INSTANTON-ANTI-INSTANTON SOLUTIONS OF DISCRETE YANG-MILLS EQUATIONS

Volodymyr Sushch, Koszalin

(Received October 15, 2009)

Abstract

We study a discrete model of the $S U(2)$ Yang-Mills equations on a combinatorial analog of \mathbb{R}^{4}. Self-dual and anti-self-dual solutions of discrete Yang-Mills equations are constructed. To obtain these solutions we use both the techniques of a double complex and the quaternionic approach.

Keywords: Yang-Mills equations, self-dual equations, anti-self-dual equations, instanton, anti-instanton, difference equations

MSC 2010: 81T13, 39A12

1. Introduction

We study an intrinsically defined discrete model of the $S U(2)$ Yang-Mills equations on a combinatorial analog of \mathbb{R}^{4}. It is known (see, for example, [5]) that a gauge potential can be defined as a certain $s u(2)$-valued 1-form A (the connection 1-form). Then the gauge field F (the curvature 2-form) is given by

$$
\begin{equation*}
F=\mathrm{d} A+A \wedge A \tag{1.1}
\end{equation*}
$$

where \wedge denotes the exterior multiplication. The Yang-Mills equations can be expressed in terms of the 2 -forms F and $* F$ as

$$
\begin{equation*}
\mathrm{d} F+A \wedge F-F \wedge A=0, \quad \mathrm{~d} * F+A \wedge * F-* F \wedge A=0 \tag{1.2}
\end{equation*}
$$

where $*$ is the Hodge star operator.
We consider the self-dual and anti-self-dual equations

$$
\begin{equation*}
F=* F, \quad F=-* F . \tag{1.3}
\end{equation*}
$$

Equations (1.3) are nonlinear matrix first order partial differential equations. In the 4-dimensional Yang-Mills theories the self-dual (instanton) and anti-self-dual (antiinstanton) solutions of (1.3) are the absolute minima of the Yang-Mills action and satisfy the second-order Yang-Mills equations (1.2) (see [4]).

The purpose of this paper is to construct the self-dual and anti-self-dual solutions of discrete $S U(2)$ Yang-Mills equations which imitate the corresponding solutions of the continual theory. The ideas presented here are strongly influenced by the book of Dezin [2]. We develop discrete models of some objects in differential geometry, including the Hodge star operator, the differential and the exterior multiplication, in such a way that they preserve the geometric structure of their continual analogs. We continue the investigations which were originated in [3], [6]-[8]. The geometrical discretisation techniques used here extend those introduced in [2] and [6]. A combinatorial model of \mathbb{R}^{4} based on the use of the double complex construction is taken from [8].

2. Quaternions and the $S U(2)$-connection

We begin with a brief review of some preliminaries about quaternions. The quaternions are formed from real numbers by adjoining three symbols $\mathbf{i}, \mathbf{j}, \mathbf{k}$, and an arbitrary quaternion x can be written as

$$
\begin{equation*}
x=x_{1}+x_{2} \mathbf{i}+x_{3} \mathbf{j}+x_{4} \mathbf{k}, \tag{2.1}
\end{equation*}
$$

where $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$. The symbols $\mathbf{i}, \mathbf{j}, \mathbf{k}$ satisfy the identities

$$
\begin{align*}
& \mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-1 \tag{2.2}\\
& \mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}, \quad \mathbf{j} \mathbf{k}=-\mathbf{k} \mathbf{j}=\mathbf{i}, \quad \mathbf{k} \mathbf{i}=-\mathbf{i} \mathbf{k}=\mathbf{j}
\end{align*}
$$

It is clear that the space of quaternions is isomorphic to \mathbb{R}^{4}. By analogy with the complex numbers, x_{1} is called the real part of x and $x_{2} \mathbf{i}+x_{3} \mathbf{j}+x_{4} \mathbf{k}$ is called the imaginary part. In the sequel we will write

$$
\operatorname{Im} x=x_{2} \mathbf{i}+x_{3} \mathbf{j}+x_{4} \mathbf{k}
$$

The conjugate quaternion of x is defined by

$$
\bar{x}=x_{1}-x_{2} \mathbf{i}-x_{3} \mathbf{j}-x_{4} \mathbf{k} .
$$

Then the norm $|x|$ of a quaternion can be introduced as

$$
\begin{equation*}
|x|^{2}=x \bar{x}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} . \tag{2.3}
\end{equation*}
$$

The algebra of quaternions can be represented as a sub-algebra of the 2×2 complex matrices $M(2, \mathbb{C})$. We identify the quaternion (2.1) with a matrix $f(x) \in M(2, \mathbb{C})$ by setting

$$
f(x)=\left(\begin{array}{cc}
x_{1}+x_{2} \mathrm{i} & x_{3}+x_{4} \mathrm{i} \tag{2.4}\\
-x_{3}+x_{4} \mathrm{i} & x_{1}-x_{2} \mathrm{i}
\end{array}\right) .
$$

Here i is the imaginary unit.
It is well known that the unit quaternions, i.e., those that have the norm $|x|=1$, form a group and this group is isomorphic to $S U(2)$. The 2×2 complex matrices

$$
\mathbf{i}=\left(\begin{array}{cc}
\mathrm{i} & 0 \tag{2.5}\\
0 & -\mathrm{i}
\end{array}\right), \quad \mathbf{j}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \mathbf{k}=\left(\begin{array}{cc}
0 & \mathrm{i} \\
\mathrm{i} & 0
\end{array}\right)
$$

realize a representation of the Lie algebra $s u(2)$ of the group $S U(2)$. Note that multiplying by -i these tree matrices we obtain the standard Pauli matrices. Matrices (2.5) correspond to the units $\mathbf{i}, \mathbf{j}, \mathbf{k}$ given by (2.2). Thus the Lie algebra su(2) can be viewed as the pure imaginary quaternions with the basis $\mathbf{i}, \mathbf{j}, \mathbf{k}$.

Let the $S U(2)$-connection A be given by

$$
\begin{equation*}
A=\sum_{\mu} A_{\mu}(x) \mathrm{d} x^{\mu} \tag{2.6}
\end{equation*}
$$

where $A_{\mu}(x) \in s u(2)$ and $x=\left(x_{1}, \ldots, x_{4}\right)$ is a point of \mathbb{R}^{4}. On the other hand, A can be defined also as taking values in the space of pure imaginary quaternions. Let $f(x)$ be a function of the quaternion variable (2.1) with quaternion values. Then we can write A as

$$
\begin{equation*}
A=\operatorname{Im}(f(x) \mathrm{d} x), \tag{2.7}
\end{equation*}
$$

where $f(x)=f_{1}(x)+f_{2}(x) \mathbf{i}+f_{3}(x) \mathbf{j}+f_{4}(x) \mathbf{k}$ and $\mathrm{d} x=\mathrm{d} x_{1}+\mathrm{d} x_{2} \mathbf{i}+\mathrm{d} x_{3} \mathbf{j}+\mathrm{d} x_{4} \mathbf{k}$. Using the rules of multiplication (2.2) we have

$$
\begin{aligned}
& A_{1}(x)=f_{2}(x) \mathbf{i}+f_{3}(x) \mathbf{j}+f_{4}(x) \mathbf{k}, \quad A_{2}(x)=f_{1}(x) \mathbf{i}+f_{4}(x) \mathbf{j}-f_{3}(x) \mathbf{k}, \\
& A_{3}(x)=-f_{4}(x) \mathbf{i}+f_{1}(x) \mathbf{j}+f_{2}(x) \mathbf{k}, \quad A_{4}(x)=f_{3}(x) \mathbf{i}-f_{2}(x) \mathbf{j}+f_{1}(x) \mathbf{k} .
\end{aligned}
$$

Using (2.7) we can rewrite (1.1) as

$$
\begin{equation*}
F=\operatorname{Im}(\mathrm{d} f(x) \wedge \mathrm{d} x+f(x) \mathrm{d} x \wedge f(x) \mathrm{d} x) \tag{2.8}
\end{equation*}
$$

In the quaternion notation the instanton and anti-instanton solutions can be found in Atiyah [1]. In Section 4 we will construct discrete analogs of these solutions.

3. Discrete model

We will use the double complex construction described in [8]. Let the tensor product $C(4)=C \otimes C \otimes C \otimes C$ of a 1-dimensional complex C be a combinatorial model of the Euclidean space \mathbb{R}^{4} (for details see also [2]). The 1-dimensional complex C is defined in the following way. Let C^{0} denote the real linear space of 0-dimensional chains generated by basis elements x_{j} (points), $j \in \mathbb{Z}$. It is convenient to introduce the shift operators τ, σ in the set of indices by

$$
\begin{equation*}
\tau j=j+1, \quad \sigma j=j-1 \tag{3.1}
\end{equation*}
$$

We denote the open interval $\left(x_{j}, x_{\tau j}\right)$ by e_{j}. We will regard the set $\left\{e_{j}\right\}$ as a set of basis elements of the real linear space C^{1} of 1-dimensional chains. Then the 1-dimensional complex (combinatorial real line) is the direct sum of the spaces introduced above: $C=C^{0} \oplus C^{1}$. Together with the complex $C(4)$ we consider its double, namely, the complex $\widetilde{C}(4)$ of exactly the same structure (for details see [8]). We need the double to define a discrete analog of the Hodge star operator.

Let $K(4)$ be a cochain complex with $g l(2, \mathbb{C})$-valued coefficients, where $g l(2, \mathbb{C})$ is the Lie algebra of the group $G L(2, \mathbb{C})$. Recall that $g l(2, \mathbb{C})$ consists of all complex 2×2 matrices $M(2, \mathbb{C})$ with bracket operation $[\cdot, \cdot]$. The complex $K(4)$ is a conjugate of $C(4)$ and we have $K(4)=K \otimes K \otimes K \otimes K$, where K is a conjugate of the 1 dimensional complex C. Basis elements of K can be written as x^{j}, e^{j}. Then an arbitrary p-dimensional basis element of $K(4)$ is given by $s_{(p)}^{k}=s^{k_{1}} \otimes s^{k_{2}} \otimes s^{k_{3}} \otimes$ $s^{k_{4}}$, where $s^{k_{i}}$ is either $x^{k_{i}}$ or $e^{k_{i}}, k_{i} \in \mathbb{Z}$. Note that $s_{(p)}^{k}$ contains exactly p of 1 -dimensional elements $e^{k_{i}}$. For a p-dimensional cochain $\varphi \in K(4)$ we have

$$
\begin{equation*}
\varphi=\sum_{k} \sum_{p} \varphi_{k}^{(p)} s_{(p)}^{k}, \tag{3.2}
\end{equation*}
$$

where $\varphi_{k}^{(p)} \in g l(2, \mathbb{C})$. We will call cochains forms, emphasizing their relationship with the corresponding continual objects, differential forms. Denote by $\widetilde{K}(4)$ the complex of cochains over the double complex $\widetilde{C}(4)$. It is clear that $\widetilde{K}(4)$ has the same structure as $K(4)$. Let us introduce the operation $\tilde{\iota}: K(4) \rightarrow \widetilde{K}(4), \tilde{\iota}: \widetilde{K}(4) \rightarrow K(4)$ by setting

$$
\begin{equation*}
\tilde{\iota} s_{(p)}^{k}=\tilde{s}_{(p)}^{k}, \quad \tilde{\iota}_{(p)}^{k}=s_{(p)}^{k}, \tag{3.3}
\end{equation*}
$$

where $s_{(p)}^{k}$ and $\tilde{s}_{(p)}^{k}$ are basis elements of $K(4)$ and $\widetilde{K}(4)$. Hence for a p-form $\varphi \in K(4)$ we have $\tilde{\iota} \varphi=\tilde{\varphi}$.

For the definitions of d^{c}, \cup and $*$ on $K(4)$, which are discrete analogs of the differential d, exterior multiplication \wedge and the Hodge star operator respectively, we refer the reader to [8].

Let us consider a discrete 0 -form with coefficients belonging to $M(2, \mathbb{C})$. We put

$$
\begin{equation*}
f=\sum_{k} f_{k} x^{k} \tag{3.4}
\end{equation*}
$$

where $x^{k}=x^{k_{1}} \otimes x^{k_{2}} \otimes x^{k_{3}} \otimes x^{k_{4}}$ is the 0 -dimensional basis element of $K(4)$. Suppose that the matrices $f_{k} \in M(2, \mathbb{C})$ look like (2.4). Then f_{k} in quaternionic form can be expressed as

$$
\begin{equation*}
f_{k}=f_{k}^{1}+f_{k}^{2} \mathbf{i}+f_{k}^{3} \mathbf{j}+f_{k}^{4} \mathbf{k} \tag{3.5}
\end{equation*}
$$

Hence the form (3.4) can be viewed as a discrete form with quaternionic coefficients. We will call it simply the quaternionic form when no confusion can arise.

Let us denote by e the quaternionic 1-form

$$
\begin{equation*}
e=\sum_{k} e^{k}=\sum_{k}\left(e_{1}^{k}+e_{2}^{k} \mathbf{i}+e_{3}^{k} \mathbf{j}+e_{4}^{k} \mathbf{k}\right), \tag{3.6}
\end{equation*}
$$

where e_{i}^{k} are the 1-dimensional basis elements of $K(4)$. Let $A \in K(4)$ be a discrete 1-form. We define the discrete $S U(2)$-connection A (discrete analog of (2.6)) to be

$$
\begin{equation*}
A=\sum_{k} \sum_{i=1}^{4} A_{k}^{i} e_{i}^{k} \tag{3.7}
\end{equation*}
$$

where $A_{k}^{i} \in \operatorname{su}(2)$. Using (3.4) and (3.6), we write (3.7) in the quaternionic form as

$$
\begin{equation*}
A=\operatorname{Im}(f \cup e)=\operatorname{Im}\left(\sum_{k} f_{k} e^{k}\right) \tag{3.8}
\end{equation*}
$$

Then the A_{k}^{i} are given by

$$
\begin{array}{ll}
A_{k}^{1}=f_{k}^{2} \mathbf{i}+f_{k}^{3} \mathbf{j}+f_{k}^{4} \mathbf{k}, & A_{k}^{2}=f_{k}^{1} \mathbf{i}+f_{k}^{4} \mathbf{j}-f_{k}^{3} \mathbf{k}, \tag{3.9}\\
A_{k}^{3}=-f_{k}^{4} \mathbf{i}+f_{k}^{1} \mathbf{j}+f_{k}^{2} \mathbf{k}, & A_{k}^{4}=f_{k}^{3} \mathbf{i}-f_{k}^{2} \mathbf{j}+f_{k}^{1} \mathbf{k}
\end{array}
$$

An arbitrary discrete 2-form $F \in K(4)$ can be written as

$$
\begin{equation*}
F=\sum_{k} \sum_{i<j} F_{k}^{i j} \varepsilon_{i j}^{k} \tag{3.10}
\end{equation*}
$$

where $F_{k}^{i j} \in g l(2, \mathbb{C}), 1 \leqslant i, j \leqslant 4$, and $\varepsilon_{i j}^{k}$ is the 2 -dimensional basis element of $K(4)$. Let F be given by

$$
\begin{equation*}
F=\mathrm{d}^{c} A+A \cup A . \tag{3.11}
\end{equation*}
$$

For convenience we also introduce the shift operator τ_{i} which acts in the set of indices as $\tau_{i} k=\left(k_{1}, \ldots \tau k_{i}, \ldots k_{4}\right)$, where τ is given by (3.1).

By the definitions of d^{c} and \cup, combining (3.7) and (3.11), we obtain

$$
\begin{equation*}
F_{k}^{i j}=\Delta_{i} A_{k}^{j}-\Delta_{j} A_{k}^{i}+A_{k}^{i} A_{\tau_{i} k}^{j}-A_{k}^{j} A_{\tau_{j} k}^{i}, \tag{3.12}
\end{equation*}
$$

where $\Delta_{i} A_{k}^{j}=A_{\tau_{i} k}^{j}-A_{k}^{j}$.
It should be noted that in the continual case the curvature form F (1.1) takes values in the algebra $s u(2)$ for any $s u(2)$-valued connection form A. Unfortunately, this is not true in the discrete case because, generally speaking, the components $A_{k}^{i} A_{\tau_{i} k}^{j}-A_{k}^{j} A_{\tau_{j} k}^{i}$ of the form $A \cup A$ (see (3.12)) do not belong to $s u(2)$.

To define an $s u(2)$-valued discrete analog of the curvature 2 -form we use the quaternionic form of A (3.8) and put it in (3.11). Then the discrete curvature form F is given by

$$
\begin{equation*}
F=\operatorname{Im}\left\{\mathrm{d}^{c} f \cup e+(f \cup e) \cup(f \cup e)\right\} . \tag{3.13}
\end{equation*}
$$

Putting (3.9) in (3.12) we find that

$$
\begin{aligned}
F_{k}^{12}= & \left(\Delta_{1} f_{k}^{1}-\Delta_{2} f_{k}^{2}-f_{k}^{3} f_{\tau_{1} k}^{3}-f_{k}^{4} f_{\tau_{1} k}^{4}-f_{k}^{3} f_{\tau_{2} k}^{3}-f_{k}^{4} f_{\tau_{2} k}^{4}\right) \mathbf{i} \\
& +\left(\Delta_{1} f_{k}^{4}-\Delta_{2} f_{k}^{3}+f_{k}^{2} f_{\tau_{1} k}^{3}+f_{k}^{4} f_{\tau_{1} k}^{1}+f_{k}^{1} f_{\tau_{2} k}^{4}+f_{k}^{3} f_{\tau_{2} k}^{2}\right) \mathbf{j} \\
& +\left(-\Delta_{1} f_{k}^{3}-\Delta_{2} f_{k}^{4}+f_{k}^{2} f_{\tau_{1} k}^{4}-f_{k}^{3} f_{\tau_{1} k}^{1}-f_{k}^{1} f_{\tau_{2} k}^{3}+f_{k}^{4} f_{\tau_{2} k}^{2}\right) \mathbf{k} \\
& -f_{k}^{2} f_{\tau_{1} k}^{1}-f_{k}^{3} f_{\tau_{1} k}^{4}+f_{k}^{4} f_{\tau_{1} k}^{3}+f_{k}^{1} f_{\tau_{2} k}^{2}+f_{k}^{4} f_{\tau_{2} k}^{3}-f_{k}^{3} f_{\tau_{2} k}^{4}, \\
F_{k}^{13}= & \left(-\Delta_{1} f_{k}^{4}-\Delta_{3} f_{k}^{2}+f_{k}^{3} f_{\tau_{1} k}^{2}-f_{k}^{4} f_{\tau_{1} k}^{1}-f_{k}^{1} f_{\tau_{3} k}^{4}+f_{k}^{2} f_{\tau_{3} k}^{3}\right) \mathbf{i} \\
& +\left(\Delta_{1} f_{k}^{1}-\Delta_{3} f_{k}^{3}-f_{k}^{2} f_{\tau_{1} k}^{2}-f_{k}^{4} f_{\tau_{1} k}^{4}-f_{k}^{4} f_{\tau_{3} k}^{4}-f_{k}^{2} f_{\tau_{3} k}^{2}\right) \mathbf{j} \\
& +\left(\Delta_{1} f_{k}^{2}-\Delta_{3} f_{k}^{4}+f_{k}^{2} f_{\tau_{1} k}^{1}+f_{k}^{3} f_{\tau_{1} k}^{4}+f_{k}^{4} f_{\tau_{3} k}^{3}+f_{k}^{1} f_{\tau_{3} k}^{2}\right) \mathbf{k} \\
& +f_{k}^{2} f_{\tau_{1} k}^{4}-f_{k}^{3} f_{\tau_{1} k}^{1}-f_{k}^{4} f_{\tau_{1} k}^{2}-f_{k}^{4} f_{\tau_{3} k}^{2}+f_{k}^{1} f_{\tau_{3} k}^{3}+f_{k}^{2} f_{\tau_{3} k}^{4}, \\
F_{k}^{14}= & \left(\Delta_{1} f_{k}^{3}-\Delta_{4} f_{k}^{2}+f_{k}^{3} f_{\tau_{1} k}^{1}+f_{k}^{4} f_{\tau_{1} k}^{2}+f_{k}^{2} f_{\tau_{4} k}^{4}+f_{k}^{1} f_{\tau_{4} k}^{3}\right) \mathbf{i} \\
& +\left(-\Delta_{1} f_{k}^{2}-\Delta_{4} f_{k}^{3}-f_{k}^{2} f_{\tau_{1} k}^{1}+f_{k}^{4} f_{\tau_{1} k}^{3}+f_{k}^{3} f_{\tau_{4} k}^{4}-f_{k}^{1} f_{\tau_{4} k}^{2}\right) \mathbf{j} \\
& +\left(\Delta_{1} f_{k}^{1}-\Delta_{4} f_{k}^{4}-f_{k}^{2} f_{\tau_{1} k}^{2}-f_{k}^{3} f_{\tau_{1} k}^{3}-f_{k}^{3} f_{\tau_{4} k}^{3}-f_{k}^{2} f_{\tau_{4} k}^{2}\right) \mathbf{k} \\
& -f_{k}^{2} f_{\tau_{1} k}^{3}+f_{k}^{3} f_{\tau_{1} k}^{2}-f_{k}^{4} f_{\tau_{1} k}^{1}+f_{k}^{3} f_{\tau_{4} k}^{2}-f_{k}^{2} f_{\tau_{4} k}^{3}+f_{k}^{1} f_{\tau_{4} k}^{4},
\end{aligned}
$$

$$
\begin{aligned}
F_{k}^{23}= & \left(-\Delta_{2} f_{k}^{4}-\Delta_{3} f_{k}^{1}+f_{k}^{4} f_{\tau_{2} k}^{2}+f_{k}^{3} f_{\tau_{2} k}^{1}+f_{k}^{1} f_{\tau_{3} k}^{3}+f_{k}^{2} f_{\tau_{3} k}^{4}\right) \mathbf{i} \\
& +\left(\Delta_{2} f_{k}^{1}-\Delta_{3} f_{k}^{4}-f_{k}^{1} f_{\tau_{2} k}^{2}+f_{k}^{3} f_{\tau_{2} k}^{4}+f_{k}^{4} f_{\tau_{3} k}^{3}-f_{k}^{2} f_{\tau_{3} k}^{1}\right) \mathbf{j} \\
& +\left(\Delta_{2} f_{k}^{2}+\Delta_{3} f_{k}^{3}+f_{k}^{1} f_{\tau_{2} k}^{1}+f_{k}^{4} f_{\tau_{2} k}^{4}+f_{k}^{4} f_{\tau_{3} k}^{4}+f_{k}^{1} f_{\tau_{3} k}^{1}\right) \mathbf{k} \\
& +f_{k}^{1} f_{\tau_{2} k}^{4}-f_{k}^{4} f_{\tau_{2} k}^{1}+f_{k}^{3} f_{\tau_{2} k}^{2}-f_{k}^{4} f_{\tau_{3} k}^{1}+f_{k}^{1} f_{\tau_{3} k}^{4}-f_{k}^{2} f_{\tau_{3} k}^{3}, \\
F_{k}^{24}= & \left(\Delta_{2} f_{k}^{3}-\Delta_{4} f_{k}^{1}+f_{k}^{4} f_{\tau_{2} k}^{1}-f_{k}^{3} f_{\tau_{2} k}^{2}-f_{k}^{2} f_{\tau_{4} k}^{3}+f_{k}^{1} f_{\tau_{4} k}^{4}\right) \mathbf{i} \\
& +\left(-\Delta_{2} f_{k}^{2}-\Delta_{4} f_{k}^{4}-f_{k}^{1} f_{\tau_{2} k}^{1}-f_{k}^{3} f_{\tau_{2} k}^{3}-f_{k}^{3} f_{\tau_{4} k}^{3}-f_{k}^{1} f_{\tau_{4} k}^{1}\right) \mathbf{j} \\
& +\left(\Delta_{2} f_{k}^{1}+\Delta_{4} f_{k}^{3}-f_{k}^{1} f_{\tau_{2} k}^{2}-f_{k}^{4} f_{\tau_{2} k}^{3}-f_{k}^{3} f_{\tau_{4} k}^{4}-f_{k}^{2} f_{\tau_{4} k}^{1}\right) \mathbf{k} \\
& -f_{k}^{1} f_{\tau_{2} k}^{3}+f_{k}^{4} f_{\tau_{2} k}^{2}+f_{k}^{3} f_{\tau_{2} k}^{1}+f_{k}^{3} f_{\tau_{4} k}^{1}-f_{k}^{2} f_{\tau_{4} k}^{4}-f_{k}^{1} f_{\tau_{4} k}^{3}, \\
F_{k}^{34}= & \left(\Delta_{3} f_{k}^{3}+\Delta_{4} f_{k}^{4}+f_{k}^{1} f_{\tau_{3} k}^{1}+f_{k}^{2} f_{\tau_{3} k}^{2}+f_{k}^{2} f_{\tau_{4} k}^{2}+f_{k}^{1} f_{\tau_{4} k}^{1}\right) \mathbf{i} \\
& +\left(-\Delta_{3} f_{k}^{2}-\Delta_{4} f_{k}^{1}+f_{k}^{4} f_{\tau_{3} k}^{1}+f_{k}^{2} f_{\tau_{3} k}^{3}+f_{k}^{3} f_{\tau_{4} k}^{2}+f_{k}^{1} f_{\tau_{4} k}^{4}\right) \mathbf{j} \\
& +\left(\Delta_{3} f_{k}^{1}-\Delta_{4} f_{k}^{2}+f_{k}^{4} f_{\tau_{3} k}^{2}-f_{k}^{1} f_{\tau_{3} k}^{3}-f_{k}^{3} f_{\tau_{4} k}^{1}+f_{k}^{2} f_{\tau_{4} k}^{4}\right) \mathbf{k} \\
& +f_{\tau_{3} k}^{4} f_{\tau_{3} k}^{3}+f_{k}^{2} f_{\tau_{3} k}^{1}-f_{k}^{3} f_{\tau_{4} k}^{4}-f_{k}^{2} f_{\tau_{4} k}^{1}+f_{k}^{1} f_{\tau_{4} k}^{2} .
\end{aligned}
$$

To obtain (3.13) we must take the imaginary part of these equations.
Theorem 3.1. The discrete curvature F in (3.11) is su(2)-valued if and only if

$$
\begin{aligned}
& -f_{k}^{2} f_{\tau_{1} k}^{1}-f_{k}^{3} f_{\tau_{1} k}^{4}+f_{k}^{4} f_{\tau_{1} k}^{3}+f_{k}^{1} f_{\tau_{2} k}^{2}+f_{k}^{4} f_{\tau_{2} k}^{3}-f_{k}^{3} f_{\tau_{2} k}^{4}=0, \\
& f_{k}^{2} f_{\tau_{1} k}^{4}-f_{k}^{3} f_{\tau_{1} k}^{1}-f_{k}^{4} f_{\tau_{1} k}^{2}-f_{k}^{4} f_{\tau_{3} k}^{2}+f_{k}^{1} f_{\tau_{3} k}^{3}+f_{k}^{2} f_{\tau_{3} k}^{4}=0, \\
& -f_{k}^{2} f_{\tau_{1} k}^{3}+f_{k}^{3} f_{\tau_{1} k}^{2}-f_{k}^{4} f_{\tau_{1} k}^{1}+f_{k}^{3} f_{\tau_{4} k}^{2}-f_{k}^{2} f_{\tau_{4} k}^{3}+f_{k}^{1} f_{\tau_{4} k}^{4}=0, \\
& f_{k}^{1} f_{\tau_{2} k}^{4}-f_{k}^{4} f_{\tau_{2} k}^{1}+f_{k}^{3} f_{\tau_{2} k}^{2}-f_{k}^{4} f_{\tau_{3} k}^{1}+f_{k}^{1} f_{\tau_{3} k}^{4}-f_{k}^{2} f_{\tau_{3} k}^{3}=0, \\
& -f_{k}^{1} f_{\tau_{2} k}^{3}+f_{k}^{4} f_{\tau_{2} k}^{2}+f_{k}^{3} f_{\tau_{2} k}^{1}+f_{k}^{3} f_{\tau_{4} k}^{1}-f_{k}^{2} f_{\tau_{4} k}^{4}-f_{k}^{1} f_{\tau_{4} k}^{3}=0, \\
& f_{k}^{4} f_{\tau_{3} k}^{3}+f_{k}^{1} f_{\tau_{3} k}^{2}-f_{k}^{2} f_{\tau_{3} k}^{1}-f_{k}^{3} f_{\tau_{4} k}^{4}-f_{k}^{2} f_{\tau_{4} k}^{1}+f_{k}^{1} f_{\tau_{4} k}^{2}=0 .
\end{aligned}
$$

Proof. From the above, the assertion follows immediately.
Theorem 3.2. Let e be given by (3.6) and let \bar{e} be the conjugate quaternion of e. Then the 2-form $e \cup \bar{e}$ is self-dual, i.e.,

$$
\begin{equation*}
e \cup \bar{e}=* \tilde{\iota}(e \cup \bar{e}), \tag{3.14}
\end{equation*}
$$

and $\bar{e} \cup e$ is anti-self-dual, i.e.,

$$
\begin{equation*}
\bar{e} \cup e=-* \tilde{\iota}(\bar{e} \cup e) . \tag{3.15}
\end{equation*}
$$

Proof. Denote

$$
e_{i}=\sum_{k} e_{i}^{k}, \quad \varepsilon_{i j}=\sum_{k} \varepsilon_{i j}^{k} .
$$

This implies $e_{i} \cup e_{j}=\varepsilon_{i j}$ and $e_{j} \cup e_{i}=-\varepsilon_{i j}$ for all $i<j$. Then we have

$$
\begin{aligned}
e \cup \bar{e} & =\left(e_{1}+e_{2} \mathbf{i}+e_{3} \mathbf{j}+e_{4} \mathbf{k}\right) \cup\left(e_{1}-e_{2} \mathbf{i}-e_{3} \mathbf{j}-e_{4} \mathbf{k}\right) \\
& =-2\left\{\left(e_{1} \cup e_{2}+e_{3} \cup e_{4}\right) \mathbf{i}+\left(e_{1} \cup e_{3}-e_{2} \cup e_{4}\right) \mathbf{j}+\left(e_{1} \cup e_{4}+e_{2} \cup e_{3}\right) \mathbf{k}\right\} \\
& =-2\left\{\left(\varepsilon_{12}+\varepsilon_{34}\right) \mathbf{i}+\left(\varepsilon_{13}-\varepsilon_{24}\right) \mathbf{j}+\left(\varepsilon_{14}+\varepsilon_{23}\right) \mathbf{k}\right\} .
\end{aligned}
$$

By the definition of $*$ and using (3.3), we get

$$
* \tilde{\iota}(e \cup \bar{e})=-2 \tilde{\iota}\left\{\left(\tilde{\varepsilon}_{34}+\tilde{\varepsilon}_{12}\right) \mathbf{i}+\left(-\tilde{\varepsilon}_{24}+\tilde{\varepsilon}_{13}\right) \mathbf{j}+\left(\tilde{\varepsilon}_{23}+\tilde{\varepsilon}_{14}\right) \mathbf{k}\right\}=e \cup \bar{e} .
$$

In the same way we obtain (3.15).
Corollary 3.3. For any quaternionic 0 -form f, the form $f \cup e \cup \bar{e}$ is self-dual and $f \cup \bar{e} \cup e$ is anti-self-dual.

Discrete self-dual and anti-self-dual equations (discrete analogs of equations (1.3)) are defined by

$$
\begin{equation*}
F=\tilde{\iota} * F, \quad F=-\tilde{\iota} * F \tag{3.16}
\end{equation*}
$$

Using (3.10), by the definitions of $\tilde{\iota}$ and $*$, the first equation (self-dual) of (3.16) can be rewritten as

$$
\begin{equation*}
F_{k}^{12}=F_{k}^{34}, \quad F_{k}^{13}=-F_{k}^{24}, \quad F_{k}^{14}=F_{k}^{23} \tag{3.17}
\end{equation*}
$$

By analogy with the continual case the solutions of (3.16) are called instantons and anti-instantons respectively.

4. Discrete instanton and anti-instanton

Again in analogy with the continual case consider (3.8), where the components of f are given by

$$
\begin{equation*}
f_{k}=\frac{\bar{k}}{1+|k|^{2}} \tag{4.1}
\end{equation*}
$$

Here $k=k_{1}+k_{2} \mathbf{i}+k_{3} \mathbf{j}+k_{4} \mathbf{k}, k_{i} \in \mathbb{Z}$, and the norm $|k|$ is defined by (2.3). Putting this in (3.9) we obtain

$$
\begin{array}{ll}
A_{k}^{1}=\frac{-k_{2} \mathbf{i}-k_{3} \mathbf{j}-k_{4} \mathbf{k}}{1+|k|^{2}}, & A_{k}^{2}=\frac{k_{1} \mathbf{i}-k_{4} \mathbf{j}+k_{3} \mathbf{k}}{1+|k|^{2}}, \tag{4.2}\\
A_{k}^{3}=\frac{k_{4} \mathbf{i}+k_{1} \mathbf{j}-k_{2} \mathbf{k}}{1+|k|^{2}}, & A_{k}^{4}=\frac{-k_{3} \mathbf{i}+k_{2} \mathbf{j}+k_{1} \mathbf{k}}{1+|k|^{2}} .
\end{array}
$$

It is convenient to denote

$$
\begin{equation*}
M_{k}^{i}=\frac{1}{\left(1+|k|^{2}\right)\left(1+\left|\tau_{i} k\right|^{2}\right)}, \quad i=1,2,3,4 . \tag{4.3}
\end{equation*}
$$

Substituting (4.2) in (3.12) and using (4.3) we find the components $F_{k}^{i j}$, for example,

$$
\begin{aligned}
F_{k}^{12}= & \left\{M_{k}^{1}\left(1+k_{2}^{2}-k_{1}^{2}-k_{1}\right)+M_{k}^{2}\left(1+k_{1}^{2}-k_{2}^{2}-k_{2}\right)\right\} \mathbf{i} \\
& +\left\{M_{k}^{1}\left(k_{4} k_{1}+k_{2} k_{3}\right)-M_{k}^{2}\left(k_{3} k_{2}+k_{4} k_{1}\right)\right\} \mathbf{j} \\
& +\left\{M_{k}^{1}\left(k_{2} k_{4}-k_{1} k_{3}\right)+M_{k}^{2}\left(k_{1} k_{3}-k_{2} k_{4}\right)\right\} \mathbf{k} \\
& +M_{k}^{1}\left(k_{1} k_{2}+k_{2}\right)-M_{k}^{2}\left(k_{1} k_{2}+k_{1}\right) .
\end{aligned}
$$

Note that the last term in $F_{k}^{i j}$ has the form $M_{k}^{i}\left(k_{i} k_{j}+k_{j}\right)-M_{k}^{j}\left(k_{i} k_{j}+k_{i}\right)$. Hence, by Theorem 3.1, the curvature F defined by (4.2) is $s u(2)$-valued if and only if

$$
\begin{equation*}
M_{k}^{i}\left(k_{i} k_{j}+k_{j}\right)-M_{k}^{j}\left(k_{i} k_{j}+k_{i}\right)=0 \tag{4.4}
\end{equation*}
$$

for any $k_{i} \in \mathbb{Z}, i, j=1,2,3,4$ and $i<j$. An easy computation shows that equation (4.4) has only the solutions

$$
\begin{equation*}
\mu=k_{1}=k_{2}=k_{3}=k_{4}, \quad k_{i} \in \mathbb{Z} . \tag{4.5}
\end{equation*}
$$

Thus, the $s u(2)$-valued discrete curvature 2-form F can be written in quaternionic form as

$$
\begin{equation*}
F=\sum_{k, k_{i}=\mu} M_{\mu}(2-2 \mu)\left\{\left(\varepsilon_{12}^{k}-\varepsilon_{34}^{k}\right) \mathbf{i}+\left(\varepsilon_{13}^{k}+\varepsilon_{24}^{k}\right) \mathbf{j}+\left(\varepsilon_{14}^{k}-\varepsilon_{23}^{k}\right) \mathbf{k}\right\}, \tag{4.6}
\end{equation*}
$$

where $M_{\mu}=M_{k}^{1}=M_{k}^{2}=M_{k}^{3}=M_{k}^{4}$. From (4.3) we have $M_{\mu}=\frac{1}{2\left(1+4 \mu^{2}\right)\left(1+\mu+2 \mu^{2}\right)}$. Since $k_{i}=\mu$, in (4.6) we can write $\varepsilon_{i j}^{\mu}$ instead of $\varepsilon_{i j}^{k}$. If we consider the 0 -form

$$
\begin{equation*}
\omega=\sum_{\mu} M_{\mu}(1-\mu) x^{\mu}, \quad \mu \in \mathbb{Z} \tag{4.7}
\end{equation*}
$$

and use the relation (see the proof of Theorem 3.2)

$$
\bar{e} \cup e=2\left\{\left(\varepsilon_{12}-\varepsilon_{34}\right) \mathbf{i}+\left(\varepsilon_{13}+\varepsilon_{24}\right) \mathbf{j}+\left(\varepsilon_{14}-\varepsilon_{23}\right) \mathbf{k}\right\},
$$

then F can be written as

$$
F=\omega \cup \bar{e} \cup e .
$$

In view of Corollary 3.3, F is anti-self-dual, i.e., $F=-\tilde{\iota} * F$. Thus under the condition (4.5), A with components (4.1) describes an anti-instanton.

In the same manner we can see that the quaternionic 1-form

$$
A=\operatorname{Im}(f \cup \bar{e}),
$$

where f has the components

$$
f_{k}=\frac{k}{1+|k|^{2}},
$$

leads to an instanton solution of (3.17). Indeed, in this case the discrete curvature (3.13) has the form $F=\omega \cup e \cup \bar{e}$. Consequently, F is self-dual.

References

[1] M. F. Atiyah: Geometry of Yang-Mills Fields. Lezione Fermiane, Scuola Normale Superiore, Pisa, 1979.
[2] A. A. Dezin: Multidimensional Analysis and Discrete Models. CRC Press, Boca Raton, 1995.
[3] A. A. Dezin: Models generated by the Yang-Mills equations. Differ. Uravn. 29 (1993), 846-851; English translation in Differ. Equ. 29 (1993), 724-728.
[4] D. Freed, K. Uhlenbeck: Instantons and Four-Manifolds. Springer, New York, 1984.
[5] C. Nash, S. Sen: Topology and Geometry for Physicists. Acad. Press, London, 1989.
[6] V. Sushch: Gauge-invariant discrete models of Yang-Mills equations. Mat. Zametki. 61 (1997), 742-754; English translation in Math. Notes. 61 (1997), 621-631.
zbl
[7] V. Sushch: Discrete model of Yang-Mills equations in Minkowski space. Cubo A Math. Journal. 6 (2004), 35-50.
[8] V.Sushch: A gauge-invariant discrete analog of the Yang-Mills equations on a double complex. Cubo A Math. Journal. 8 (2006), 61-78.

Author's address: Volodymyr Sushch, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin, Poland, e-mail: volodymyr.sushch@tu.koszalin.pl.

