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ON SIMILARITY SOLUTION OF A BOUNDARY LAYER PROBLEM

FOR POWER-LAW FLUIDS
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Abstract. The boundary layer equations for the non-Newtonian power law fluid are ex-
amined under the classical conditions of uniform flow past a semi infinite flat plate. We
investigate the behavior of the similarity solution and employing the Crocco-like transfor-
mation we establish the power series representation of the solution near the plate.
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1. Mathematical formulation

Consider a steady two-dimensional laminar flow of a power-law fluid with constant

speed V∞ over a semi-infinite flat plate at zero incidence. In the absence of the

body force and external pressure gradients, the laminar boundary layer equations

expressing conservation of mass and momentum are governed by ([2], [14]):

∂v

∂y
+
∂w

∂z
= 0,(1.1)

v
∂v

∂y
+ w

∂v

∂z
=

1

̺

∂τ

∂z
,(1.2)

where the y and z axes are taken along and perpendicular to the plate, v andw are the

velocity components of the fluid parallel and normal to the plate, τ = κ |∂v/∂z|
n−1

×

∂v/∂z is the shear stress, and ν = γ|∂v/∂z|n−1 (γ = κ/̺) is the kinematic viscosity.

The case n = 1 corresponds to a Newtonian fluid, 0 < n < 1 is referred to as

the pseudo-plastic non-Newtonian fluid and n > 1 describes the dilatant fluid. The
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appropriate boundary conditions are

v(y, 0) = 0, w(y, 0) = 0,(1.3)

v(y, z) → V∞ as z → ∞,(1.4)

where V∞ > 0 represents the mainstream velocity.

The continuity equation (1.1) is satisfied by introducing a stream function

ψ(y, z) such that v = ∂ψ/∂z, w = −∂ψ/∂y. Then the momentum equation

can be transformed into an ordinary differential equation by the transformation

η = (Re/(y/L))1/(n+1)(z/L), ψ(y, z) = LV∞(Re/(y/L))−1/(n+1)f(η), where η is the

similarity variable, f(η) is the dimensionless stream function, L is the characteristic

length and Re is the generalized Reynolds number defined as Re = ̺V 2−n
∞

Ln/κ.

The partial differential equation (1.2) is transformed into an autonomous third order

non-linear differential equation

(1.5) (|f ′′|
n−1

f ′′)′ +
1

n+ 1
ff ′′ = 0,

where primes denote differentiation with respect to η. The transformed boundary

conditions are

(1.6) f(0) = 0, f ′(0) = 0, f ′(∞) = lim
η→∞

f ′(η) = 1.

The nondimensional velocity components can be expressed by f(η) as v(y, z) =

V∞f
′(η), w(y, z) = V∞(n+ 1)−1Re−1/(n+1)

y (ηf ′(η) − f(η)), where Rey = V 2−n
∞

yn ×

(κ/̺)−1.We note that when n = 1 (Newtonian fluid), the present problem is reduced

to the classical Blasius problem [3]. Equation (1.5) is referred to as the generalized

Blasius equation. We shall use the shooting method, and we replace the condition at

∞ by one at η = 0 f ′′(0) = γ. The real number γ has a physical meaning: it provides

the wall shear stress ηwall = γV n
∞

Ren/(n+1)
y y−n|γ|n−1γ and the non-dimensional drag

coefficient CD = (n+1)1/(n+1)Re−n/(n+1)|γ|n−1γ ([2], [13]). For the Newtonian case

(n = 1), it was found in [13] that γ0 = 0.33205. Highly accurate numerical results

for γ have been provided in [1], [6], [9]. In 1908, Blasius [3] obtained a numerical

solution to (1.5)–(1.6) for n = 1 in the form of a power series for small values of η:

(1.7) f(η) = η2
∞
∑

k=0

(

−
1

2

)k Akγ
k+1
0

(3k + 2)!
η3k,

where Ak =
k−1
∑

j=0

(

3k−1
3r

)

ArAk−r−1 if k > 2, A0 = A1 = 1.
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The main goal of this paper is to examine the properties of the solution to the

boundary value problem (1.5)–(1.6) and to give a power series expansion of the

solution for small value of η.

2. Initial value problem of the generalized Blasius equation

Instead of (1.5)–(1.6) consider the initial value problem (1.5) with

(2.1) f(0) = 0, f ′(0) = 0, f ′′(0) = γ,

where γ ∈ R is the shooting parameter. For an appropriate γ the solution to (1.5)–

(2.1) satisfies (1.6). The boundary condition at infinity indicates that γ > 0. In

the case n = 1, K.Töpfer [15] realized that there is a second group invariance such

that if h denotes the solution to (1.5) with initial conditions h(0) = 0, h′(0) = 0

and h′′(0) = 1, then the solution f with initial solutions f(0) = 0, f ′(0) = 0 and

f ′′(0) = γ can be obtained by f(η) = γ1/3h(γ1/3η). It therefore suffices to compute h

and then rescale it so that the rescaled function has the desired asymptotic behavior

for large η, namely f ′(∞) = 1. The true value of the second derivative at the origin

is then γ = [ lim
η→∞

h′(η)]−3/2. Analogously to Töpfer we get

Theorem 2.1. Assume that f is the solution of (1.5)–(1.6) such that f ′′(0) = γ

and h is the solution of

(|h′′|
n−1

h′′)′ +
1

h+ 1
hh′′ = 0, n > 0, n 6= 2,(2.2)

h(0) = 0, hx(0) = 0, h′′(0) = 1.(2.3)

Then

(2.4) f(η) = γ(2n−1)/3h(γ(2−n)/3η), γ = [ lim
η∗→∞

h′(η∗)]−3/(n+1).

P r o o f. Let us introduce the scaling transformation h = λκf , η∗ = λµη for (1.5),

where κ and µ are real, non-zero parameters. We determine κ and µ such that the

boundary conditions are substituted by suitable conditions. After simple calculations

we get that when κ = (1−2n)/(2−n)µ the governing differential equation (1.5) is left

invariant by the new variables h and η∗ and the primes for h denotes the derivative

with respect to η∗ in (2.2). The initial conditions for f correspond to (2.3) with the

choice of λ = γ when h′′(0) = γκ−2µf ′′(0) = γκ−2µ+1. Hence with κ = (1 − 2n)/3,

µ = (2 − n)/3, we have for the power of γ that κ− 2µ+ 1 = 0 i.e., h = γ(1−2n)/3f,
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η∗ = γ(2−n)/3η and we get h′′(0) = 1. Then (2.4) holds and γ is determined by the

boundary condition at ∞ as

1 = lim
η→∞

f ′(η) = lim
η→∞

rκ−µh′(η∗) = lim
η→∞

γ(n+1)/3h′(η∗).

�

R em a r k. Applying (2.4) it is possible to determine the value γ numerically by

solving the initial value problem (2.2)–(2.3) for different values of n.

We note that the case n = 2 was treated in the paper [10]. For the existence and

uniqueness of solutions of (1.5)–(1.6) we refer to [5]:

Theorem 2.2. Let n > 0, then there exists a unique solution of problem (1.5)–

(1.6). Furthermore, if 0 < n 6 1 then f ′′ > 0 for all η > 0, and if n > 1 there exists

η0 > 0 such that f ′′ > 0 on [0, η0).

For positive γ it was deduced that f, f ′ and f ′′ are positive on (0, η0), and the

solution f exists on (0,∞) [5]. We assume that f is the solution to (1.5)–(1.6). Then

there exist r > 0 and ηr > 0 such that f ≡ fr on (0,∞), 0 6 f ′

r 6 1 for [0, ηr] and f

satisfies

(|f ′′|
n−1

f ′′)′ +
1

n+ 1
ff ′′ = 0,

f(0) = 0, f ′(0) = 0, f ′(ηr) = 1,

where ηr is unknown. We employ the following Crocco-like transformation for (1.5)–

(1.6): s = f ′ and G = f ′′, and we arrive at the problem [12]

GnG′′ + (n− 1)Gn−1G′2 +
s

n(n+ 1)
= 0,(2.5)

G′(0) = 0, G(1) = 0.(2.6)

We note that G(0) = f ′′(0). Here we are interested in the positive solution of (2.5)–

(2.6) in [0, 1). It was shown that there exists a unique r such that the initial value

problem

GnG′′ + (n− 1)Gn−1G′2 +
s

n(n+ 1)
= 0,(2.7)

G(0) = r, G′(0) = 0(2.8)

has a continuous, unique, positive solution which vanishes for 1, and r > 0 is the

shooting parameter [5]. Our task is to determine r = f ′′(0) = γ such that G is

positive on [0, 1) and G(1) = 0.
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Let g be the inverse function of f ′

r : g(f ′

r(η)) = η, then g(0) = 0 and g(1) = ηr.

Moreover for any s ∈ (0, 1) G(s) = 1/g′(s), η = g(s).

Our aim is to give an approximate power series solution to problem (2.7)–(2.8)

and also to problem (1.5)–(1.6) for small values of η and n > 0; moreover, to present

a method for the determination of the coefficients.

3. Power series representation of the local solution

The object of this section is to determine the local solution G of (2.7)–(2.8) near

the origin. We will consider (2.7)–(2.8) as a system of certain differential equations,

namely, the special Briot-Bouquet differential equations. For this type of differential

equations we refer to the book by E.Hille [8] and E.L. Ince [11]. In order to establish

the existence of a power series representation of G(s) about s = 0 we refer to the

following theorem [4]:

Theorem 3.1. Consider the system of equations

(3.1)











ξ
dz1
dξ

= u1(ξ, z1(ξ), z2(ξ)),

ξ
dz2
dξ

= u2(ξ, z1(ξ), z2(ξ)),

where functions u1 and u2 are holomorphic functions of ξ, z1(ξ), and z2(ξ) near

the origin, and moreover u1(0, 0, 0) = u2(0, 0, 0) = 0. Then a holomorphic solution

of (3.1) satisfying the initial conditions z1(0) = 0, z2(0) = 0 exists if none of the

eigenvalues of the matrix

(3.2)







∂u1

∂z1

∣

∣

∣

(0,0,0)

∂u1

∂z2

∣

∣

∣

(0,0,0)

∂u2

∂z1

∣

∣

∣

(0,0,0)

∂u2

∂z2

∣

∣

∣

(0,0,0)







is a positive integer.

This theorem ensures the existence of formal solutions z1 =
∞
∑

k=0

akξ
k and z2 =

∞
∑

k=0

bkξ
k for system (3.1), and also the convergence of formal solutions.
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Theorem 3.2. Let n > 0. The initial value problem (2.7)–(2.8) has a unique

analytic solution of the form G(s) = Q(s3) in the neighborhood of s = 0, where Q is

a holomorphic solution to

(3.3) Q′′ = −
2

3

Q′

s
− (n− 1)

Q′2

Qn
−

1

n(n+ 1)δ2
1

Qns

near zero satisfying Q(0) = r, Q′(0) = −1/[6n(n+ 1)rn].

P r o o f. Let us formulate (2.7) as a system of Briot-Bouquet type differential

equations (3.1) and take the solution in the form G(s) = Q(sδ), s ∈ (0, 1), where

Q ∈ C2(0, 1). Substituting G(s) = Q(sδ) into (2.7) we get that Q satisfies

Q′′(sδ) = −
δ − 1

δ
s−δQ′ − (n− 1)

Q′2

Qn
−

1

n(n+ 1)δ2
s3−2δ 1

Qn
.

Introducing a variable ξ by ξ = sδ we have

(3.4) Q′′(ξ) = −
δ − 1

δ

Q′

ξ
− (n− 1)

Q′2

Qn
−

1

n(n+ 1)δ2
ξ3/δ−2 1

Qn
.

Take the function Q in the form Q(ξ) = r + qξ + z(ξ), for some constant q, and

z ∈ C2(0, a), z(0) = 0, z′(0) = 0. Therefore Q fulfils the conditions Q(0) = r,

Q′(0) = q, Q′(ξ) = q + z′(ξ), Q′′(ξ) = z′′(ξ). The initial condition G(0) = r is

satisfied. We restate (3.4) as a system of equations

z1(ξ) = z(ξ)

z2(ξ) = z′(ξ)

}

with
z1(0) = 0

z2(0) = 0

}

.

Due to (3.4) we get that

z′′(ξ) = −
δ − 1

δ

q + z2(ξ)

ξ
− (n− 1)

(q + z2(ξ))
2

(r + qξ + z1(ξ))n

−
1

n(n+ 1)δ2
ξ

3

δ
−2 1

(r + qξ + z1(ξ))n
.

We arrange the system of equations (3.1) as follows

u1(ξ, z1(ξ), z2(ξ)) = ξz2

u2(ξ, z1(ξ), z2(ξ)) = −
δ − 1

δ
(q + z2(ξ)) − (n− 1)

(q + z2(ξ))
2

(r + qξ + z1(ξ))n
ξ

−
1

n(n+ 1)δ2
ξ

3

δ
−1 1

(r + qξ + z1(ξ))n
.
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In order to satisfy conditions u1(0, 0, 0) = 0 and u2(0, 0, 0) = 0 we must get zero for

the power of ξ on the right-hand side of the second equation. Therefore 3/δ− 1 = 0,

i.e., δ = 3; moreover, we have that − 2
3q −

1
9 (n(n+ 1)rn)−1 = 0, i.e.,

(3.5) q = −
1

6n(n+ 1)

1

rn
.

The initial conditions (2.8) are satisfied. For u1 and u2 we find that

∂u1

∂z1

∣

∣

∣

(0,0,0)
= 0,

∂u1

∂z2

∣

∣

∣

(0,0,0)
= 0,

∂u2

∂z1

∣

∣

∣

(0,0,0)
=

1

9(n+ 1)

1

rn+1
,
∂u2

∂z2

∣

∣

∣

(0,0,0)
= −

2

3
.

Therefore the eigenvalues of matrix (3.2) at (0, 0, 0) are 0 and − 2
3 . Since both the

eigenvalues are non-positive, applying Theorem 3.1 we get the existence of unique

analytic solutions z1 and z2 at zero. Thus we get the analytic solution Q(ξ) =

r + qξ + z(ξ) satisfying (3.4) with Q(0) = r, Q′(0) = q, where q is determined by

(3.5). �

R em a r k. It follows that the solution G(s) to (2.7)–(2.8) has an expansion near

zero of the form G(s) =
∞
∑

k=0

aks
3k.

4. Determination of the local solution

In this section we give a method for the determination of the coefficients of the

power series solution. We seek a solution of the form

(4.1) G(s) = a0 + a1s
3 + a2s

6 + . . . , s > 0,

with coefficients ak ∈ R, k = 0, 1, . . .. From Section 3 we get that a0 = r and

a1 = q = −1/ [6n(n+ 1)rn] . Near zero we have G(s) > 0 and G′(s) < 0 and

(4.2) G′(s) =

∞
∑

k=0

3(k + 1)ak+1s
3k, G′′(s) =

∞
∑

k=0

3(k + 1)(3k + 2)ak+1s
3k+1.

Hence, for Gn, Gn−1 and G′2 we get

(4.3) Gn(s) =
∞
∑

k=0

Aks
3k, Gn−1(s) =

∞
∑

k=0

Bks
3k, G′2(s) = s4

∞
∑

k=0

Cks
3k
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where the coefficients Ak, Bk and Ck can be expressed in terms of ak. One can apply

the J. C.P.Miller formula (see [7]) for the determination of Ak, Bk and Ck:

A0 = an
0 , B0 = an−1

0 , C0 = 9a2
1 and for k = 1, 2, . . .

Ak =
1

ka0

k−1
∑

j=0

[(k − j)n− j]Ajak−j ,(4.4)

Bk =
1

ka0

k−1
∑

j=0

[(k − j)(n− 1) − j]Bjak−j ,(4.5)

Ck =
1

ka0

k−1
∑

j=0

[2k − 3j]Cjck−j , ck = 3(k + 1)ak+1.(4.6)

Substituting (4.4)–(4.6) into the equation (2.5) we compare the like powers of s and

we get

(4.7) a1 = −
1

6n(n+ 1)
r−n, a2 = −

5n− 3

360n2(n+ 1)2
r−2n−1,

a3 = −
10n2 + 17n− 15

25920n3(n+ 1)3
r−2−3n, . . . .

Then we get

(4.8) G(s) = r
(

1 −
1

6n(n+ 1)
r−(n+1)s3 −

5n− 3

360n2(n+ 1)2
r−2(n+1)s6 − . . .

)

.

Since G(s) = 1/g′(s) and g(0) = 0 we have g(s) =
∫ s

0 G
−1(t) dt and

g(s) =
1

r

[

s+
1

24n(n+ 1)
r−(n+1)s4 +

5n+ 7

2520n2(n+ 1)2
r−2(n+1)s7

+
10n2 + 137n+ 33

259200n3(n+ 1)3
r−3(n+1)s10

]

+O(s13),

hence

rη = f ′

r(η) +
1

24n(n+ 1)
r−(n+1)f ′

r(η)
4 +

5n+ 7

2520n2(n+ 1)2
r−2(n+1)f ′

r(η)
7

+
10n2 + 137n+ 33

259200n3(n+ 1)3
r−3(n+1)f ′

r(η)
10 +O(s13).

This implies a similar down stream velocity

f ′

r(η) = rη −
1

4!n(n+ 1)
r3−nη4 −

10n− 21

7!n2(n+ 1)2
r5−2nη7

−
560n2 − 2054n+ 1869

10!n3(n+ 1)3
γ7−3n
0 η10 +O(η10),
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and consequently, the stream function is obtained as

fr(η) =
r

2
η2 −

1

5!n(n+ 1)
r3−nη5 −

10n− 21

8!n2(n+ 1)2
r5−2nη8

−
560n2 − 2054n+ 1869

11!n3(n+ 1)3
r7−3nη11 +O(η11).

These numerical results indicate that a power series solution similar to (1.7) for n = 1

can be obtained for n > 0 in the form

f(η) = η2
k−1
∑

j=0

bk(n)γk(2−n)+1

(3k + 2)!nk(n+ 1)k
η3k,

where bk = bk(n) are polynomials of order (k − 1).
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