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SMOOTH BIFURCATION FOR A
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Jan Eisner, České Budějovice, Milan Kučera, Praha, Lutz Recke, Berlin

(Received October 15, 2009)

Abstract. We study a parameter depending semilinear elliptic PDE on a rectangle with
Signorini boundary conditions on a part of one edge and mixed (zero Dirichlet and Neu-
mann) boundary conditions on the rest of the boundary. We describe smooth branches of
smooth nontrivial solutions bifurcating from the trivial solution branch in eigenvalues of the
linearized problem. In particular, the contact sets of these nontrivial solutions are intervals
which change smoothly along the branch. The main tools of the proof are first a certain local
equivalence of the unilateral BVP to a system consisting of a corresponding classical BVP
and of two scalar equations (which determine the ends of the contact intervals), and sec-
ondly an application of the classical Crandall-Rabinowitz type local bifurcation techniques
(scaling and application of the Implicit Function Theorem) to that system.
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1. Introduction

Let l > 0, Ω := (0, 1)× (0, l), ΓD := ({0}× (0, l))∪ ({1}× (0, l)), ΓU := ((γ1, γ2)×

{0}) ⊂ ((0, 1) × {0}) with 0 < γ1 < γ2 < 1, and ΓN := ∂Ω \ (ΓD ∪ ΓU ). We study

the Signorini boundary value problem

∆u + λu + g(λ, u) = 0 in Ω,(1.1)

u = 0 on ΓD,
∂u

∂ν
= 0 on ΓN ,(1.2)

u 6 0,
∂u

∂ν
6 0, u

∂u

∂ν
= 0 on ΓU ,(1.3)
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where λ is a real parameter and g : Λ × R → R is a C2-smooth function, Λ is an

open interval containing a given eigenvalue λ0 of the (nonlinear) eigenvalue problem

(1.4) ∆u + λu = 0 in Ω

with (1.2), (1.3). We assume that g(λ, 0) = 0, ∂g/∂u(λ, 0) = 0 for all λ ∈ Λ, and

∣

∣

∣

∂g

∂λ
(λ, u)

∣

∣

∣
+

∣

∣

∣

∂g

∂u
(λ, u)

∣

∣

∣
6 C(1 + |u|q) for all (λ, u) ∈ Λ × R

with some C > 0 and q > 2. Finally, we assume that the contact set

A(u) := {x ∈ (γ1, γ2) : u(x, 0) = 0}

of the eigenfunction u = u0 of the problem (1.4), (1.2), (1.3) corresponding to λ0 is

an interval A(u0) = [α0, β0] with γ1 < α0 < β0 < γ2.

Our main result states that, under natural assumptions, there is a smooth branch

of nontrivial solutions to the problem (1.1)–(1.3) bifurcating at (λ0, 0) from the

branch of trivial solutions and that there are no other nontrivial solutions close to

(λ0, 0). Moreover, the contact sets A(u) of the nontrivial solutions u on this branch

are intervals changing C1-smoothly along the bifurcating branch.

In this contribution we will explain the main ideas of the proofs only, the results

with all details and full generality will be published in [2].

2. Main results

Let us introduce a real Hilbert space H with scalar product 〈·, ·〉 by

H := {u ∈ W 1,2(Ω): u = 0 on ΓD}, 〈u, ϕ〉 =

∫

Ω

∇u · ∇ϕdxdy,

and a closed convex subset K of H by

K := {u ∈ H : u 6 0 on ΓU}.

The weak formulations of the problems (1.1)–(1.3) and (1.4), (1.2), (1.3) are the

variational inequalites

(2.1) u ∈ K :

∫

Ω

∇u · ∇(ϕ − u) − [λu + g(λ, u)](ϕ − u) dxdy > 0 for all ϕ ∈ K

and

(2.2) u ∈ K :

∫

Ω

∇u · ∇(ϕ − u) − λu(ϕ − u) dxdy > 0 for all ϕ ∈ K,
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respectively. Besides the unilateral boundary value problem (1.1)–(1.3) we consider

the “corresponding” non-unilateral boundary value problem (1.1), (1.2),

(2.3) u = 0 on Iα,β , ∂yu = 0 on Eα,β ,

where γ1 < α < β < γ2 will be properly chosen later and

Iα,β := {(x, 0) ∈ ΓU : α < x < β} = (α, β) × {0},

Eα,β := {(x, 0) ∈ ΓU : γ1 < x < α or β < x < γ2} = ΓU \ Iα,β .

Let us fix a couple (α0, β0) ∈ R
2 with γ1 < α0 < β0 < γ2, and define δ := 1

3 min{α0−

γ1, β0 − α0, γ2 − β0} and

D := {(α, β) : |α − α0| < δ, |β − β0| < δ}.

For (α, β) ∈ D we introduce diffeomorphisms (x, y) 7→ (ξα,β(x), y) of Ω onto itself

which map Iα,β onto Iα0,β0
and Eα,β onto Eα0,β0

. The corresponding transformations

(Φα,βu)(x, y) := u(ξα,β(x), y)

of functions transform the boundary value problem (1.1), (1.2), (2.3), which has

(α, β)-independent coefficients in the equation but (α, β)-dependent boundary con-

ditions, into a boundary value problem, which has (α, β)-dependent coefficients in

the equation but (α, β)-independent boundary conditions.

Let us take a C∞-smooth function χ : [0,∞) → [0, 1] such that

χ(r) = 1 for 0 6 r 6 δ/2, χ(r) = 0 for r > δ.

Further, define functions X(−1/2), Y (−1/2) : Ω → R by

(2.4) X(−1/2)(x, y) = X(−1/2)(α0 + r cosω, r sin ω) := χ(r)r−1/2 sin
ω

2
,

Y (−1/2)(x, y) = Y (−1/2)(β0 + r cosω, r sin ω) := χ(r)r−1/2 sin
ω

2
,

where r is the distance of (x, y) ∈ Ω from (α0, 0) or (β0, 0), respectively, ω is the angle

measured anticlockwise or clockwise from the segments (x, y), (α0, 0) or (x, y), (β0, 0),

respectively, to Iα0,β0
.

Let Xα,β , Yα,β ∈ W 1,2(Ω) be the weak solutions to the boundary value problems

−Φ∗

α,β∆Φα,βu = f in Ω with f = ∆X(−1/2) and f = ∆Y (−1/2), respectively, and
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with the boundary conditions u = 0 on ΓD∪Iα0,β0
, ∂νu = 0 on ΓN ∪Eα0,β0

. Further,

denote Xα,β := Xα,β + X(−1/2), Y α,β := Yα,β + Y (−1/2) and

a11 :=

∫

Ω

Xα0,β0
∂xu0∂αξα0,β0

+ u0

(

∂αXα,β − Xα0,β0
∂αξ′α0,β0

)

dxdy,

a12 :=

∫

Ω

Xα0,β0
∂xu0∂βξα0,β0

+ u0

(

∂βXα,β − Xα0,β0
∂βξ′α0,β0

)

dxdy,

a21 :=

∫

Ω

Y α0,β0
∂xu0∂αξα0,β0

+ u0

(

∂αYα,β − Y α0,β0
∂αξ′α0,β0

)

dxdy,

a22 :=

∫

Ω

Y α0,β0
∂xu0∂βξα0,β0

+ u0

(

∂βYα,β − Y α0,β0
∂βξ′α0,β0

)

dxdy.

Our main result is the following

Theorem 2.1. Let (λ0, u0) satisfy (2.2), A(u0) = [α0, β0], ‖u0‖ = 1. Assume

that there is d > 0 such that

(2.5) ∂yu0 > 0 on Iα0,β0
∪ ((0, 1) × (0, d)) ,

λ0 is simple as an eigenvalue of the BVP (1.4), (1.2), (2.3) with (α, β) = (α0, β0),

(2.6) det

(

a11 a12

a21 a22

)

6= 0.

Then there exist s0 > 0 and mappings λ̂, α̂, β̂ : [0, s0) → R and û : [0, s0) → H

with λ̂(0) = λ0, û(0) = 0, α̂(0) = α0 and β̂(0) = β0 such that the following assertions

hold:

(i) For all s ∈ (0, s0) the pair (λ, u) = (λ̂(s), û(s)) is a solution to (2.1) with

A(û(s)) = [α̂(s), β̂(s)], û(s) ∈ W 2,p(Ω) for all p > 2, and there exists ε > 0 such

that

(2.7) ∂yû(s) > 0 on Iα̂(s),β̂(s) ∪ ((0, 1) × (0, ε)) .

(ii) There exists a C1-smooth map v̂ : [0, s0) → H such that v̂(0) = 0 and

û(s) = sΦα̂(s),β̂(s) (u0 + v̂(s)) for all s ∈ (0, s0).

(iii) The functions λ̂, α̂, β̂ are C1-smooth from [0, s0) into R and the map û is

continuous from [0, s0) into H and C1-smooth from [0, s0) into L2(Ω).

(iv) There exists η > 0 such that for any solution (λ, u) ∈ Λ × (H \ {0}) to (2.1)

with |λ − λ0| + ‖u‖ + ‖u/‖u‖ − u0‖ < η there is s ∈ (0, s0) with u = û(s) and

λ = λ̂(s).
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It is possible to find simple examples where the assumption (2.5) is fulfilled (see

Fig. 1 and [2, Example 2.6] for details). The assumption (2.6) is generically fulfilled,

but in concrete situations it must be verified numerically.

x y

Figure 1. The eigenfunction u0 with l = 0.27, λ0 = 99.8, α0 = 0.38 and β0 = 0.62.

3. Sketch of the proof

The main idea of the proof of Theorem 2.1 is to show that the variational inequality

(2.1) is equivalent in a neighbourhood of the bifurcation point (λ0, 0) to a C1-smooth

operator equation, to use a scaling and a Liapunov-Schmidt reduction and to apply

the Implicit Function Theorem to the scaled equation.

Define a mapping F : R× H → H by

〈F (λ, u), ϕ〉 := −

∫

Ω

∇u · ∇ϕ − [λu + g(λ, u)]ϕdxdy for all ϕ ∈ H.

Further, denote

H0 := {u ∈ H : u = 0 in Iα0,β0
}, H1 := {u ∈ H0 : 〈u, u0〉 = 0},

vα,β := Φα,β(Xα,β + X(−1/2)), wα,β := Φα,β(Yα,β + Y (−1/2)) for (α, β) ∈ D.

It is possible to show (see [2, Theorem 3.1] for details) that for any η > 0 there

exists ζ > 0 such that for any couple (λ, u) ∈ Λ × H satisfying (2.1), ‖u‖ 6= 0 and

‖u‖+ ‖u/‖u‖− u0‖+ |λ− λ0| < ζ, there exists (s, v, α, β) ∈ R×H1 ×D with s > 0,
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s + ‖v‖ + |α − α0| + |β − β0| < η such that A(u) = [α, β] and (s, v, α, β) satisfies

〈F (λ, sΦα,β(u0 + v)) , Φα,βϕ〉 = 0 for any ϕ ∈ H0,(3.1)
∫

Ω

[λsΦα,β(u0 + v) + g(λ, sΦα,β(u0 + v))]vα,β dxdy = 0,(3.2)

∫

Ω

[λsΦα,β(u0 + v) + g(λ, sΦα,β(u0 + v))]wα,β dxdy = 0,

u = sΦα,β(u0 + v).(3.3)

And vice versa, for any (s, λ, v, α, β) ∈ R
2 × H1 × D satisfying (3.1), (3.2), s > 0,

s+‖v‖+ |λ−λ0|+ |α−α0|+ |β−β0| < ζ, the couple (λ, u) with u from (3.3) satisfies

(2.1), ‖u − u0‖ < η and A(u) = [α, β].

Roughly speaking, the structure of the system (3.1), (3.2) is as follows: Because

the codimension of H1 in H0 is one, there is a hope to solve (3.1) with respect to λ

and v. Putting this solution, which depends on α, β and s, into (3.2), one can hope

to solve the resulting two scalar equations with respect to α and β.

Let us explain where the two scalar equations (3.2) come from. It is known that

solutions u to (2.1) need to be C1-smooth on Ω ∪ ΓU , contrary to those to (3.1).

Hence, the conditions (3.2) should imply this additional smoothness of u and v,

respectively. In fact, they choose the proper α, β such that the solution v to (3.1)

(and hence also u given by (3.3)) is C1. In order to explain this in more detail, let

us define, for any fixed (α, β) ∈ D, functions X
(1/2)
α , Y

(1/2)
β : Ω → R by

X(1/2)
α (α + r cosω, r sin ω) := χ(r)r1/2 sin

ω

2
,

Y
(1/2)
β (β + r cosω, r sin ω) := χ(r)r1/2 sin

ω

2
,

similarly to (2.4). Let u be a weak solution of the boundary value problem −∆u = f

in Ω with (1.2), (2.3), f ∈ Lp(Ω), p > 2 and p 6= 4. It follows from [4, Theorem 2]

that

u = ũ + K1
α,β(f)X(1/2)

α + K2
α,β(f)Y

(1/2)
β ,

where ũ ∈ W 2,p(Ω). The so-called stress intensity coefficients K1
α,β(f) and K2

α,β(f)

can be calculated as

K1
α,β(f) = −

2

π

∫

Ω

fvα,β dxdy, K2
α,β(f) = −

2

π

∫

Ω

fwα,β dxdy

([2, Lemma 3.6]). Let us emphasize that the functions X
(1/2)
α and Y

(1/2)
β belong

neither to W 2,2(Ω) nor to C1(Ω), because of the singularity in the first derivatives

at (α, 0) or (β, 0), respectively. In particular,

∂xX(1/2)
α (α−, 0) = −∞, ∂xY

(1/2)
β (β+, 0) = +∞.
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Therefore we have u ∈ C1(Ω) if and only if K1
α,β(f) = K2

α,β(f) = 0. Putting

f = λu + g(λ, u) we get u ∈ C1(Ω) if and only if

∫

Ω

(λu + g(λ, u))vα,β dxdy =

∫

Ω

(λu + g(λ, u))wα,β dxdy = 0.

This is the condition (3.2), if (3.3) holds.

The proof of Theorem 2.1 consists of several steps. One step is to show that the

solutions to (2.1) which are sufficiently close to a bifurcation point have as their

contact set an interval ([2, Lemma 3.13]). Another step is to show that the smooth

solutions to (3.1) satisfy the sign conditions (1.3). In fact, it is possible to prove

that those solutions satisfy (2.7) ([2, Lemma 3.14]). Further, one has to show that

the problem (3.1), (3.2) is equivalent to an operator equation with a C1-smooth

operator from R
4×H1 (where (λ, α, β, s, v) belongs) into H0×R

2 ([2, Theorem 3.1]).

The final step is to divide (3.1), (3.2) by s and solve the resulting system with

respect to (λ, α, β, v) by means of the Implicit Function Theorem (close to its solution

λ = λ0, α = α0, β = β0, s = 0, v = 0). To this end one has to use (2.6) in order to

show that the linearized with respect to (λ, α, β, v) system generates an isomorphism

between R
3 × H1 and H0 × R

2.

Let us mention that regularity properties of solutions to variational inequalities

and boundary value problems (see e.g. [3]–[7]) play an essential role in the complete

proof given in [2].
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