3) we have that $g \rightarrow 1=1$ and $1 \rightarrow g=g$. Then, taking into account Theorem 2.2 we obtain that $\theta(g, 1)=\left\{(x, y) \in A^{2}: x \wedge g=\right.$ $y \wedge g\}=\operatorname{Id}_{A} \cup\{(g, 1),(1, g),(d, m),(m, d),(n, e),(e, n),(c, k),(k, c),(a, i),(i, a),(b, j)$, $(j, b),(0, h),(h, 0)\}$.

Figure 1.

From Theorem 2.2 it is easy to verify Proposition 2.2, which will be quite useful in the development of the \mathcal{L}_{n}^{m}-propositional calculus.

Proposition 2.2. Let $A \in \mathcal{L}_{n}^{m}$. Then the following statements hold:
(S10) $D_{i} x \wedge(x \rightarrow y) \wedge(y \rightarrow x)=D_{i} y \wedge(x \rightarrow y) \wedge(y \rightarrow x), 1 \leqslant i \leqslant n-1$,
$(\mathrm{S} 11) D_{i} q_{s}(f x \vee f y) \wedge(x \rightarrow y) \wedge(y \rightarrow x)=D_{i} q_{s}(f x \wedge f y) \wedge(x \rightarrow y) \wedge(y \rightarrow x)$, $1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(S12) $D_{i} q_{s}((x \wedge z) \vee(y \wedge z)) \wedge(x \rightarrow y) \wedge(y \rightarrow x)=D_{i} q_{s}((x \wedge z) \wedge(y \wedge z)) \wedge(x \rightarrow$ $y) \wedge(y \rightarrow x), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(S13) $D_{i} q_{s}((x \rightarrow z) \vee(y \rightarrow z)) \wedge(x \rightarrow y) \wedge(y \rightarrow x)=D_{i} q_{s}((x \rightarrow z) \wedge(y \rightarrow z)) \wedge(x \rightarrow$ $y) \wedge(y \rightarrow x), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(S14) $D_{i} q_{s}((x \rightarrow z) \vee(y \rightarrow z)) \wedge(x \rightarrow y) \wedge(y \rightarrow x)=D_{i} q_{s}((x \rightarrow z) \wedge(y \rightarrow z)) \wedge(x \rightarrow$ $y) \wedge(y \rightarrow x), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$.

Proof. It is routine.

3. A Characterization of $k_{2 m}$-Lattices

The goal of this section is to find an equivalent formulation to $\left(\mathrm{GL}_{1}\right)$ with a simpler proof than the previous one. To this end, we take into account the results established in [8].

Definition 3.1. A $k_{2 m}$-lattice, $m \in \mathbb{N}$, is an algebra $\langle A, \vee, \wedge, f\rangle$ such that $\langle A, \vee, \wedge\rangle$ is a distributive lattice and f is a unary operation on A verifying the following conditions:
(r1) $f^{2 m} x=x$,
(r2) $f(x \vee y)=f x \wedge f y$.

Theorem 3.2 enables us to characterize $k_{2 m}$-lattices by means of the operations of infimum \wedge and the dual endomorphism f. This characterization results easier by the use of Sholander's characterization of distributive lattices as follows:

Theorem $3.1([10])$. An algebra $\langle A, \wedge, \vee\rangle$ of type $(2,2)$ is a distributive lattice if and only if it verifies the conditions
(11) $a=a \wedge(a \vee b)$,
(12) $a \wedge(b \vee c)=(c \wedge a) \vee(b \wedge a)$.

Theorem 3.2. Let $\langle A, \wedge, f\rangle$ be an algebra of type $(2,1)$. Define $(s): a \vee b=$ $f^{2 m-1}(f a \wedge f b)$ for all $a, b \in A$. Then $\langle A, \wedge, \vee, f\rangle$ is a $k_{2 m}$-lattice, $m \in \mathbb{N}$, if and only if the following conditions are verified:
(m1) $a=a \wedge f^{2 m-1}(f a \wedge f b)$,
$(\mathrm{m} 2) a \wedge f^{2 m-1}(f b \wedge f c)=f^{2 m-1}(f(c \wedge a) \wedge f(b \wedge a))$.
Proof. From (11), (12) and taking into account the definition of \vee we have that (m1) and (m2) immediately follow. In order to prove the converse we will first show that A is a distributive lattice, which is a consequence of the fact that (11) and (12) hold. Indeed, from (m1), (m2) and (s) we have (l1): $a \wedge(a \vee b)=f^{2 m-1}(f a \wedge f b) \wedge a=$ a and (12): $(c \wedge a) \vee(b \wedge a)=f^{2 m-1}(f(c \wedge a) \wedge f(b \wedge a))=a \wedge f^{2 m-1}(f b \wedge f c)=a \wedge(b \vee c)$. Hence, by (m1) and (m2) we obtain (r1): $a=a \wedge f^{2 m-1}(f a \wedge f a)=f^{2 m-1}(f(a \wedge$ $a) \wedge f(a \wedge a))=f^{2 m-1}(f a \wedge f a)=f^{2 m-1} f a$. Finally, from (r1) and (s) we get (r2): $f(a \vee b)=f f^{2 m-1}(f a \wedge f b)=f a \wedge f b$.

4. The \mathcal{L}_{n}^{m}-Propositional calculus

In this section, which is the core of this paper, we describe a propositional calculus and show that it has L_{n}^{m}-algebras as the algebraic counterpart. We are interested in finding a calculus which belongs to the class of standard systems of implicative propositional calculi. The complexity of the standard implication together with the fact that L_{n}^{m}-algebras do not verify Moisil's determination principle and that the operators D_{i} are not \wedge-homomorphisms have made that in this calculus the number of axioms and inference rules are greater than in n-valued Łukasiewicz propositional calculus ([4]). The terminology and symbols used here coincide with those used in [9].

Let $\mathcal{L}=\left(A^{0}, F\right)$ be a formalized language of zero order where in the alphabet $A^{0}=\left(V, L_{0}, L_{1}, L_{2}, U\right)$ the set
(i) V of propositional variables is countable;
(ii) L_{0} is empty;
(iii) L_{1} contains n elements denoted by f, D_{i} for $1 \leqslant i \leqslant n-1$, called negation sign and generalized Moisil operators signs, respectively;
(iv) L_{2} contains four elements denoted by $\wedge, \vee, \rightarrow$ and \rightarrow called conjunction sign, disjunction sign, weak implication sign and standard implication sign, respectively;
(v) U contains two elements denoted by (,).

In what follows, for any $\alpha_{1}, \ldots, \alpha_{k}$ in the set F of all formulas over $A^{0}, \bigvee_{p=0}^{k} \alpha_{p}$, $\bigwedge_{p=0}^{k} \alpha_{p}$ will mean $\alpha_{0} \vee\left(\ldots \vee\left(\alpha_{k-1} \vee \alpha_{k}\right) \ldots\right)$ and $\alpha_{0} \wedge\left(\ldots \wedge\left(\alpha_{k-1} \wedge \alpha_{k}\right) \ldots\right)$, respectively. Besides, for any α in $F, f^{t} \alpha$ is the result of applying $f t$ times to α if $t>0$, or α if $t=0$. Furthermore, for any α, β in F, we will write for brevity $\alpha \leftrightarrow \beta, \alpha \leftrightarrow \beta$ and $q_{s} \alpha$ instead of $(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha),(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)$ and $\bigwedge_{J \subseteq T,|J|=s} \bigvee_{j \in J} f^{2 j} \alpha$, where $T=\{0,1, \ldots, m-1\}$ and $s \in\{1, \ldots, m\}$, respectively.

We assume that the set \mathcal{A}_{l} of logical axioms consists of all formulas of the following form, where α, β, γ are any formulas in F :
(A1) $\alpha \rightarrow(\beta \rightarrow \alpha)$,
(A2) $(\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow((\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma))$,
(A3) $\alpha \rightarrow(\alpha \vee \beta)$,
(A4) $\beta \rightarrow(\alpha \vee \beta)$,
(A5) $(\alpha \wedge \beta) \rightarrow \alpha$,
(A6) $(\alpha \wedge \beta) \rightarrow \beta$,
(A7) $(\alpha \rightarrow \beta) \rightarrow((\alpha \rightarrow \gamma) \rightarrow(\alpha \rightarrow(\beta \wedge \gamma)))$,
(A8) $\alpha \rightarrow D_{1} \alpha$,
(A9) $D_{j} D_{i} \alpha \leftrightarrow D_{i} \alpha, 1 \leqslant i, j \leqslant n-1$,
(A10) $D_{i} \bigvee_{p=0}^{m-1} f^{2 p} \alpha \leftrightarrow D_{i} \alpha, 1 \leqslant i \leqslant n-1$,
(A11) $((\alpha \wedge \gamma) \rightarrow(\beta \wedge \gamma)) \rightarrow(\gamma \rightarrow(\alpha \rightarrow \beta))$,
(A12) $D_{i} \alpha \vee f D_{i} \alpha, 1 \leqslant i \leqslant n-1$,
(A13) $D_{i} q_{s}(\alpha \vee \alpha) \rightarrow D_{i} q_{s}(\alpha \wedge \alpha), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(A14) $D_{i} q_{s} \alpha \rightarrow D_{i} q_{s}\left(\alpha \wedge D_{1} \alpha\right), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(A15) $D_{i} q_{s}\left(f^{2} D_{i} \alpha \vee D_{i} \alpha\right) \rightarrow D_{i} q_{s}\left(f^{2} D_{i} \alpha \wedge D_{i} \alpha\right), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(A16) $D_{i} q_{s}\left(D_{i}\left(\alpha \wedge \bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee\left(D_{i} \alpha \wedge D_{i} \beta\right)\right) \rightarrow$
$D_{i} q_{s}\left(D_{i}\left(\alpha \wedge \bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \wedge\left(D_{i} \alpha \wedge D_{i} \beta\right)\right), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(A17) $D_{i} q_{s}\left(D_{j} \alpha \vee\left(D_{i} \alpha \wedge D_{j} \alpha\right)\right) \rightarrow D_{i} q_{s}\left(D_{j} \alpha \wedge\left(D_{i} \alpha \wedge D_{j} \alpha\right)\right), 1 \leqslant i \leqslant j \leqslant n-1$, $1 \leqslant s \leqslant m$,
(A18) $D_{i} q_{s}\left(D_{i} f\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \vee f D_{n-i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right) \rightarrow$
$D_{i} q_{s}\left(D_{i} f\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \wedge f D_{n-i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
$(\mathrm{A} 19) D_{i} q_{s}(\alpha \wedge f \alpha) \rightarrow D_{i} q_{s}((\alpha \wedge f \alpha) \wedge(\beta \vee f \beta)), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(A20) $D_{i} q_{s}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \rightarrow$
$D_{i} q_{s}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha \wedge\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta \vee f D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee D_{i+1}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right)\right)$,
$1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(A21) $D_{i} q_{s} \alpha \rightarrow D_{i} q_{s}\left(\alpha \wedge f^{2 m-1}(f \alpha \wedge f \beta)\right), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(A22) $D_{i} q_{s}\left(\left(\alpha \wedge f^{2 m-1}(f \beta \wedge f \gamma)\right) \vee f^{2 m-1}(f(\gamma \wedge \alpha) \wedge f(\beta \wedge \alpha))\right) \rightarrow D_{i} q_{s}\left(\alpha \wedge f^{2 m-1}(f \beta \wedge\right.$ $\left.f \gamma) \wedge f^{2 m-1}(f(\gamma \wedge \alpha) \wedge f(\beta \wedge \alpha))\right), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(A23) $\alpha \rightarrow \beta \leftrightarrow D_{n-1} q_{1} \beta \vee \bigwedge_{i=1}^{n-1} \bigwedge_{s=1}^{m}\left(D_{i} q_{s}(\alpha \vee \beta) \rightarrow D_{i} q_{s}(\alpha \wedge \beta)\right)$,
$(\mathrm{A} 24)\left(D_{i} q_{s}(f \alpha \vee f \beta) \wedge(\alpha \longleftrightarrow \beta)\right) \rightarrow\left(D_{i} q_{s}(f \alpha \wedge f \beta) \wedge(\alpha \leftrightarrow \beta)\right), 1 \leqslant i \leqslant n-1$, $1 \leqslant s \leqslant m$,
(A25) $\left(D_{i} \alpha \wedge(\alpha \leftrightarrow \beta)\right) \rightarrow\left(D_{i} \beta \wedge(\alpha \leftrightarrow \beta)\right), 1 \leqslant i \leqslant n-1$,
(A26) $\left(D_{i} q_{s}((\alpha \wedge \gamma) \vee(\beta \wedge \gamma)) \wedge(\alpha \longleftrightarrow \beta)\right) \rightarrow\left(D_{i} q_{s}((\alpha \wedge \gamma) \wedge(\beta \wedge \gamma)) \wedge(\alpha \leftrightarrow \beta)\right)$, $1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(A27) $(\alpha \wedge \gamma) \rightarrow(\gamma \wedge \alpha)$,
(A28) $\left(D_{i} q_{s}((\gamma \rightarrow \alpha) \vee(\gamma \rightarrow \beta)) \wedge(\alpha \leftrightarrow \beta)\right) \rightarrow\left(D_{i} q_{s}((\gamma \rightarrow \alpha) \wedge(\gamma \rightarrow \beta)) \wedge(\alpha \leftrightarrow \beta)\right)$, $1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(A29) $\left(D_{i} q_{s}((\alpha \rightarrow \gamma) \vee(\beta \rightarrow \gamma)) \wedge(\alpha \leftrightarrow \beta)\right) \rightarrow\left(D_{i} q_{s}((\alpha \rightarrow \gamma) \wedge(\beta \rightarrow \gamma)) \wedge(\alpha \leftrightarrow \beta)\right)$, $1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(A30) $\left(D_{i} q_{s}((\gamma \rightarrow \alpha) \vee(\gamma \rightarrow \beta)) \wedge(\alpha \leftrightarrow \beta)\right) \rightarrow\left(D_{i} q_{s}((\gamma \rightarrow \alpha) \wedge(\gamma \rightarrow \beta)) \wedge(\alpha \leftrightarrow \beta)\right)$, $1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(A31) $\left(D_{i} q_{s}((\alpha \rightarrow \gamma) \vee(\beta \rightarrow \gamma)) \wedge(\alpha \leftrightarrow \beta)\right) \rightarrow\left(D_{i} q_{s}((\alpha \rightarrow \gamma) \wedge(\beta \rightarrow \gamma) \wedge(\alpha \leftrightarrow \beta))\right)$, $1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(A32) $(\alpha \rightarrow \beta) \rightarrow((\beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \gamma))$,
(A33) $\left(f^{2 m-1}(f \alpha \wedge f \beta) \rightarrow(\alpha \vee \beta)\right) \wedge\left((\alpha \vee \beta) \rightarrow f^{2 m-1}(f \alpha \wedge f \beta)\right)$,
(A34) $\left(D_{n-1} q_{1} \alpha \wedge(\alpha \rightarrow \beta)\right) \rightarrow \beta$.
The consequence operation $C_{\mathcal{L}}$ in $\mathcal{L}=\left(A^{0}, F\right)$ is determined by \mathcal{A}_{l} and by the following rules of inference:
(R1) $\frac{\alpha, \alpha \rightarrow \beta}{\beta}$,
(R2) $\frac{D_{i} \alpha \rightarrow D_{j} \beta, D_{j} \beta \rightarrow D_{i} \alpha}{D_{i} \alpha \rightarrow D_{j} \beta}, 1 \leqslant i, j \leqslant n-1$,
(R3) $\frac{D_{i} q_{s} \alpha \rightarrow D_{i} q_{s}(\alpha \wedge \beta)}{D_{i} q_{s}(\alpha \vee(\alpha \wedge \beta)) \rightarrow D_{i} q_{s}(\alpha \wedge(\alpha \wedge \beta))}, 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(R4) $\frac{\alpha}{D_{n-1} q_{1} \alpha}$,
(R5) $\frac{D_{i} q_{s}(\alpha \vee \beta) \rightarrow D_{i} q_{s}(\alpha \wedge \beta)}{D_{i} q_{s}(\beta \vee \alpha) \rightarrow D_{i} q_{s}(\beta \wedge \alpha)}, 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$.
The system $\ell_{n}^{m}=\left(\mathcal{L}, C_{\mathcal{L}}\right)$ thus obtained will be called the \mathcal{L}_{n}^{m}-propositional calculus. It is worth mentioning that the above connectives are not independent, however, we consider them for simplicity. We will denote by \mathcal{T} the set of all formulas derivable in ℓ_{n}^{m}. If $\alpha \in \mathcal{T}$, we will write $\vdash \alpha$.

Lemma 4.1 summarizes the most important rules and theorems necessary for the further development.

Lemma 4.1. In ℓ_{n}^{m} the following rules and theorems hold:
(R6) $\frac{\alpha}{\beta \rightarrow \alpha}$,
(R7) $\frac{\alpha \rightarrow(\beta \rightarrow \gamma)}{(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)}$,
(T1) $\vdash \alpha \rightarrow \alpha$,
(T2) $\vdash(\alpha \rightarrow \beta) \rightarrow((\gamma \rightarrow \alpha) \rightarrow(\gamma \rightarrow \beta))$,
(R8) $\frac{\alpha \rightarrow \beta}{(\gamma \rightarrow \alpha) \rightarrow(\gamma \rightarrow \beta)}$,
(R9) $\frac{(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)}{\beta \rightarrow(\alpha \rightarrow \gamma)}$,
(R10) $\frac{\alpha \rightarrow(\beta \rightarrow \gamma)}{\beta \rightarrow(\alpha \rightarrow \gamma)}$,
(T3) $\vdash(\alpha \rightarrow(\alpha \rightarrow \beta)) \rightarrow(\alpha \rightarrow \beta)$,
(T4) $\vdash(\alpha \rightarrow \beta) \rightarrow((\beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \gamma))$,
(R11) $\frac{\alpha \rightarrow \beta, \beta \rightarrow \gamma}{\alpha \rightarrow \gamma}$,
(R12) $\frac{\alpha \rightarrow \beta}{(\beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \gamma)}$,
(R13) $\frac{\alpha, \beta}{\alpha \wedge \beta}$,
(T5) $\vdash \alpha \rightarrow \alpha$,
(R14) $\frac{D_{i} q_{s}(\alpha \vee \beta) \rightarrow D_{i} q_{s}(\alpha \wedge \beta)}{\alpha \rightarrow \beta}, 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(R15) $\frac{\alpha, \alpha \rightarrow \beta}{\beta}$,
$(\mathrm{R} 16) \frac{\alpha \rightarrow \beta, \beta \rightarrow \gamma}{\alpha \rightarrow \gamma}$,
(R17) $\frac{\beta}{\alpha \rightarrow \beta}$,
(R18) $\frac{\alpha \rightarrow \beta, \beta \rightarrow \alpha}{f \alpha \rightarrow f \beta}$,
(R19) $\frac{\alpha \rightarrow \beta, \beta \rightarrow \alpha}{D_{i} \alpha \rightarrow D_{i} \beta}, 1 \leqslant i \leqslant n-1$,
(R20) $\frac{\alpha \rightarrow \beta, \beta \rightarrow \alpha}{(\alpha \wedge \gamma) \rightarrow(\beta \wedge \gamma)}$,
(R21) $\frac{\alpha \rightarrow \beta, \beta \rightarrow \alpha}{(\gamma \wedge \alpha) \rightarrow(\gamma \wedge \beta)}$,
(R22) $\frac{\alpha \rightarrow \beta, \beta \rightarrow \alpha}{(\alpha \vee \gamma) \rightarrow(\beta \vee \gamma)}$,
(R23) $\frac{\alpha \rightarrow \beta, \beta \rightarrow \alpha}{(\gamma \vee \alpha) \rightarrow(\gamma \vee \beta)}$,
(R24) $\frac{\alpha \rightarrow \beta, \beta \rightarrow \alpha}{(\gamma \rightarrow \alpha) \rightarrow(\gamma \rightarrow \beta)}$,
(R25) $\frac{\alpha \rightarrow \beta, \beta \rightarrow \alpha}{(\alpha \rightarrow \gamma) \rightarrow(\beta \rightarrow \gamma))}$,
(R26) $\frac{\alpha \rightarrow \beta, \beta \rightarrow \alpha}{(\gamma \rightarrow \alpha) \rightarrow(\gamma \rightarrow \beta))}$,
$(\operatorname{R27}) \frac{\alpha \rightarrow \beta, \beta \rightarrow \alpha}{(\alpha \rightarrow \gamma) \rightarrow(\beta \rightarrow \gamma)}$.
Proof. The proof of (R6) to (R13) is routine.
(T5):
(1) $D_{i} q_{s}(\alpha \vee \alpha) \rightarrow D_{i} q_{s}(\alpha \wedge \alpha)$,
(2) $\bigwedge_{i=1}^{n-1} \bigwedge_{s=1}^{m}\left(D_{i} q_{s}(\alpha \vee \alpha) \rightarrow D_{i} q_{s}(\alpha \wedge \alpha)\right)$,
[(1), (R13)]
(3) $\alpha \rightarrow \alpha$.
$[(2),(\mathrm{A} 4),(\mathrm{R} 1),(\mathrm{A} 23)]$
(R14):
(1) $D_{i} q_{s}(\alpha \vee \beta) \rightarrow D_{i} q_{s}(\alpha \wedge \beta), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(2) $\bigwedge_{i=1}^{n-1} \bigwedge_{s=1}^{m}\left(D_{i} q_{s}(\alpha \vee \beta) \rightarrow D_{i} q_{s}(\alpha \wedge \beta)\right)$,
[(1), (R13)]
(3) $\bigwedge_{i=1}^{n-1} \bigwedge_{s=1}^{m}\left(D_{i} q_{s}(\alpha \vee \beta) \rightarrow D_{i} q_{s}(\alpha \wedge \beta)\right) \rightarrow$

$$
\begin{equation*}
\left(D_{n-1} q_{1} \beta \vee \bigwedge_{\substack{i=1 \\ n-1}}^{n-1} \bigwedge_{s=1}^{m}\left(D_{i} q_{s}(\alpha \vee \beta) \rightarrow D_{i} q_{s}(\alpha \wedge \beta)\right)\right), \tag{A4}
\end{equation*}
$$

(4) $D_{n-1} q_{1} \beta \vee \bigwedge_{i=1}^{n-1} \bigwedge_{s=1}^{m}\left(D_{i} q_{s}(\alpha \vee \beta) \rightarrow D_{i} q_{s}(\alpha \wedge \beta)\right)$,
(5) $\alpha \rightarrow \beta$.
$[(2),(3),(\mathrm{R} 1)]$
[(4), (A23)]
(R15): It is a consequence of (R4), (R13), (A34) and (R1).
(R16): It is routine.
(R17): It follows as a consequence of (R4), (A3), (R1) and (A23).
(R18):
(1) $\alpha \rightarrow \beta$,
(2) $\beta \rightarrow \alpha$,
(3) $\alpha \leftrightarrow \beta$,
$[(1),(2),(\mathrm{R} 13)]$
(4) $\left(D_{i} q_{s}(f \alpha \vee f \beta) \wedge(\alpha \leftrightarrow \beta)\right) \rightarrow\left(D_{i} q_{s}(f \alpha \wedge f \beta) \wedge(\alpha \leftrightarrow \beta)\right), 1 \leqslant i \leqslant n-1$, $1 \leqslant s \leqslant m$,
(5) $(\alpha \leftrightarrow \beta) \rightarrow\left(D_{i} q_{s}(f \alpha \vee f \beta) \rightarrow D_{i} q_{s}(f \alpha \wedge f \beta)\right), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
[(A11), (4), (R1)]
(6) $D_{i} q_{s}(f \alpha \vee f \beta) \rightarrow D_{i} q_{s}(f \alpha \wedge f \beta), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m, \quad[(3),(5),(\mathrm{R} 1)]$
(7) $f \alpha \rightarrow f \beta$.
$[(6),(\mathrm{R} 14)]$
(R19):
(1) $\alpha \rightarrow \beta$,
(2) $\beta \rightarrow \alpha$,
(3) $\alpha \leftrightarrow \beta$,
$[(1),(2),(\mathrm{R} 13)]$
(4) $\left(D_{i} \alpha \wedge(\alpha \leftrightarrow \beta)\right) \rightarrow\left(D_{i} \beta \wedge(\alpha \leftrightarrow \beta)\right), 1 \leqslant i \leqslant n-1$,
[(A25)]
(5) $(\alpha \leftrightarrow \beta) \rightarrow\left(D_{i} \alpha \rightarrow D_{i} \beta\right), 1 \leqslant i \leqslant n-1$,
[(A11), (4), (R1)]
(6) $D_{i} \alpha \rightarrow D_{i} \beta, 1 \leqslant i \leqslant n-1$, $[(3),(5),(\mathrm{R} 1)]$
(7) $\left(D_{i} \beta \wedge(\beta \leftrightarrow \alpha)\right) \rightarrow\left(D_{i} \alpha \wedge(\beta \leftrightarrow \alpha)\right), 1 \leqslant i \leqslant n-1$, [(A25)]
(8) $\beta \leftrightarrow \alpha$,
$[(2),(1),(\mathrm{R} 13)]$
(9) $(\beta \leftrightarrow \alpha) \rightarrow\left(D_{i} \beta \rightarrow D_{i} \alpha\right), 1 \leqslant i \leqslant n-1$, [(A11), (7), (R1)]
(10) $D_{i} \beta \rightarrow D_{i} \alpha, 1 \leqslant i \leqslant n-1$,
$[(8),(9),(\mathrm{R} 1)]$
(11) $D_{i} \alpha \rightarrow D_{i} \beta, 1 \leqslant i \leqslant n-1$.
$[(6),(10),(\mathrm{R} 2)]$
(R20):
(1) $\alpha \rightarrow \beta$,
(2) $\beta \rightarrow \alpha$,
(3) $\alpha \longleftrightarrow \beta$,
[(1), (2), (R13)]
(4) $\left(D_{i} q_{s}((\alpha \wedge \gamma) \vee(\beta \wedge \gamma)) \wedge(\alpha \leftrightarrow \beta)\right) \rightarrow\left(D_{i} q_{s}((\alpha \wedge \gamma) \wedge(\beta \wedge \gamma)) \wedge(\alpha \leftrightarrow \beta)\right)$, $1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
(5) $(\alpha \leftrightarrow \beta) \rightarrow\left(D_{i} q_{s}((\alpha \wedge \gamma) \vee(\beta \wedge \gamma)) \rightarrow D_{i} q_{s}((\alpha \wedge \gamma) \wedge(\beta \wedge \gamma))\right), 1 \leqslant i \leqslant n-1$, $1 \leqslant s \leqslant m$,
[(A11), (4), (R1)]
(6) $D_{i} q_{s}((\alpha \wedge \gamma) \vee(\beta \wedge \gamma)) \rightarrow D_{i} q_{s}((\alpha \wedge \gamma) \wedge(\beta \wedge \gamma)), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
$[(3),(5),(\mathrm{R} 1)]$
(7) $(\alpha \wedge \gamma) \rightarrow(\beta \wedge \gamma)$.
[(6), (R14)]
(R22):
(1) $\alpha \rightarrow \beta, \beta \rightarrow \alpha$,
(2) $f \alpha \rightarrow f \beta, f \beta \rightarrow f \alpha, \quad[(1),(\mathrm{R} 18)]$
(3) $(f \alpha \wedge f \gamma) \rightarrow(f \beta \wedge f \gamma)$,
[(2), (R20)]
(4) $(f \beta \wedge f \gamma) \rightarrow(f \alpha \wedge f \gamma)$,
[(2), (R20)]
(5) $f^{2 m-1}(f \alpha \wedge f \gamma) \rightarrow f^{2 m-1}(f \beta \wedge f \gamma)$,
[(3), (4), (R18)]
(6) $f^{2 m-1}(f \beta \wedge f \gamma) \rightarrow(\beta \vee \gamma)$,
[(A5), (A33), (R1)]
(7) $(\alpha \vee \gamma) \rightarrow f^{2 m-1}(f \alpha \wedge f \gamma)$, [(A6), (A33), (R1)]
(8) $(\alpha \vee \gamma) \rightarrow(\beta \vee \gamma)$.
$[(7),(5),(6),(\mathrm{R} 16)]$
(R24):
(1) $\alpha \rightarrow \beta$, [hip.]
(2) $\beta \rightarrow \alpha, \quad$ [hip.]
(3) $\alpha \leftrightarrow \beta$, [(1), (2), (R13)]
(4) $\left(D_{i} q_{s}((\gamma \rightarrow \alpha) \vee(\gamma \rightarrow \beta)) \wedge(\alpha \leftrightarrow \beta)\right) \rightarrow\left(D_{i} q_{s}((\gamma \rightarrow \alpha) \wedge(\gamma \rightarrow \beta)), \wedge(\alpha \leftrightarrow \beta)\right)$
[(A28)]
(5) $(\alpha \longleftrightarrow \beta) \rightarrow\left(\left(D_{i} q_{s}((\gamma \rightarrow \alpha) \vee(\gamma \rightarrow \beta))\right) \rightarrow\left(D_{i} q_{s}((\gamma \rightarrow \alpha) \wedge(\gamma \rightarrow \beta))\right)\right)$,
[(A11), (4), (R1)]
(6) $D_{i} q_{s}((\gamma \rightarrow \alpha) \vee(\gamma \rightarrow \beta)) \rightarrow D_{i} q_{s}((\gamma \rightarrow \alpha) \wedge(\gamma \rightarrow \beta))$, $[(3),(5),(\mathrm{R} 1)]$
(7) $(\gamma \rightarrow \alpha) \rightarrow(\gamma \rightarrow \beta)$.
$[(6),(\mathrm{R} 14)]$
(R26):
(1) $\alpha \rightarrow \beta$,
(2) $\beta \rightarrow \alpha$,
(3) $\alpha \leftrightarrow \beta$,
$[(1),(2),(\mathrm{R} 13)]$
(4) $\left(D_{i} q_{s}((\gamma \rightarrow \alpha) \vee(\gamma \rightarrow \beta)) \wedge(\alpha \leftrightarrow \beta)\right) \rightarrow\left(D_{i} q_{s}((\gamma \rightarrow \alpha) \wedge(\gamma \rightarrow \beta)) \wedge(\alpha \leftrightarrow \beta)\right)$, $1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
[(A30)]
(5) $(\alpha \leftrightarrow \beta) \rightarrow\left(\left(D_{i} q_{s}((\gamma \rightarrow \alpha) \vee(\gamma \rightarrow \beta))\right) \rightarrow\left(D_{i} q_{s}((\gamma \rightarrow \alpha) \wedge(\gamma \rightarrow \beta))\right)\right)$, $1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$, [(A11), (4), (R1)]
(6) $D_{i} q_{s}((\gamma \rightarrow \alpha) \vee(\gamma \rightarrow \beta)) \rightarrow D_{i} q_{s}((\gamma \rightarrow \alpha) \wedge(\gamma \rightarrow \beta)), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$, $[(3),(5),(\mathrm{R} 1)]$
(7) $(\gamma \rightarrow \alpha) \rightarrow(\gamma \rightarrow \beta)$.
[(6), (R14)]
Using a reasoning similar to that for (R20), (R22), (R24) and (R26) we infer (R21), (R23), (R25) and (R27), respectively.

Theorem 4.1. The propositional calculus ℓ_{n}^{m} belongs to the class of standard systems of implicative extensional propositional calculi.

Proof. We have to prove that conditions (s1) to (s8) in Section 1 are verified. Clearly, (s1) and (s2) hold. Besides, (s3), (s4), (s5) and (s6) follow from (T12), (R15), (R16) and (R17), respectively. On the other hand, taking into account (R18) and (R19), we have that (s7) is satisfied. Finally, if $\alpha \rightarrow \beta, \beta \rightarrow \alpha, \delta \rightarrow \gamma$, $\gamma \rightarrow \delta \in C_{\mathcal{L}}(H)$ for every subset H of formulas, then by (R20) we have that $(\alpha \wedge \delta) \rightarrow$ $(\beta \wedge \delta) \in C_{\mathcal{L}}(H)$. Besides, by (R21) we get $(\beta \wedge \delta) \rightarrow(\beta \wedge \gamma) \in C_{\mathcal{L}}(H)$. Hence, by (R16) we infer that $(\alpha \wedge \delta) \rightarrow(\beta \wedge \gamma) \in C_{\mathcal{L}}(H)$. In an analogous manner, from (R22), (R23), (R25), (R26) and (R27) we conclude the proof of (s8).

In what follows, our attention is focused on establishing the relationship between L_{n}^{m}-algebras and ℓ_{n}^{m}-algebras which are the class of algebras determined by the system ℓ_{n}^{m}. To this aim, Lemma 4.2 will be fundamental.

Lemma 4.2. In ℓ_{n}^{m} the following theorems hold:
(T6) $\vdash\left(\alpha \wedge f^{2 m-1}(f \alpha \wedge f \beta)\right) \rightarrow \alpha$,
(T7) $\vdash \alpha \rightarrow\left(\alpha \wedge f^{2 m-1}(f \alpha \wedge f \beta)\right)$,
(T8) $\vdash\left(\alpha \wedge f^{2 m-1}(f \beta \wedge f \gamma)\right) \rightarrow f^{2 m-1}(f(\gamma \wedge \alpha) \wedge f(\beta \wedge \alpha))$,
(T9) $\vdash f^{2 m-1}(f(\gamma \wedge \alpha) \wedge f(\beta \wedge \alpha)) \rightarrow\left(\alpha \wedge f^{2 m-1}(f \beta \wedge f \gamma)\right)$,
$(\mathrm{T} 10) \vdash D_{1}(\alpha \rightarrow \alpha)$,
(T11) $\vdash f^{2} D_{1} \alpha \rightarrow D_{1} \alpha$,
$(\mathrm{T} 12) \vdash D_{1} \alpha \rightarrow f^{2} D_{1} \alpha$,
$(\mathrm{T} 13) \vdash D_{i}\left(\alpha \wedge \bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \rightarrow\left(D_{i} \alpha \wedge D_{i} \beta\right), 1 \leqslant i \leqslant n-1$,
$(\mathrm{T} 14) \vdash\left(D_{i} \alpha \wedge D_{i} \beta\right) \rightarrow D_{i}\left(\alpha \wedge \bigvee_{p=0}^{m-1} f^{2 p} \beta\right), 1 \leqslant i \leqslant n-1$,
$(\mathrm{T} 15) \vdash D_{j} \alpha \rightarrow\left(D_{i} \alpha \wedge D_{j} \alpha\right), 1 \leqslant i \leqslant j \leqslant n-1$,
(T16) $\vdash\left(D_{i} \alpha \wedge D_{j} \alpha\right) \rightarrow D_{j} \alpha, 1 \leqslant i \leqslant j \leqslant n-1$,
$(\mathrm{T} 17) \vdash D_{i} f\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \rightarrow f D_{n-i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right), 1 \leqslant i \leqslant n-1$,
$(\mathrm{T} 18) \vdash f D_{n-i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \rightarrow D_{i} f\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right), 1 \leqslant i \leqslant n-1$,
(T19) $\vdash D_{i} \alpha \rightarrow D_{j} D_{i} \alpha, 1 \leqslant i, j \leqslant n-1$,
$(\mathrm{T} 20) \vdash D_{j} D_{i} \alpha \rightarrow D_{i} \alpha, 1 \leqslant i, j \leqslant n-1$,
$(\mathrm{T} 21) \vdash\left(\alpha \wedge D_{1} \alpha\right) \rightarrow \alpha$,
(T22) $\vdash \alpha \rightarrow\left(\alpha \wedge D_{1} \alpha\right)$,
$(\mathrm{T} 23) \vdash D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \rightarrow D_{i} \alpha, 1 \leqslant i \leqslant n-1$,

$$
\begin{aligned}
& (\mathrm{T} 24) \vdash D_{i} \alpha \rightarrow D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right), 1 \leqslant i \leqslant n-1, \\
& (\mathrm{~T} 25) \vdash((\alpha \wedge f \alpha) \wedge(\beta \vee f \beta)) \rightarrow(\alpha \wedge f \alpha) \text {, } \\
& (\mathrm{T} 26) \vdash(\alpha \wedge f \alpha) \rightarrow((\alpha \wedge f \alpha) \wedge(\beta \vee f \beta)) \text {, } \\
& (\mathrm{T} 27) \vdash\left(\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \wedge\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta \vee f D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee D_{i+1}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right)\right) \rightarrow \\
& \bigvee_{p=0}^{m-1} f^{2 p} \alpha, 1 \leqslant i \leqslant n-1, \\
& (\mathrm{~T} 28) \vdash\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \rightarrow\left((\bigvee _ { p = 0 } ^ { m - 1 } f ^ { 2 p } \alpha) \wedge \left(\bigvee_{p=0}^{m-1} f^{2 p} \beta \vee f D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee\right.\right. \\
& \left.\left.D_{i+1}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right)\right), 1 \leqslant i \leqslant n-1 .
\end{aligned}
$$

Proof. The proofs of (T6) through (T18) are routine.
(T19):
(1) $\left(D_{i} \alpha \rightarrow D_{j} D_{i} \alpha\right) \wedge\left(D_{j} D_{i} \alpha \rightarrow D_{i} \alpha\right), 1 \leqslant i, j \leqslant n-1$,
(2) $\left(\left(D_{i} \alpha \rightarrow D_{j} D_{i} \alpha\right) \wedge\left(D_{j} D_{i} \alpha \rightarrow D_{i} \alpha\right)\right) \rightarrow\left(D_{i} \alpha \rightarrow D_{j} D_{i} \alpha\right), 1 \leqslant i, j \leqslant n-1$,
[(A5)]
(3) $D_{i} \alpha \rightarrow D_{j} D_{i} \alpha, 1 \leqslant i, j \leqslant n-1, \quad[(1),(2),(\mathrm{R} 1)]$
(4) $\left(\left(D_{i} \alpha \rightarrow D_{j} D_{i} \alpha\right) \wedge\left(D_{j} D_{i} \alpha \rightarrow D_{i} \alpha\right)\right) \rightarrow\left(D_{j} D_{i} \alpha \rightarrow D_{i} \alpha\right), 1 \leqslant i, j \leqslant n-1$,
(5) $D_{j} D_{i} \alpha \rightarrow D_{i} \alpha, 1 \leqslant i, j \leqslant n-1$,
$[(1),(4),(\mathrm{R} 1)]$
(6) $D_{i} \alpha \rightarrow D_{j} D_{i} \alpha, 1 \leqslant i, j \leqslant n-1$.
$[(3),(5),(\mathrm{R} 2)]$
(T21): It follows as a consequence of (A14), (R3), (R5) and (R14).
(T23):
(1) $\left(D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \rightarrow D_{i} \alpha\right) \wedge\left(D_{i} \alpha \rightarrow D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right), 1 \leqslant i \leqslant n-1, \quad$ [(A10)]
(2) $D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \rightarrow D_{i} \alpha, 1 \leqslant i \leqslant n-1$, $[(\mathrm{A} 5),(1),(\mathrm{R} 1)]$
(3) $D_{i} \alpha \rightarrow D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right), 1 \leqslant i \leqslant n-1$, $[(\mathrm{A} 6),(1),(\mathrm{R} 1)]$
(4) $D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \rightarrow D_{i} \alpha, 1 \leqslant i \leqslant n-1$.
$[(2),(3),(R 2)]$
(T25):
(1) $D_{i} q_{s}(\alpha \wedge f \alpha) \rightarrow D_{i} q_{s}((\alpha \wedge f \alpha) \wedge(\beta \vee f \beta)), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m, \quad[(\mathrm{~A} 19)]$
(2) $D_{i} q_{s}((\alpha \wedge f \alpha) \vee((\alpha \wedge f \alpha) \wedge(\beta \vee f \beta))) \rightarrow D_{i} q_{s}((\alpha \wedge f \alpha) \wedge((\alpha \wedge f \alpha) \wedge(\beta \vee f \beta)))$, $1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$, $[(1),(\mathrm{R} 3)]$
(3) $D_{i} q_{s}(((\alpha \wedge f \alpha) \wedge(\beta \vee f \beta)) \vee(\alpha \wedge f \alpha)) \rightarrow D_{i} q_{s}(((\alpha \wedge f \alpha) \wedge(\beta \vee f \beta)) \wedge(\alpha \wedge f \alpha))$, $1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
$[(2),(\mathrm{R} 5)]$
(4) $((\alpha \wedge f \alpha) \wedge(\beta \vee f \beta)) \rightarrow(\alpha \wedge f \alpha)$.
(T27):
(1) $D_{i} q_{s}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \rightarrow D_{i} q_{s}\left(\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \wedge\left(\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee f D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee\right.\right.$ $\left.\left.D_{i+1}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right)\right), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m$,
[(A20)]
(2) $D_{i} q_{s}\left(\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \vee\left(\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \wedge\left(\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee f D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee\right.\right.\right.$ $\left.\left.\left.D_{i+1}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right)\right)\right) \rightarrow D_{i} q_{s}\left(\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \wedge\left(\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \wedge\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee\right.\right.$ $\left.\left.f D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee D_{i+1}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right)\right), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m, \quad[(1),(\mathrm{R} 3)]$
(3) $D_{i} q_{s}\left(\left(\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \wedge\left(\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee f D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee D_{i+1}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right)\right) \vee\right.$ $\left.\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right) \rightarrow D_{i} q_{s}\left(\left(\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \wedge\left(\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee f D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee\right.\right.\right.$ $\left.\left.\left.D_{i+1}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right)\right) \wedge\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right), 1 \leqslant i \leqslant n-1,1 \leqslant s \leqslant m, \quad[(2),(\mathrm{R} 5)]$
(4) $\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right) \wedge\left(\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee f D_{i}\left(\bigvee_{p=0}^{m-1} f^{2 p} \beta\right) \vee D_{i+1}\left(\bigvee_{p=0}^{m-1} f^{2 p} \alpha\right)\right) \rightarrow \bigvee_{p=0}^{m-1} f^{2 p} \alpha$, $1 \leqslant i \leqslant n-1$.
[(3), (R14)]
An argument similar to that for (T19), (T21), (T23), (T25) and (T27) allows us to prove (T20), (T22), (T24), (T26) and (T28), respectively.

Proposition 4.1. If α is a formula derivable in ℓ_{n}^{m}, then $v(\alpha)=1$ for every valuation v of \mathcal{L} in every ℓ_{n}^{m}-algebra \mathcal{U}.

Proof. Since α is a formula derivable in ℓ_{n}^{m} if and only if $\vdash \alpha$, then by (a1) and (a2) we conclude that $v(\alpha)=1$ for every valuation v of \mathcal{L} in every ℓ_{n}^{m}-algebra \mathcal{U}.

Proposition 4.2. Let $\left\langle L, \vee, \wedge, f, D_{1}, \ldots, D_{n-1}, 0,1\right\rangle \in \mathcal{L}_{n}^{m}$. Then $\langle L, \rightarrow, \rightarrow, \vee$, $\left.\wedge, f, D_{1}, \ldots, D_{n-1}, 1\right\rangle$ is an ℓ_{n}^{m}-algebra, where \rightarrow and \rightarrow are defined as in Section 1 and Section 2, respectively.

Proof. We will prove that conditions (a1) to (a4) in Section 1 hold. Indeed, taking into account the definitions of \rightarrow and \rightarrow we have that (a1) and (a2) are satisfied. On the other hand, let $a, b \in L$ be such that $a \rightarrow b=b \rightarrow c=1$. Then, by (S6) and (W_{3}) we conclude (a3). Besides, if $a \rightarrow b=b \rightarrow a=1$, hence (S5) allows us to infer (a4).

Proposition 4.3. Let $\left\langle A, \rightarrow, \rightarrow, \vee, \wedge, f, D_{1}, \ldots, D_{n-1}, 1\right\rangle$ be an ℓ_{n}^{m}-algebra. Then $\left\langle A, \vee, \wedge, f, D_{1}, \ldots, D_{n-1}, 0,1\right\rangle \in \mathcal{L}_{n}^{m}$, where $0=f 1$.

Proof. From (T11), (T12) and (a4) we infer that $f^{2} D_{1}(\alpha \rightarrow \alpha)=D_{1}(\alpha \rightarrow \alpha)$. Besides, from (T10) we have that $D_{1}(\alpha \rightarrow \alpha)=1$ and so, we conclude that $f^{2} 1=1$. This assertion and the fact that $f 1=0$ imply that $f 0=1$. Moreover, from (T6), (T7), (T8) and (T9) we have that conditions (m1) and (m2) in Theorem 3.2 hold. Therefore, $\left(\mathrm{GL}_{1}\right)$ is verified. Besides, by (a4) and taking into account (T13) through (T28) we infer $\left(\mathrm{GL}_{2}\right)$, (GL_{3}) and (GL_{5}) through (GL_{10}). Furthermore, from (A12) and (a1) in Section 1 we get $\left(\mathrm{GL}_{4}\right)$ and so, the proof is complete.

From Propositions 4.2 and 4.3 we conclude:
Theorem 4.2. The notions of the ℓ_{n}^{m}-algebra and the \mathcal{L}_{n}^{m}-algebra are equivalent.
Let \equiv be the binary relation on F defined as follows:

$$
\alpha \equiv \beta \text { if and only if } \vdash \alpha \rightarrow \beta \text { and } \vdash \beta \rightarrow \alpha \text { in } \ell_{n}^{m} .
$$

Then \equiv is a congruence relation on $\left\langle F, \rightarrow, \rightarrow, \wedge, \vee, f, D_{1}, \ldots, D_{n-1}\right\rangle$ and \mathcal{T} determines an equivalence class. On the other hand, it is easy to verify that the relation \leqslant defined on F / \equiv by

$$
[\alpha] \leqslant[\beta] \quad \text { if and only if } \quad \vdash \alpha \rightarrow \beta
$$

is a preorder on F / \equiv.
Proposition 4.4. $\mathcal{F}=\left\langle F / \equiv, \rightarrow, \rightarrow, \wedge, \vee, f, D_{1}, \ldots, D_{n-1}, 1\right\rangle$ is an ℓ_{n}^{m}-algebra, and $1=\mathcal{T}$.

Proof. Let v be a valuation of \mathcal{L} in \mathcal{F} and let ϱ be a substitution from \mathcal{L} into \mathcal{L} such that $v(x)=[\varrho(x)]$ for every propositional variable x in \mathcal{L} and so, we have that (1) $v(\alpha)=[\varrho(\alpha)]$ for every formula α in \mathcal{L}. Hence, conditions (a1)-(a4) are verified. Indeed, if $\alpha \in \mathcal{A}$, then by (s1), $\varrho(\alpha) \in \mathcal{A}$. Thus, $[\varrho(\alpha)]=1$ and consequently (a1) holds.

Suppose that a rule of inference (r) assigns to premises $\alpha_{1}, \ldots, \alpha_{n}$ a formula β as the conclusion and let $v\left(\alpha_{i}\right)=1$ for all $i, 1 \leqslant i \leqslant n$. Thus, by (1), $\left.\varrho\left(\alpha_{i}\right)\right]=1$ for all $i, 1 \leqslant i \leqslant n$. Hence, by (s2) it follows that $[\varrho(\beta)]=1$ and so, by (1) we have that $v(\beta)=1$, which proves that (a2) holds.

Taking into account that $\vdash \alpha \rightarrow \beta$ if and only if $1=[\alpha \rightarrow \beta]=[\alpha] \rightarrow[\beta]$ we obtain that $[\alpha] \leqslant[\beta]$ if and only if $[\alpha] \rightarrow[\beta]=1$. From this last assertion the proofs of (a3) and (a4) are straightforward.

From Proposition 4.3 and Proposition 4.4 we conclude the following theorem.

Theorem 4.3. $\mathcal{F}=\left\langle F / \equiv, \wedge, \vee, f, D_{1}, \ldots, D_{n-1}, 0,1\right\rangle \in \mathcal{L}_{n}^{m}$.
On the other hand, since ℓ_{n}^{m} is consistent, from [9], VIII 7, and Theorem 4.2 we have that the completeness theorem for ℓ_{n}^{m} holds, which is included in Theorem 4.4.

Theorem 4.4. Let α be a formula of ℓ_{n}^{m}. Then the following conditions are equivalent:
(i) α is derivable in ℓ_{n}^{m},
(ii) α is valid in every L_{n}^{m}-algebra,
(iii) $v_{0}(\alpha)=1$, where v_{0} is the canonical valuation ([9], VIII 3.4), in the algebra \mathcal{F}.

Proof. (i) \Rightarrow (ii): It follows from the assertions given in Section 1.
(ii) \Rightarrow (iii): It is straightforward.
(iii) \Rightarrow (i): From the hypothesis we have that $[\alpha]=1=\mathcal{T}$. Hence, α is derivable in ℓ_{n}^{m}.

Remark 4.1. In case $m=1$, we conclude that the propositional calculus ℓ_{n}^{1} has n-valued Łukasiewicz-Moisil algebras as the algebraic counterpart.

5. Conclusions

In this paper we have presented new results about the congruence lattice of $L_{n}^{m}-$ algebras as well as the principal congruences by means of the standard implication. Furthermore, we have established a characterization of $k_{2 m}$-lattices which has provided an easy way to prove that L_{n}^{m}-algebras are the algebraic counterpart of a propositional calculus. Finally, we have described a standard implicative extensional propositional calculus ℓ_{n}^{m} and proved that L_{n}^{m}-algebras and ℓ_{n}^{m}-algebras are equivalent.

On the other hand, it would be interesting to find a sequent calculus, along with a proper notion of validity, sound and complete with respect to L_{n}^{m}-algebras, which has the desirable property of cut-elimination. Another interesting problem would be to present a Gentzen-style system using the tool of hypersequents.

Acknowledgement. The authors are truly thankful to the referee for his/her helpful remarks on this paper.

References

[1] T. Almada, J. Vaz de Carvalho: A generalization of the Łukasiewicz algebras. Stud. Log. 69 (2001), 329-338.
zbl MR
[2] J. Berman: Distributive lattices with an additional unary operation. Aequationes Math. 16 (1977), 165-171.
zbl MR
[3] T. S. Blyth, J. C. Varlet: Ockham Algebras. Oxford Science Publications, Oxford University Press, Oxford, 1994.
zbl MR
[4] V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu: Łukasiewicz-Moisil Algebras. Annals of Discrete Mathematics 49, North-Holland, Amsterdam, 1991.
zbl MR
[5] S. Burris, H. P. Sankappanavar: A Course in Universal Algebra. Graduate Texts in Mathematics 78, Springer, New York, 1981.
zbl MR
[6] R. Cignoli: Moisil Algebras. Notas de Lógica Mathemática 27, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, 1970.
zbl MR
[7] A. V. Figallo, C. Gallardo, A. Ziliani: Weak implication on generalized Łukasiewicz algebras of order n. Bull. Sect. Log., Univ. Łódź, Dep. Log. 39 (2010), 187-198.
zbl MR
[8] R. Maronna: A characterization of Morgan lattices. Port. Math. 23 (1964), 169-171. zbl MR
[9] H. Rasiowa: An Algebraic Approach to Non-Classical Logics. Studies in Logic and the Foundations of Mathematics 78, North-Holland Publishing, Amsterdam; Elsevier Publishing, New York, 1974.
[10] M. Sholander: Postulates for distributive lattices. Can. J. Math. 3 (1951), 28-30.
zbl MR
[11] A. Urquhart: Distributive lattices with a dual homomorphic operation. Stud. Log. 38 (1979), 201-209.
zbl MR

12] J. Vaz de Carvalho: On the variety of m-generalized Łukasiewicz algebras of order n. Stud. Log. 94 (2010), 291-305.
zbl MR

Authors' address: Carlos Gallardo, Alicia Ziliani, Department of Mathematics, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahía Blanca, Argentina, e-mail: gallardo @criba.edu.ar, aziliani@gmail.com.

