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Abstract. The existence of anti-periodic solutions is studied for a second order difference
inclusion associated with a maximal monotone operator in Hilbert spaces. It is the discrete
analogue of a well-studied class of differential equations.

Keywords: anti-periodic solution, maximal monotone operator, Yosida approximation

MSC 2010 : 39A12, 34G25, 47H05

1. Introduction

We are concerned with the second order difference inclusion

(1.1)

{

ui+1 − (1 + θi)ui + θiui−1 ∈ ciAui + fi, 1 6 i 6 N

u0 = −uN+1, u1 − u0 = −aN(uN+1 − uN ),

where A is a nonlinear (possibly multivalued) maximal monotone operator in a real

Hilbert space H, θi, ci > 0 and fi ∈ H (1 6 i 6 N) are given finite sequences, and

aN = 1/θ1θ2 . . . θN . Denote by D(A) the domain of A.

The inclusion from (1.1) is the discrete variant of the continuous differential in-

clusion pu′′ + ru′ ∈ Au + f a.e. on [0, T ] that has been intensely studied. See for

example the papers [9], [1] and the monograph [8]. Anti-periodic solutions for such a

class of differential equations were investigated in [2], [4], while the discrete analogue

for p ≡ 1, r ≡ 0 was treated in [5]. In this case θi ≡ 1. In [10], the authors study

the asymptotic behavior of the bounded solution for the second order on half-axis.

Existence and asymptotic behavior results for equation (1.1) for i > 1 and various

boundary conditions have been obtained in [7]. For finite sets of i (1 6 i 6 N), in [6]
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the authors analyzed the continuous dependence of the solution on the operator A,

the sequence fi and the boundary conditions u0 = a, uN+1 = b.

The structure of the paper is the following. In the next section we find some

auxiliary results related to the maximal monotonicity of the operator

(1.2) Bu = {(−ui+1 + (1 + θi)ui − θiui−1)16i6N}

with the domain

(1.3) D(B) = {u = (ui)16i6N , u0 = −uN+1, u1 − u0 = −aN(uN+1 − uN )}.

Denoting by A the operator

(1.4) Au = {(c1v1, . . . , cNvN ), vi ∈ Aui, 1 6 i 6 N} , D(A) = D(A)N ,

problem (1.1) can be written as −f ∈ (A + B)(u), f = (f1, . . . , fN ).

Section 3 is devoted to the existence of the solution of the boundary value problem

(1.1). The main result of the paper is established here and an application to PDE is

presented.

Recall that if A is maximal monotone and if Jλ = (I+λA)−1, Aλ = (I−Jλ)/λ are

its resolvent and its Yosida approximation, respectively, then x = Jλx+λAλx, Aλx ∈

A(Jλx). Properties of maximal monotone operators can be found in [8].

In [3], [11] the authors studied second-order boundary value problems for discrete

inclusions and applied the fixed-point techniques and a priori bound methods to

obtain the existence of solutions. However, in these papers the boundary conditions

are of Dirichlet type and so do not apply directly to the problem herein.

2. Auxiliary results

Note that, if A is maximal monotone in H , then A from (1.4) is maximal monotone

in HN = H × . . .×H (N times). We study now the maximal monotonicity of B in

the Hilbert space HN endowed with the scalar product

(2.1) 〈(ui)16i6N , (vi)16i6N 〉 =

N
∑

i=1

ai(ui, vi).

Here (·, ·) is the scalar product in H and ai is given by

(2.2) a0 = 1, ai =
1

θ1 . . . θi
, 1 6 i 6 N.
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Observe that

(2.3) aiθi = ai−1, 1 6 i 6 N + 1.

This Hilbert space is equivalent to HN endowed with the scalar product 〈(ui)16i6N ,

(vi)16i6N 〉 =
N
∑

i=1

(ui, vi). The only difference between the two Hilbert spaces is that

the operator B introduced in (1.2)–(1.3) is monotone only in HN with the scalar

product (2.1). To show this, we begin with the existence results for the auxiliary

boundary value problems, with c, d ∈ R given:

li+1 − (2 + θi)li + θili−1 = 0, 1 6 i 6 N,(2.4)

l0 = c, lN+1 = −c,

mi+1 − (2 + θi)mi + θimi−1 = 0, 1 6 i 6 N,(2.5)

m1 −m0 = aNd, mN+1 −mN = −d.

Lemma 2.1. If c ∈ R and ci, θi > 0, 1 6 i 6 N , problem (2.4) has a unique

solution l = (li)16i6N ∈ R
N . Moreover, we can choose c such that l1 − l0 +

aN (lN+1 − lN ) 6= 0.

P r o o f. Problem (2.4) has the form (6.1.13) from [8], page 143. Applying

Theorem 6.1.2 in [8], one deduces that (2.4) admits a unique solution l = (li)16i6N ∈

R
N . Let l0 = c and l1 ∈ R be fixed. Then we can compute l2, l3, . . . , lN+1 in terms

of l1. By the boundary condition lN+1 = −c, we find l1 = c[2θ1(2+θ2)−1]/(8+4θ1+

2θ2+2θ1θ2). Then we can choose c such that the condition l1−l0+aN(lN+1−lN ) 6= 0

is satisfied.

Lemma 2.2. Let d < 0 be given and let ci, θi > 0, 1 6 i 6 N . Then problem

(2.5) admits a unique solution m = (mi)16i6N ∈ R
N . In addition, we can choose

d < 0 such that m0 +mN+1 6= 0.

P r o o f. Let m0 ∈ R be arbitrary fixed. Then m1 = m0 + aNd and from (2.5)

we infer that mi = αim0 + βi, 1 6 i 6 N , with αi > 0, βi > 0, αi+1 − αi > 0

and βi − βi+1 − d > 0 (if d < 0) for 1 6 i 6 N. By the boundary condition

mN+1−mN = −d, one obtains m0 = (βN −βN+1−d)/(αN+1−αN ). This m0 exists

and is positive. In addition, we can easily find that

m0 +mN+1 =
(βN − βN+1 − d) − dαN+1 + αN+1βN − βN+1αN

αN+1 − αN
> 0,

because αN+1 − αN > 0, βN − βN+1 − d > 0 and αN+1βN − βN+1αN =

−θ1θ2 . . . θNaNd = −d > 0. The lemma is proved.

Now we can prove the maximal monotonicity of the operator B from (1.2)− (1.3).
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Proposition 2.3. The operator B defined in (1.2)–(1.3) is maximal monotone in

the weighted Hilbert space HN with the scalar product (2.1).

P r o o f. To prove that B is monotone with respect to the scalar product (2.1),

let u = (ui)16i6N , v = (vi)16i6N be two sequences in the domain D(B) of B and let

ϕi = ai−1(ui − ui−1), ψi = ai−1(vi − vi−1), 1 6 i 6 N. In view of (1.2), (1.3) and

(2.3), we can write

〈B(u) − B(v), u− v〉 = −
N

∑

i=1

(ϕi+1 − ϕi − ψi+1 + ψi, ui − vi)

=

N
∑

i=1

ai‖ui+1 − ui − vi+1 + vi‖
2 −

N
∑

i=1

(ϕi − ψi, ui+1 − ui − vi+1 + vi)

−

N
∑

i=1

(ϕi+1 − ϕi − ψi+1 + ψi, ui+1 − vi+1)

=

N
∑

i=1

ai‖ui+1 − ui − vi+1 + vi‖
2

+
N

∑

i=1

[(ϕi − ψi, ui − vi) − (ϕi+1 − ψi+1, ui+1 − vi+1)]

=

N
∑

i=1

ai‖ui+1 − ui − vi+1 + vi‖
2 + (u1 − u0 − v1 + v0, u1 − v1)

− aN (uN+1 − uN − vN+1 + vN , uN+1 − vN+1).

Since u, v ∈ D(B), one obtains

〈B(u) − B(v), u− v〉 =
N

∑

i=1

ai‖ui+1 − ui − vi+1 + vi‖
2 + ‖u1 − u0 − v1 + v0‖

2
> 0.

Thus B is monotone in HN with the scalar product (2.1).

We now prove that B is maximal monotone, i.e. R(B + I) = H (see Minty’s

Theorem 1.4.13, [8]). Therefore, for every sequence (hi)16i6N ∈ HN , we are looking

for u = (ui)16i6N ∈ HN such that

(2.6) ui+1 − (2 + θi)ui + θiui−1 = hi, 1 6 i 6 N,

u0 = −uN+1, u1 − u0 = −aN(uN+1 − uN ).

We search the solution of (2.6) in the form

(2.7) ui = vi + lix+miy, 1 6 i 6 N,
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where x, y ∈ H and li, mi, vi are solutions of the boundary value problems (2.4),

(2.5) and

vi+1 − (2 + θi)vi + θivi−1 = hi, 1 6 i 6 N(2.8)

v0 = 0, v1 = 0,

respectively. The sequence ui in (2.7) verifies the equation from (2.6) for all x, y ∈ H.

The boundary conditions from (2.6) become

(l0 + lN+1)x+ (m0 +mN+1)y = −vN+1,

[l1 − l0 + aN (lN+1 − lN)]x + [m1 −m0 + aN (mN+1 −mN )]y = −aN(vN+1 − vN ).

Lemmas 2.1 and 2.2, together with the boundary conditions from (2.4), (2.5),

guarantee the existence and uniqueness of x, y ∈ H :

x =
−aN(vN+1 − vN )

l1 − l0 + aN (lN+1 − lN )
, y =

−vN+1

m0 +mN+1

.

Hence B is maximal monotone with respect to the scalar product (2.1).

3. The main result

In this section we establish the existence of a solution to the boundary value

problem (1.1). The main ingredient of the proof is Proposition 2.3.

Theorem 3.1. Assume that A : D(A) ⊆ H → H is maximal monotone in H ,

0 ∈ D(A), θi, ci > 0, fi ∈ H , 1 6 i 6 N , aN = 1/θ1θ2 . . . θN . Then the boundary

value problem (1.1) has a unique solution u = (ui)16i6N ∈ D(A)N .

P r o o f. Denote by Aλ = (I − (I + λA)−1)/λ and Aλ = (I − (I + λA)−1)/λ the

Yosida approximations of the operators A and A, respectively. Recall that A defined

through (1.4) is maximal monotone in HN . Since Aλ is also maximal monotone and

everywhere defined and B is maximal monotone with respect to the scalar product

(2.1), the sum Aλ +B is maximal monotone. Consequently, the operator Aλ +B+ωI

is surjective for every ω > 0, i.e. for any sequence f = (fi)16i6N ∈ HN , the problem

uλω
i+1 − (1 + θi)u

λω
i + θiu

λω
i−1 = ciAλu

λω
i + ωuλω

i + fi, 1 6 i 6 N,(3.1)

uλω
0 = −uλω

N+1, u
λω
1 − uλω

0 = −aN (uλω
N+1 − uλω

N )

has a unique solution uλω = (uλω
i )16i6N ∈ HN .
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S t e p 1. We first prove the boundedness with respect to λ and ω of the sequence

uλω
i .Without loss of generality, we suppose that 0 ∈ A0. Otherwise, we replace A by

Ã = A−A00 and fi by f̃i = fi + ciA
00, where A0x is the element of the minimum

norm of the set Ax.

One multiplies (3.1) by aiu
λω
i and sums up from i = 1 to i = N. Using (2.3) and

the monotonicity of Aλ, we get

ω
N

∑

i=1

ai‖u
λω
i ‖2

6

N
∑

i=1

[ai(u
λω
i+1 − uλω

i , uλω
i ) − ai−1(u

λω
i − uλω

i−1, u
λω
i−1)]

−

N
∑

i=1

ai−1‖u
λω
i − uλω

i−1‖
2 −

N
∑

i=1

ai(fi, u
λω
i ).

This implies that

ω
N

∑

i=1

ai‖u
λω
i ‖2 + aN‖uλω

N+1 − uλω
N ‖2 +

N
∑

i=1

ai−1‖u
λω
i − uλω

i−1‖
2

6

( N
∑

i=1

ai‖fi‖
2

)1/2( N
∑

i=1

ai‖u
λω
i ‖2

)1/2

.

Hence we have obtained that

(3.2)
N

∑

i=1

ai‖u
λω
i ‖2

6 K1,
N

∑

i=1

ai−1‖u
λω
i − uλω

i−1‖
2

6 K2, ‖uλω
N+1 − uλω

N ‖ 6 K3,

where K1,K2,K3 and all Kj below are positive constants. By (3.1) we find also that

(3.3) ‖Aλu
λω
i ‖ 6 K4, 1 6 i 6 N.

S t e p 2. We now show that uλω is strongly convergent in HN as λց 0, for every

fixed ω. To do this, we subtract (3.1) for λ and for µ and multiply this difference by

ai(u
λω
i − uµω

i ). Summing up from i = 1 to i = N and employing (2.3), we derive

that

ω
N

∑

i=1

ai‖u
λω
i − uµω

i ‖2 +
N

∑

i=1

ai−1‖u
λω
i − uµω

i − uλω
i−1 + uµω

i−1‖
2

6 aN (uλω
N+1 − uµω

N+1
− uλω

N + uµω
N , uλω

N − uµω
N )

− (uλω
1 − uµω

1 − uλω
0 + uµω

0 , uλω
0 − uµω

0 )

+

N
∑

i=1

aici(Aλu
λω
i −Aµu

µω
i , Jλu

λω
i − Jµu

µω
i )

+

N
∑

i=1

aici(Aλu
λω
i −Aµu

µω
i , λAλu

λω
i − µAµu

µω
i ).
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Since A is monotone and Aλx ∈ A(Jλx), we have via (3.3)

ω

N
∑

i=1

ai‖u
λω
i − uµω

i ‖2 +

N
∑

i=1

ai−1‖u
λω
i − uµω

i − uλω
i−1 + uµω

i−1‖
2

+ aN‖uλω
N+1 − uµω

N+1
− uλω

N + uµω
N ‖2

6 K5(λ+ µ).

This estimate shows the strong convergence as λ ց 0 of the sequences uλω
i and

uλω
i − uλω

i−1, 1 6 i 6 N. Let uλω
i → vω

i as λ ց 0. Since Aλu
λω
i is bounded with

respect to λ and ω, it is weakly convergent on a subsequence, say Aλu
λω
i ⇀ wω

i as

λ ց 0 in H. Then Jλu
λω
i = uλω

i − λAλu
λω
i → vω

i as λ ց 0. Passing to the limit as

λց 0 in Aλu
λω
i ∈ A(Jλu

λω
i ) and in (3.1), one finds that vω

i ∈ D(A), wω
i ∈ Avω

i and

vω
i+1 − (1 + θi)v

ω
i + θiv

ω
i−1 ∈ ciAv

ω
i + ωvω

i + fi, 1 6 i 6 N,(3.4)

vω
0 = −vω

N+1, vω
1 − vω

0 = −aN(vω
N+1 − vω

N ).

The solution of this problem is bounded because of (3.2):

(3.5) ‖vω
i ‖ 6 K6, 1 6 i 6 N.

S t e p 3. We prove that vω
i −vω

i−1 is strongly convergent as ω → 0, 1 6 i 6 N +1.

To this end, by (3.4) for ω and γ and by the monotonicity of A we deduce that

aN‖vω
N+1 − vγ

N+1
− vω

N + vγ
N‖2 +

N
∑

i=1

ai−1‖v
ω
i − vγ

i − vω
i−1 + vγ

i−1‖
2

6 (ω + γ)

N
∑

i=1

aici(v
ω
i , v

γ
i ) 6 K7(ω + γ).

This shows the desired strong convergence. Writing (3.4) in the form

vω
i+1 − vω

i − θi(v
ω
i − vω

i−1) − ωvω
i − fi ∈ ciAv

ω
i , 1 6 i 6 N

and employing the maximal monotonicity of A together with the weak convergence

of vω
i (say v

ω
i ⇀ ui), 1 6 i 6 N , it follows that ui ∈ D(A) and u = (ui)16i6N verifies

the problem (1.1). The uniqueness can be easily obtained. This completes the proof.

An e x am p l e. Denote by Ω ⊂ R
d, d > 1 a bounded domain with the boundary

∂Ω smooth enough. Let β : D(β) ⊆ R → R be a maximal monotone, densely

defined operator in R, and let A be the operator Au = −∆u with the domain

D(A) = {u ∈ H2(Ω),−∂u/∂η ∈ β(u) a.e. on ∂Ω}, where ∂/∂η is the outward normal
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derivative. It is known that this operator is maximal monotone in the Hilbert space

H = L2(Ω) (see for example [8]). As a consequence of Theorem 3.1, we can state

the following existence result for the boundary value problem

ui+1(x) − (1 + θi)ui(x) + θiui−1(x) = −ci∆ui(x) + fi(x), x ∈ Ω, 1 6 i 6 N

−∂ui(x)/∂η ∈ β(ui(x)), x ∈ ∂Ω

u0(x) = −uN+1(x), u1(x) − u0(x) = −aN [uN+1(x) − uN(x)], x ∈ Ω.

Proposition 3.2. Let β : D(β) ⊆ R → R be a maximal monotone densely defined

operator on R such that 0 ∈ β(0), fi ∈ H = L2(Ω), ci, θi > 0, 1 6 i 6 N. Then the

above boundary value problem has a unique solution u = (ui)16i6N ∈ D(A)N .
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