SOME ESTIMATES FOR THE FIRST EIGENVALUE OF THE STURM-LIOUVILLE PROBLEM WITH A
 WEIGHT INTEGRAL CONDITION

Maria Telnova, Moskva

(Received October 15, 2009)

Abstract. Let $\lambda_{1}(Q)$ be the first eigenvalue of the Sturm-Liouville problem

$$
y^{\prime \prime}-Q(x) y+\lambda y=0, \quad y(0)=y(1)=0, \quad 0<x<1
$$

We give some estimates for $m_{\alpha, \beta, \gamma}=\inf _{Q \in T_{\alpha, \beta, \gamma}} \lambda_{1}(Q)$ and $M_{\alpha, \beta, \gamma}=\sup _{Q \in T_{\alpha, \beta, \gamma}} \lambda_{1}(Q)$, where $T_{\alpha, \beta, \gamma}$ is the set of real-valued measurable on $[0,1] x^{\alpha}(1-x)^{\beta}$-weighted L_{γ}-functions Q with non-negative values such that $\int_{0}^{1} x^{\alpha}(1-x)^{\beta} Q^{\gamma}(x) \mathrm{d} x=1(\alpha, \beta, \gamma \in \mathbb{R}, \gamma \neq 0)$.

Keywords: first eigenvalue, Sturm-Liouville problem, weight integral condition
MSC 2010: 34L15

We consider the Sturm-Liouville problem

$$
\begin{align*}
y^{\prime \prime}-Q(x) y+\lambda y & =0, \quad x \in(0,1) \tag{1}\\
y(0)=y(1) & =0 \tag{2}
\end{align*}
$$

where Q is a real-valued measurable on $[0,1]$ function with non-negative values such that the integral condition

$$
\begin{equation*}
\int_{0}^{1} x^{\alpha}(1-x)^{\beta} Q^{\gamma}(x) \mathrm{d} x=1 \quad(\alpha, \beta, \gamma \in \mathbb{R}, \gamma \neq 0) \tag{3}
\end{equation*}
$$

holds whenever Q belongs to the $x^{\alpha}(1-x)^{\beta}$-weighted L_{γ}-space. The set of all functions Q of this kind we denote by $T_{\alpha, \beta, \gamma}$.

By a solution of problem (1)-(2) we mean an absolutely continuous function y on the segment $[0,1]$ such that $y(0)=y(1)=0 ; y^{\prime}$ is absolutely continuous in the interval $(0,1)$; equality (1) holds almost everywhere in the interval $(0,1)$.

We study the dependence of the first eigenvalue λ_{1} of problem (1)-(3) on the potential Q under different values of parameters α, β, γ. Our purpose is to give some estimates for

$$
m_{\alpha, \beta, \gamma}=\inf _{Q \in T_{\alpha, \beta, \gamma}} \lambda_{1}(Q), \quad M_{\alpha, \beta, \gamma}=\sup _{Q \in T_{\alpha, \beta, \gamma}} \lambda_{1}(Q) .
$$

Let H_{Q} be the closure of the set $C_{0}^{\infty}(0,1)$ in the norm $\|y\|_{H_{Q}}^{2}=\int_{0}^{1}\left(y^{\prime 2}+Q y^{2}\right) \mathrm{d} x$, where $C_{0}^{\infty}(0,1)$ is the set of functions of $C^{\infty}(0,1)$ having their supports compactly embedded in $(0,1)$. Let Γ be the set of functions y from H_{Q} such that $\int_{0}^{1} y^{2} \mathrm{~d} x=1$.

Consider the functionals

$$
R[Q, y]=\frac{\int_{0}^{1}\left(y^{\prime 2}(x)+Q(x) y^{2}(x)\right) \mathrm{d} x}{\int_{0}^{1} y^{2}(x) \mathrm{d} x}, \quad F[Q, y]=\int_{0}^{1}\left(y^{\prime 2}(x)+Q(x) y^{2}(x)\right) \mathrm{d} x .
$$

Note that the values of R and F are bounded from below. Let us show that the first eigenvalue λ_{1} of problem (1)-(2) can be found as

$$
\lambda_{1}(Q)=\inf _{y \in H_{Q}, y \neq 0} R[Q, y]=\inf _{y \in \Gamma} F[Q, y] .
$$

Step 1. Let $Q \in T_{\alpha, \beta, \gamma}$ and $m=\inf _{y \in \Gamma} F[Q, y]$. There exists $y \in \Gamma$ such that $F[Q, y]=m$.

For all functions $Q \in T_{\alpha, \beta, \gamma}$ and $y \in \Gamma$ one has $F[Q, y]=\int_{0}^{1}\left(y^{\prime 2}+Q y^{2}\right) \mathrm{d} x=$ $\|y\|_{H_{Q}}^{2}$. Let $\left\{y_{k}\right\}$ be a minimizing sequence of the functional $F[Q, y]$ in Γ. Then $F\left[Q, y_{k}\right] \leqslant m+1$ for all sufficiently large values of k. Hence $\left\|y_{k}(x)\right\|_{H_{Q}}^{2}=F\left[Q, y_{k}\right] \leqslant$ $m+1$. Since $\left\{y_{k}\right\}$ is a bounded sequence in a separable Hilbert space H_{Q}, it contains a subsequence $\left\{z_{k}\right\}$, which converges weakly in the space H_{Q} to a function y. So we get $\|y\|_{H_{Q}}^{2} \leqslant m+1$.

Let us prove that the space H_{Q} is compactly embedded into the space $C(0,1)$. First we shall establish the boundedness of the corresponding operator of embedding. Note that the inequality $\|u\|_{C} \leqslant\left\|u^{\prime}\right\|_{L_{1}}+(b-a)^{-1}\|u\|_{L_{1}}$ holds for any function $u(x) \in C[a, b]$. If $u(x) \in A C[0,1]$ and $u(0)=u(1)=0$, then

$$
\begin{aligned}
\|u\|_{L_{1}} & =\int_{0}^{1}|u| \mathrm{d} x=\int_{0}^{1}\left|\int_{0}^{x} u^{\prime} \mathrm{d} x\right| \mathrm{d} x \\
& \leqslant \int_{0}^{1}\left(\int_{0}^{1}\left|u^{\prime}\right| \mathrm{d} x\right) \mathrm{d} x=\int_{0}^{1}\left|u^{\prime}\right| \mathrm{d} x=\left\|u^{\prime}\right\|_{L_{1}} .
\end{aligned}
$$

By the Hölder inequality we get

$$
\begin{equation*}
\|u\|_{C} \leqslant\left\|u^{\prime}\right\|_{L_{1}}+\|u\|_{L_{1}} \leqslant 2\left\|u^{\prime}\right\|_{L_{1}} \leqslant 2\left\|u^{\prime}\right\|_{L_{2}} \leqslant 2\|u\|_{H_{Q}} . \tag{4}
\end{equation*}
$$

The boundedness of this operator is proved.
Now let us prove the compactness of the operator of embedding. Let $M \in H_{Q}$ be a bounded set, i.e. there is a real number R such that $\|u\|_{H_{Q}} \leqslant R$ for all $u \in M$. We need to prove the precompactness of M in $C(0,1)$. By the Arzela theorem it suffices to prove that the set M is uniformly bounded and equicontinuous.

The set M is called uniformly bounded if there is a real number R_{1} such that $|u(x)| \leqslant R_{1}$ for all $u \in M$ and $x \in[0,1]$. In virtue of (4) we have $|u(x)| \leqslant\|u\|_{C} \leqslant$ $2 R=R_{1}$ for all $u \in M$ and $x \in[0,1]$.

Now let us prove that the set M is equicontinuous, i.e. for any $\varepsilon>0$ one can find $\delta>0$ such that $|u(x)-u(y)|<\varepsilon$ as $|x-y|<\delta$ for all $u \in M$. By the Newton-Leibniz formula we obtain: if $|x-y|<\delta=\left(\varepsilon R^{-1}\right)^{2}$ then

$$
|u(x)-u(y)| \leqslant\left|\int_{x}^{y}\right| u^{\prime}(\xi)|\mathrm{d} \xi| \leqslant|x-y|^{\frac{1}{2}}\left\|u^{\prime}\right\|_{L_{2}} \leqslant|x-y|^{\frac{1}{2}} R<\varepsilon \quad \text { for all } u \in M .
$$

The space H_{Q} is compactly embedded into the space $C(0,1)$. Consequently, there is a converging in $C(0,1)$ subsequence $\left\{u_{k}\right\}$ of the sequence $\left\{z_{k}\right\}$. Since $C(0,1)$ is embedded into $L_{p}(0,1)$, where $p \geqslant 1$, then the sequence $\left\{u_{k}\right\}$ converges in $L_{2}(0,1)$ to a function $u \in L_{2}(0,1)$ such that $\int_{0}^{1} u^{2} \mathrm{~d} x=1$.

Let us prove that the subsequence $\left\{u_{k}\right\}$ converges in H_{Q}. Since the functional F is quadric, we have the identity

$$
F\left[Q, \frac{y_{k}-y_{l}}{2}\right]+F\left[Q, \frac{y_{k}+y_{l}}{2}\right]=\frac{1}{2} F\left[Q, y_{k}\right]+\frac{1}{2} F\left[Q, y_{l}\right] .
$$

Let $\varepsilon>0$ and let k and l be so large that for u_{k}, u_{l} from the subsequence one has

$$
F\left[Q, u_{k}\right] \leqslant m+\varepsilon, \quad F\left[Q, u_{l}\right] \leqslant m+\varepsilon, \quad \text { and } \quad \int_{0}^{1}\left(\frac{u_{k}-u_{l}}{2}\right)^{2} \mathrm{~d} x \leqslant \varepsilon^{2}
$$

Hence,

$$
\begin{aligned}
\int_{0}^{1}\left(\frac{u_{k}+u_{l}}{2}\right)^{2} \mathrm{~d} x & =\int_{0}^{1}\left(u_{l}+\frac{u_{k}-u_{l}}{2}\right)^{2} \mathrm{~d} x \\
& \geqslant(1-\varepsilon) \int_{0}^{1} u_{l}^{2} \mathrm{~d} x-\frac{1}{\varepsilon} \int_{0}^{1}\left(\frac{u_{k}-u_{l}}{2}\right)^{2} \mathrm{~d} x \geqslant(1-\varepsilon)-\varepsilon=1-2 \varepsilon
\end{aligned}
$$

Therefore, $F\left[Q, \frac{1}{2}\left(u_{k}+u_{l}\right)\right] \geqslant m(1-2 \varepsilon)$ and $F\left[Q, \frac{1}{2}\left(u_{k}-u_{l}\right)\right] \leqslant m+\varepsilon-m(1-2 \varepsilon)=$ $\varepsilon(1+2 m)$. It means that the subsequence $\left\{u_{k}\right\}$ converges in H_{Q}. Since it converges
in H_{Q} weakly to y, then the limit function of this subsequence in H_{Q} is equal to y too. Then, taking into account that the functional F is continuous in H_{Q}, we obtain $F[Q, y]=m$.

Step 2. Let $y(x) \in \Gamma$ and $F[Q, y]=m=\inf _{y \in \Gamma} F[Q, y]$. Then

$$
-y^{\prime \prime}+Q y-\lambda y=0
$$

where $\lambda=m$ is the minimal eigenvalue of the Sturm-Liouville problem (1)-(2).
First we note that $m=\inf _{y \in H_{Q}, y \neq 0} R[Q, y]$. We have that the minimum of the functional $F[Q, y]$ is equal to m under the condition $\int_{0}^{1} y^{2} \mathrm{~d} x=1$.

Let $u(x)$ be an element of H_{Q}. Consider two functions of $t \in \mathbb{R}$

$$
g(t)=\int_{0}^{1}\left(\left(y^{\prime}+t u^{\prime}\right)^{2}(x)+Q(x)(y+t u)^{2}(x)\right) \mathrm{d} x, \quad h(t)=\int_{0}^{1}(y+t u)^{2} \mathrm{~d} x .
$$

If $h(0)=1$ then $g(t) \geqslant g(0)=m$, i.e. the function g has the minimal value at $t=0$ under the condition $h(0)=1$. Therefore, $g^{\prime}(0)+\lambda_{1} h^{\prime}(0)=0$, where λ_{1} is a real number. Let $\lambda=-\lambda_{1}$. It means that for all $u(x) \in H_{Q}$ the equality $\int_{0}^{1}\left(y^{\prime} u^{\prime}+Q y u\right) \mathrm{d} x=\lambda \int_{0}^{1} y u \mathrm{~d} x$ holds. In particular, if $u=y$, then we obtain $\lambda=m$. Consequently, $\int_{0}^{1}\left(y^{\prime} u^{\prime}+Q y u-m y u\right) \mathrm{d} x=0$.

This equality is valid for all $u \in C_{0}^{\infty}(0,1)$. It implies the existence of the generalized derivative of the function y^{\prime} such that

$$
\begin{equation*}
-y(x)^{\prime \prime}+Q(x) y(x)-m y(x)=0 \tag{5}
\end{equation*}
$$

By the method of averaging one can obtain a sequence $\left\{y_{k}(x)\right\}$ of $C_{0}^{\infty}(0,1)$ functions with the following properties: 1) $\left\{y_{k}(x)\right\}$ converges uniformly in the space H_{Q} to the function $y ; 2$) the sequence $\left\{Q y_{k}(x)\right\}$ also converges uniformly in H_{Q} to the function $Q y$. Then the sequence $\left\{y_{k}(x)^{\prime \prime}\right\}$ converges uniformly in this space to the function $y^{\prime \prime}$. Therefore the equality (5) holds almost everywhere in $(0,1)$. Moreover, $y(0)=y(1)=0$.

Thus y is a solution of the Sturm-Liouville problem (1)-(2) with the eigenvalue $\lambda=m$. For any solution z of this problem we have $\int_{0}^{1}\left(z^{\prime 2}(x)+Q(x) z^{2}(x)\right) \mathrm{d} x=$ $\lambda \int_{0}^{1} z^{2} \mathrm{~d} x$; then in virtue of (5) we obtain the relation $\lambda \geqslant m$. Consequently, m is the minimal eigenvalue.

The following theorems give some estimates for $m_{\alpha, \beta, \gamma}$ and $M_{\alpha, \beta, \gamma}$.

Theorem 1.

(1) If $\gamma>0$, then $m_{\alpha, \beta, \gamma}=\pi^{2}$.
(2) If $\gamma<0$, then $m_{\alpha, \beta, \gamma}<+\infty$.

Theorem 2.

(1) If $\gamma<0$ and $0<\gamma<1$, then $M_{\alpha, \beta, \gamma}=+\infty$.
(2) If $\gamma \geqslant 1$, then $M_{\alpha, \beta, \gamma}<+\infty$.

Proof of Theorem 1. We emphasize that in virtue of Friedrichs' inequality the following relations hold for all $Q \in T_{\alpha, \beta, \gamma}$:

$$
\lambda_{1}(Q)=\inf _{y \in H_{Q}, y \neq 0} \frac{\int_{0}^{1}\left(y^{\prime 2}(x)+Q(x) y^{2}(x)\right) \mathrm{d} x}{\int_{0}^{1} y^{2}(x) \mathrm{d} x} \geqslant \inf _{y \in H_{Q}, y \neq 0} \frac{\int_{0}^{1} y^{\prime 2}(x) \mathrm{d} x}{\int_{0}^{1} y^{2}(x) \mathrm{d} x}=\pi^{2} .
$$

Hence, $m_{\alpha, \beta, \gamma} \geqslant \pi^{2}$.

1) Let $\gamma>0, \alpha, \beta$ be arbitrary real numbers. We prove that $m_{\alpha, \beta, \gamma}=\pi^{2}$. Consider the functions

$$
\begin{aligned}
Q_{\theta, \alpha, \beta, \gamma}(x) & = \begin{cases}0, & x \in(0, \theta) ; \\
\left((1-\theta) x^{\alpha}(1-x)^{\beta}\right)^{-1 / \gamma}, & x \in[\theta, 1),\end{cases} \\
y_{\theta}(x) & = \begin{cases}\sin \pi x / \theta, & x \in(0, \theta) ; \\
0, & x \in[\theta, 1), \theta \rightarrow 1-0\end{cases}
\end{aligned}
$$

Then we have $\int_{0}^{1} Q_{\theta, \alpha, \beta, \gamma}(x) y_{\theta}(x)^{2} \mathrm{~d} x=0$ and the integral condition holds. Since $\int_{0}^{1} y_{\theta}(x)^{2} \mathrm{~d} x=\frac{1}{2} \theta, \int_{0}^{1} y_{\theta}^{\prime}(x)^{2} \mathrm{~d} x=\frac{1}{2} \pi^{2} / \theta$, we obtain

$$
\lim _{\theta \rightarrow 1-0} R\left[Q_{\theta}, y_{\theta}\right]=\lim _{\theta \rightarrow 1-0} \frac{\frac{1}{2}\left(\pi^{2} / \theta\right)}{\left(\frac{1}{2} \theta\right)}=\pi^{2}
$$

and $m_{\alpha, \beta, \gamma}=\inf _{Q \in T_{\alpha, \beta, \gamma}} \lambda_{1}(Q) \leqslant \pi^{2}$. Therefore, $m_{\alpha, \beta, \gamma}=\pi^{2}$.
2.1) First we suppose that $\gamma<0, \beta \geqslant 0, \alpha>2 \gamma-1$. Consider the function $Q_{\theta}(x)=C x^{-(\alpha+1) / \gamma+\theta / \gamma}(1-x)^{-\beta / \gamma}$, where θ is a positive real number such that $\alpha \geqslant 2 \gamma-1+\theta$. We take the constant C such that $\int_{0}^{1} Q_{\theta}(x)^{\gamma} x^{\alpha}(1-x)^{\beta} \mathrm{d} x=1$, i.e. $C=\theta^{1 / \gamma}$. By the Hardy inequality we obtain

$$
\int_{0}^{1} Q_{\theta}(x) y^{2} \mathrm{~d} x=C \int_{0}^{1} \frac{(1-x)^{-\beta / \gamma} y^{2}}{x^{(\alpha+1-\theta) / \gamma}} \mathrm{d} x \leqslant C \int_{0}^{1} x^{-2} y^{2} \mathrm{~d} x \leqslant 4 C \int_{0}^{1} y^{\prime 2} \mathrm{~d} x .
$$

Then it follows from $C=\theta^{1 / \gamma}$ that $m_{\alpha, \beta, \gamma} \leqslant\left(1+4(\alpha-2 \gamma+1)^{1 / \gamma}\right) \pi^{2}$.
2.2) Suppose that $\gamma<0, \beta \geqslant 0$ and $\alpha \leqslant 2 \gamma-1$. Consider the functions

$$
Q_{\varepsilon, \alpha, \beta, \gamma}(x)=\varepsilon x^{-\alpha / \gamma}(1-x)^{-\beta / \gamma} x^{\left(\varepsilon^{\gamma}-1\right) / \gamma} \text { and } y_{1}(x)= \begin{cases}x^{\theta}, & 0 \leqslant x \leqslant \frac{1}{2} \\ (1-x)^{\theta}, & \frac{1}{2}<x \leqslant 1\end{cases}
$$

where θ is a real number such that $2 \theta-\alpha / \gamma+\left(\varepsilon^{\gamma}-1\right) / \gamma>-1$ and $2 \theta>1$. Denote $\int_{0}^{1} y_{1}^{\prime 2} \mathrm{~d} x=C_{1}, \int_{0}^{1} y_{1}^{2} \mathrm{~d} x=C_{2}, \int_{0}^{1} x^{-\alpha / \gamma} x^{\left(\varepsilon^{\gamma}-1\right) / \gamma} y_{1}^{2} \mathrm{~d} x=C_{3}$. Then $R\left[Q_{\varepsilon, \alpha, \beta, \gamma}, y_{1}\right]=$ $\left(C_{1}+\varepsilon C_{3}\right) / C_{2}$ and $m_{\alpha, \beta, \gamma} \leqslant C_{1} / C_{2}$. The case $\alpha \geqslant 0, \beta<0$ is symmetric to the case $\beta \geqslant 0, \alpha<0$.
2.3) Now we assume that $\gamma<0,2 \gamma-1<\alpha<0$ and $2 \gamma-1<\beta<0$. Consider the function

$$
Q_{\theta, \alpha, \beta, \gamma}(x)= \begin{cases}C x^{-(\alpha+1) / \gamma+\theta / \gamma}(1-x)^{-\beta / \gamma}, & 0<x<\frac{1}{2} \\ C x^{-\alpha / \gamma}(1-x)^{-(\beta+1) / \gamma+\theta / \gamma}, & \frac{1}{2} \leqslant x<1\end{cases}
$$

where θ is a positive real number such that $\alpha \geqslant 2 \gamma-1+\theta$. By the Hardy inequality

$$
\begin{gathered}
\int_{0}^{1} Q_{\theta, \alpha, \beta, \gamma} y^{2}(x) \mathrm{d} x \leqslant C 2^{\frac{2 \gamma-1}{\gamma}} \int_{0}^{\frac{1}{2}} x^{-\frac{\alpha+1}{\gamma}+\frac{\theta}{\gamma}} y^{2} \mathrm{~d} x+C 2^{\frac{2 \gamma-1}{\gamma}} \int_{\frac{1}{2}}^{1}(1-x)^{-\frac{\beta+1}{\gamma}+\frac{\theta}{\gamma}} y^{2} \mathrm{~d} x \\
\leqslant C 2^{\frac{2 \gamma-1}{\gamma}}\left(\int_{0}^{\frac{1}{2}} x^{-2} y^{2} \mathrm{~d} x+\int_{\frac{1}{2}}^{1}(1-x)^{-2} y^{2} \mathrm{~d} x\right) \leqslant C 2^{\frac{4 \gamma-1}{\gamma}} \int_{0}^{1} y^{\prime 2} \mathrm{~d} x
\end{gathered}
$$

and $m_{\alpha, \beta, \gamma} \leqslant\left(1+C 2^{(4 \gamma-1) / \gamma}\right) \pi^{2}$. For $\theta=\alpha-2 \gamma+1$ and $C=\left(\theta 2^{\theta-1}\right)^{1 / \gamma}$ we have $m_{\alpha, \beta, \gamma} \leqslant\left(1+(\alpha-2 \gamma+1)^{1 / \gamma} 2^{(\alpha+2 \gamma-1) / \gamma}\right) \pi^{2}$.
2.4) Consider the case $\gamma<0, \alpha \leqslant 2 \gamma-1$ and $\beta<0$. Consider the functions $Q_{\varepsilon, \alpha, \beta, \gamma}(x)=\varepsilon x^{-\alpha / \gamma}(1-x)^{-\beta / \gamma} x^{\left(\varepsilon^{\gamma}-1\right) / \gamma} \quad$ and $\quad y_{1}(x)= \begin{cases}x^{\theta}, & 0 \leqslant x \leqslant \frac{1}{2} ; \\ (1-x)^{\theta}, & \frac{1}{2}<x \leqslant 1,\end{cases}$ where θ is a real number such that $2 \theta-\alpha / \gamma+\left(\varepsilon^{\gamma}-1\right) / \gamma>-1,2 \theta>1$ and $2 \theta-\beta / \gamma>-1$. Denote $\int_{0}^{1} y_{1}^{\prime 2} \mathrm{~d} x=C_{1}, \int_{0}^{1} y_{1}^{2} \mathrm{~d} x=C_{2}, \int_{0}^{1} Q_{\varepsilon, \alpha, \beta, \gamma}(x) y_{1}^{2} \mathrm{~d} x=\varepsilon C_{3}$. Then $R\left[Q_{\varepsilon, \alpha, \beta, \gamma}, y_{1}\right]=\left(C_{1}+\varepsilon C_{3}\right) / C_{2}$ and $m_{\alpha, \beta, \gamma} \leqslant C_{1} / C_{2}$. The case $\beta \leqslant 2 \gamma-1$, $\alpha<0$ is symmetric to the case $\alpha \leqslant 2 \gamma-1, \beta<0$. By substitution $x=1-t, \alpha \leftrightarrow \beta$ the case $2 \gamma-1<\alpha<0$ and $\beta \leqslant 2 \gamma-1$ can be included into the case 2.4).

Proof of Theorem 2. 1.1) First we suppose that $\gamma<0, \alpha>0, \beta>0$. Let us prove that $M_{\alpha, \beta, \gamma}=+\infty$. Assume that $\alpha \geqslant \beta$. Consider the function $Q_{\varepsilon, \alpha, \beta, \gamma}(x)= \begin{cases}\left(\left(1-\varepsilon^{2 \alpha}(1-\varepsilon)^{\alpha}\right) / 2 \varepsilon\right)^{1 / \gamma} x^{-\alpha / \gamma}(1-x)^{-\beta / \gamma}, & x \in(0,1) \backslash(\varepsilon, 1-\varepsilon) ; \\ \left(\varepsilon^{2 \alpha}(1-\varepsilon)^{\alpha} /(1-2 \varepsilon)\right)^{1 / \gamma} x^{-\alpha / \gamma}(1-x)^{-\beta / \gamma}, & x \in(\varepsilon, 1-\varepsilon),\end{cases}$ where $\varepsilon \rightarrow+0$. Thus we have

$$
\begin{aligned}
\int_{\varepsilon}^{1-\varepsilon} y^{2}(x) \mathrm{d} x & \leqslant \int_{\varepsilon}^{1-\varepsilon} \frac{x^{-\alpha / \gamma}(1-x)^{-\alpha / \gamma}}{\varepsilon^{-\alpha / \gamma}(1-\varepsilon)^{-\alpha / \gamma}} y^{2}(x) \mathrm{d} x \\
& \leqslant \int_{\varepsilon}^{1-\varepsilon} \frac{x^{-\alpha / \gamma}(1-x)^{-\alpha / \gamma}}{\varepsilon^{-\alpha / \gamma}(1-\varepsilon)^{-\alpha / \gamma}}(1-x)^{(\alpha-\beta) / \gamma} y^{2}(x) \mathrm{d} x \\
& =\frac{\varepsilon^{-\alpha / \gamma}}{(1-2 \varepsilon)^{-1 / \gamma}} \int_{\varepsilon}^{1-\varepsilon} Q_{\varepsilon, \alpha, \beta, \gamma}(x) y^{2}(x) \mathrm{d} x .
\end{aligned}
$$

By the Hölder inequality we get

$$
\begin{aligned}
\int_{0}^{1} y^{2}(x) \mathrm{d} x \leqslant & \frac{\varepsilon^{2}}{2} \int_{0}^{\varepsilon} y^{\prime 2}(x) \mathrm{d} x+\frac{\varepsilon^{-\frac{\alpha}{\gamma}}}{(1-2 \varepsilon)^{-\frac{1}{\gamma}}} \int_{\varepsilon}^{1-\varepsilon} Q_{\varepsilon, \alpha, \beta, \gamma}(x) y^{2}(x) \mathrm{d} x \\
& +\frac{\varepsilon^{2}}{2} \int_{1-\varepsilon}^{1} y^{\prime 2}(x) \mathrm{d} x \leqslant a(\varepsilon)\left(\int_{0}^{1} y^{\prime 2}(x) \mathrm{d} x+\int_{0}^{1} Q_{\varepsilon, \alpha, \beta, \gamma}(x) y^{2}(x) \mathrm{d} x\right)
\end{aligned}
$$

where $a(\varepsilon)=\varepsilon^{2} / 2+\varepsilon^{-\alpha / \gamma} /(1-2 \varepsilon)^{-1 / \gamma}$. Then $R\left[Q_{\varepsilon, \alpha, \beta, \gamma}, y\right] \geqslant 1 / a(\varepsilon)$ for all functions $y \in H_{Q}$. Consequently, $\inf _{y \in H_{Q}, y \neq 0} R[Q, y] \geqslant 1 / a(\varepsilon)$. Taking into account that $a(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$, we obtain $M_{\alpha, \beta, \gamma}=+\infty$.
1.2) Consider the case $\gamma<0, \alpha>0, \beta \leqslant 0$. Let us prove that $M_{\alpha, \beta, \gamma}=+\infty$.

For $\varepsilon \rightarrow+0$ consider the function

$$
Q_{\varepsilon, \alpha, \beta, \gamma}(x)= \begin{cases}(\alpha+1)^{1 / \gamma} \varepsilon^{-(\alpha+1) / \gamma}(1-\varepsilon)^{1 / \gamma}(1-x)^{-\beta / \gamma}, & 0<x<\varepsilon \\ (\alpha+1)^{1 / \gamma} \varepsilon^{1 / \gamma}\left(1-\varepsilon^{\alpha+1}\right)^{-1 / \gamma}(1-x)^{-\beta / \gamma}, & \varepsilon<x<1\end{cases}
$$

As in the previous case $\int_{0}^{1} y^{2}(x) \mathrm{d} x \leqslant a(\varepsilon)\left(\int_{0}^{1} y^{\prime 2}(x) \mathrm{d} x+\int_{0}^{1} Q_{\varepsilon, \alpha, \beta, \gamma}(x) y^{2}\right)$, where $a(\varepsilon)=\varepsilon^{2} / 2+(1 /(\alpha+1))^{1 / \gamma} \varepsilon^{-1 / \gamma}\left(1-\varepsilon^{\alpha+1}\right)^{1 / \gamma}$, and by the same argument $M_{\alpha, \beta, \gamma}=$ $+\infty$. The case $\gamma<0, \beta>0, \alpha \leqslant 0$ is symmetric to the case $\gamma<0, \alpha>0, \beta \leqslant 0$.
1.3) Now suppose that $\gamma<0, \alpha \leqslant 0, \beta \leqslant 0$. Let us prove that $M_{\alpha, \beta, \gamma}=+\infty$.

Consider the function

$$
Q_{\varepsilon, \alpha, \beta, \gamma}(x)= \begin{cases}(1-\varepsilon)^{1 / \gamma} \varepsilon^{-1 / \gamma} x^{-\alpha / \gamma}(1-x)^{-\beta / \gamma}, & 0<x<\varepsilon \\ (1-\varepsilon)^{-1 / \gamma} \varepsilon^{1 / \gamma} x^{-\alpha / \gamma}(1-x)^{-\beta / \gamma}, & \varepsilon<x<1\end{cases}
$$

where $\varepsilon \rightarrow+0$. By the same argument $M_{\alpha, \beta, \gamma}=+\infty$.
2.1) Consider the case $0<\gamma<1, \alpha \geqslant 0, \beta \geqslant 0$. Divide the segment [0,1$]$ by points $0=\varepsilon_{0}<\varepsilon_{1}<\ldots<\varepsilon_{n}=1$ to equal segments of length ε. Consider the function $Q_{\varepsilon}(x)$ on the segment $[0,1]$ defined on each interval $\left[\varepsilon_{i-1}, \varepsilon_{i}\right)(1 \leqslant i \leqslant n)$ as follows:

$$
Q_{\varepsilon}(x)=\left\{\begin{array}{l}
\varepsilon^{-\mu} x^{-\alpha / \gamma}(1-x)^{-\beta / \gamma}, \quad \varepsilon_{i-1} \leqslant x<\varepsilon_{i-1}+\varepsilon^{\varrho} ; \\
0, \quad \varepsilon_{i-1}+\varepsilon^{\varrho} \leqslant x<\varepsilon_{i},
\end{array}\right.
$$

where $\varepsilon \rightarrow+0, \varrho=(1+\gamma) /(1-\gamma), \mu=2 /(1-\gamma)$. Then there is $\theta_{i} \in\left[\varepsilon_{i-1}, \varepsilon_{i-1}+\varepsilon^{\varrho}\right)$ such that

$$
\int_{\varepsilon_{i-1}}^{\varepsilon_{i-1}+\varepsilon^{\varrho}} Q_{\varepsilon}(x) y^{2} \mathrm{~d} x=\varepsilon^{-\mu} \varepsilon^{\varrho} \theta_{i}^{-\alpha / \gamma}\left(1-\theta_{i}\right)^{-\beta / \gamma} y^{2}\left(\theta_{i}\right)=\varepsilon^{-1} \theta_{i}^{-\alpha / \gamma}\left(1-\theta_{i}\right)^{-\beta / \gamma} y^{2}\left(\theta_{i}\right) .
$$

Since $y(x)=y\left(\theta_{i}\right)+\int_{\theta_{i}}^{x} y^{\prime}(x) \mathrm{d} x$, we have by the Hölder inequality

$$
\begin{aligned}
\int_{\varepsilon_{i-1}}^{\varepsilon_{i}} y^{2} \mathrm{~d} x & =\int_{\varepsilon_{i-1}}^{\varepsilon_{i}}\left(y\left(\theta_{i}\right)+\int_{\theta_{i}}^{x} y^{\prime}(x) \mathrm{d} x\right)^{2} \mathrm{~d} x \leqslant 2 \varepsilon y^{2}\left(\theta_{i}\right)+2 \varepsilon^{2} \int_{\varepsilon_{i-1}}^{\varepsilon_{i}} y^{\prime 2} \mathrm{~d} x \\
& =2 \varepsilon^{2}\left(\theta_{i}^{\alpha / \gamma}\left(1-\theta_{i}\right)^{\beta / \gamma} \int_{\varepsilon_{i-1}}^{\varepsilon_{i}} Q_{\varepsilon}(x) y^{2} \mathrm{~d} x+\int_{\varepsilon_{i-1}}^{\varepsilon_{i}} y^{\prime 2} \mathrm{~d} x\right) \\
& <2 \varepsilon^{2}\left(\int_{\varepsilon_{i-1}}^{\varepsilon_{i}} Q_{\varepsilon}(x) y^{2} \mathrm{~d} x+\int_{\varepsilon_{i-1}}^{\varepsilon_{i}} y^{\prime 2} \mathrm{~d} x\right)
\end{aligned}
$$

and $\int_{0}^{1} y^{2} \mathrm{~d} x<2 \varepsilon^{2}\left(\int_{0}^{1} Q_{\varepsilon} y^{2} \mathrm{~d} x+\int_{0}^{1} y^{\prime 2} \mathrm{~d} x\right)$. Hence, $M_{\alpha, \beta, \gamma}=+\infty$.
2.2) If $0<\gamma<1, \alpha<0, \beta \geqslant 0$, then divide the segment [0,1] in a way similar to the previous case and define the function Q_{ε} on each interval $\left[\varepsilon_{i-1}, \varepsilon_{i}\right)(1 \leqslant i \leqslant n)$ as follows:

$$
Q_{\varepsilon}(x)=\left\{\begin{array}{l}
0, \varepsilon_{i-1} \leqslant x<\varepsilon_{i-1}+\frac{1}{2} \varepsilon-\frac{1}{2} \varepsilon^{\varrho} \quad \text { or } \quad \varepsilon_{i-1}+\frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon^{\varrho} \leqslant x<\varepsilon_{i} ; \\
\varepsilon^{-\mu} x^{-\alpha / \gamma}(1-x)^{-\beta / \gamma}, \quad \varepsilon_{i-1}+\frac{1}{2} \varepsilon-\frac{1}{2} \varepsilon^{\varrho} \leqslant x<\varepsilon_{i-1}+\frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon^{\varrho}
\end{array}\right.
$$

where $\varepsilon \rightarrow+0, \varrho=(1+\gamma-\alpha) /(1-\gamma), \mu=(2-\alpha / \gamma) /(1-\gamma)$. By the same argument as for the case $\alpha \geqslant 0, \beta \geqslant 0$ we have

$$
\begin{aligned}
\int_{0}^{1} y^{2} \mathrm{~d} x & \leqslant 2 \varepsilon^{2}\left(\max _{i}\left(\theta_{i}^{\alpha / \gamma}\right) \varepsilon^{-\alpha / \gamma} \int_{0}^{1} Q_{\varepsilon} y^{2} \mathrm{~d} x+\int_{0}^{1} y^{\prime 2} \mathrm{~d} x\right) \\
& =2 \varepsilon^{2}\left(\theta_{1}^{\alpha / \gamma} \varepsilon^{-\alpha / \gamma} \int_{0}^{1} Q_{\varepsilon} y^{2} \mathrm{~d} x+\int_{0}^{1} y^{\prime 2} \mathrm{~d} x\right) \\
& <2^{1-\alpha / \gamma} \varepsilon^{2}\left(1-\varepsilon^{\varrho-1}\right)^{\alpha / \gamma}\left(\int_{0}^{1} Q_{\varepsilon} y^{2} \mathrm{~d} x+\int_{0}^{1} y^{\prime 2} \mathrm{~d} x\right)
\end{aligned}
$$

Taking a sufficiently small ε we get $R\left[Q_{\varepsilon}, y\right] \geqslant\left(\frac{1}{2}\right)^{-\alpha / \gamma} / 2^{1-\alpha / \gamma} \varepsilon^{2}$. Therefore, $M_{\alpha, \beta, \gamma}=+\infty$. Note that the case $0<\gamma<1, \beta<0, \alpha \geqslant 0$ is symmetric to the case $0<\gamma<1, \alpha<0, \beta \geqslant 0$.
2.3) Consider the case $0<\gamma<1, \alpha<0, \beta<0$. If for example $\beta>\alpha$, then divide the segment $[0,1]$ in a way similar to the previous cases and define the function Q_{ε} on each interval $\left[\varepsilon_{i-1}, \varepsilon_{i}\right)(1 \leqslant i \leqslant n)$ as follows:

$$
Q_{\varepsilon}(x)=\left\{\begin{array}{l}
0, \quad \varepsilon_{i-1} \leqslant x<\varepsilon_{i-1}+\frac{1}{2} \varepsilon-\frac{1}{2} \varepsilon^{\varrho} \text { or } \varepsilon_{i-1}+\frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon^{\varrho} \leqslant x<\varepsilon_{i} \\
\varepsilon^{-\mu} x^{-\alpha / \gamma}(1-x)^{-\beta / \gamma}, \quad \varepsilon_{i-1}+\frac{1}{2} \varepsilon-\frac{1}{2} \varepsilon^{\varrho} \leqslant x<\varepsilon_{i-1}+\frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon^{\varrho}
\end{array}\right.
$$

where $\varepsilon \rightarrow+0, \varrho=(1+\gamma-\alpha) /(1-\gamma), \mu=(2-\alpha / \gamma) /(1-\gamma)$. The proof in this case is similar to the proof of 2.2) and also $M_{\alpha, \beta, \gamma}=+\infty$.
3.1) Consider the case $\gamma=1,0 \leqslant \alpha \leqslant 1, \beta<0$. Since $y^{2}(x) \leqslant x \int_{0}^{1} y^{\prime 2} \mathrm{~d} t$ for all $x \in(0,1)$, we have

$$
\int_{0}^{1} Q y^{2}(x) \mathrm{d} x \leqslant \sup _{[0,1]} \frac{y^{2}}{x^{\alpha}} \int_{0}^{1} Q x^{\alpha}(1-x)^{\beta} \mathrm{d} x \leqslant \sup _{[0,1]} \frac{y^{2}}{x} \leqslant \int_{0}^{1} y^{\prime 2}(x) \mathrm{d} x .
$$

Therefore, $M_{\alpha, \beta, \gamma} \leqslant 2 \pi^{2}$. Note that the case $\gamma=1,0 \leqslant \beta \leqslant 1, \alpha<0$ is symmetric to the case $\gamma=1,0 \leqslant \alpha \leqslant 1, \beta<0$.
3.2) Consider the case $\gamma=1,0 \leqslant \alpha \leqslant 1,0 \leqslant \beta \leqslant 1$. We have $M_{\alpha, \beta, \gamma} \leqslant 3 \pi^{2}$, because

$$
\int_{0}^{1} Q y^{2}(x) \mathrm{d} x \leqslant \sup _{[0,1]} \frac{y^{2}}{x^{\alpha}(1-x)^{\beta}} \int_{0}^{1} Q x^{\alpha}(1-x)^{\beta} \mathrm{d} x \leqslant \sup _{[0,1]} \frac{y^{2}}{x}+\sup _{[0,1]} \frac{y^{2}}{1-x} .
$$

3.3) Now suppose that $\gamma=1, \alpha<0, \beta<0$.

One can show [1], [2] that for all $y \in H_{Q}$ the following inequality holds: $\sup _{[0,1]} y^{2} \leqslant$ $\frac{1}{4} \int_{0}^{1} y^{\prime 2}(x) \mathrm{d} x$. Then

$$
\int_{0}^{1} Q y^{2}(x) \mathrm{d} x \leqslant \sup _{[0,1]} \frac{y^{2}}{x^{\alpha}} \int_{0}^{1} Q x^{\alpha}(1-x)^{\beta} \mathrm{d} x \leqslant \sup _{[0,1]} \frac{y^{2}}{x^{\alpha}} \leqslant \sup _{[0,1]} y^{2} \leqslant \frac{1}{4} \int_{0}^{1} y^{\prime 2}(x) \mathrm{d} x .
$$

Hence, $M_{\alpha, \beta, \gamma} \leqslant \frac{5}{4} \pi^{2}$.
3.4) Now we consider the case $\gamma>1,0 \leqslant \alpha \leqslant 2 \gamma-1, \beta<0$. By the Hölder inequality we have

$$
\int_{0}^{1} Q y^{2}(x) \mathrm{d} x \leqslant\left(\int_{0}^{1}|y|^{\frac{2 \gamma}{\gamma-1}} x^{\frac{\alpha}{1-\gamma}}(1-x)^{\frac{\beta}{1-\gamma}} \mathrm{d} x\right)^{\frac{\gamma-1}{\gamma}} \leqslant\left(\int_{0}^{1}|y|^{\frac{2 \gamma}{\gamma-1}} x^{-\frac{2 \gamma-1}{\gamma-1}} \mathrm{~d} x\right)^{\frac{\gamma-1}{\gamma}}
$$

By the generalized Hardy inequality [3]

$$
\left(\int_{0}^{1}|y|^{\frac{2 \gamma}{\gamma-1}} x^{-\frac{2 \gamma-1}{\gamma-1}} \mathrm{~d} x\right)^{\frac{\gamma-1}{2 \gamma}} \leqslant\left(\frac{2 \gamma-1}{\gamma}\right)^{\frac{2 \gamma-1}{2 \gamma}}\left(\int_{0}^{1} y^{\prime 2}(x) \mathrm{d} x\right)^{\frac{1}{2}}
$$

we have $\int_{0}^{1} Q y^{2}(x) \mathrm{d} x \leqslant((2 \gamma-1) / \gamma)^{(2 \gamma-1) / \gamma} \int_{0}^{1} y^{\prime 2}(x) \mathrm{d} x$ and $M_{\alpha, \beta, \gamma} \leqslant(1+((2 \gamma-$ 1) $\left./ \gamma)^{(2 \gamma-1) / \gamma}\right) \pi^{2}$. The case $\gamma>1,0 \leqslant \beta \leqslant 2 \gamma-1, \alpha<0$ is symmetric to the case $\gamma>1,0 \leqslant \alpha \leqslant 2 \gamma-1, \beta<0$.
3.5) Now consider the case $\gamma>1,0 \leqslant \alpha \leqslant 2 \gamma-1,0 \leqslant \beta \leqslant 2 \gamma-1$. Since

$$
\int_{0}^{1} Q y^{2}(x) \mathrm{d} x \leqslant\left(\int_{0}^{1} Q^{\gamma} x^{\alpha}(1-x)^{\beta} \mathrm{d} x\right)^{\frac{1}{\gamma}}\left(\int_{0}^{1}|y|^{\frac{2 \gamma}{\gamma-1}} x^{\frac{\alpha}{1-\gamma}}(1-x)^{\frac{\beta}{1-\gamma}} \mathrm{d} x\right)^{\frac{\gamma-1}{\gamma}}
$$

we have by the generalized Hardy inequality

$$
\int_{0}^{1}|y|^{\frac{2 \gamma}{\gamma-1}} x^{\frac{\alpha}{1-\gamma}}(1-x)^{\frac{\beta}{1-\gamma}} \mathrm{d} x \leqslant 2 C\left(\frac{2 \gamma-1}{\gamma}\right)^{\frac{2 \gamma-1}{\gamma-1}}\left(\int_{0}^{1} y^{\prime 2}(x) \mathrm{d} x\right)^{\frac{\gamma}{\gamma-1}}
$$

where $C=2^{(2 \gamma-1) /(\gamma-1)}$ and $M_{\alpha, \beta, \gamma} \leqslant\left(1+2^{(3 \gamma-2) / \gamma}((2 \gamma-1) / \gamma)^{(2 \gamma-1) / \gamma}\right) \pi^{2}$.
3.6) Suppose that $\gamma>1, \alpha<0, \beta<0$. It follows from

$$
\begin{aligned}
\int_{0}^{1} Q y^{2}(x) \mathrm{d} x & \leqslant\left(\int_{0}^{1}|y|^{\frac{2 \gamma}{\gamma-1}} x^{\frac{\alpha}{1-\gamma}}(1-x)^{\frac{\beta}{1-\gamma}} \mathrm{d} x\right)^{\frac{\gamma-1}{\gamma}} \\
& \leqslant\left(\int_{0}^{1}|y|^{\frac{2 \gamma}{\gamma-1}} \mathrm{~d} x\right)^{\frac{\gamma-1}{\gamma}} \leqslant \int_{0}^{1} y^{\prime 2}(x) \mathrm{d} x
\end{aligned}
$$

that $M_{\alpha, \beta, \gamma} \leqslant 2 \pi^{2}$.
3.7) Consider the case $\gamma \geqslant 1, \alpha>2 \gamma-1, \beta<0$. Let $y_{1}=x^{\alpha /(2 \gamma)} \sin \pi x$ and $\int_{0}^{1} y_{1}^{\prime 2} \mathrm{~d} x=C_{1}, \int_{0}^{1} y_{1}^{2} \mathrm{~d} x=C_{2}$. Then we have that $M_{\alpha, \beta, \gamma} \leqslant\left(C_{1}+1\right) / C_{2}$, because

$$
R\left[Q, y_{1}\right] \leqslant \frac{C_{1}+\int_{0}^{1} Q(x) x^{\alpha / \gamma} \mathrm{d} x}{C_{2}} \leqslant \frac{C_{1}+\left(\int_{0}^{1} Q^{\gamma}(x) x^{\alpha}(1-x)^{\beta} \mathrm{d} x\right)^{1 / \gamma}}{C_{2}}=\frac{C_{1}+1}{C_{2}} .
$$

The case $\gamma \geqslant 1, \beta>2 \gamma-1, \alpha<0$ is symmetric to the case $\gamma \geqslant 1, \alpha>2 \gamma-1, \beta<0$.
3.8) Finally, let $\gamma \geqslant 1, \alpha>2 \gamma-1, \beta \geqslant 0$. Taking $y_{1}=x^{\alpha /(2 \gamma)}(1-x)^{\beta /(2 \gamma)} \sin \pi x$ the proof in this case is similar to the proof 3.7) and $M_{\alpha, \beta, \gamma} \leqslant\left(C_{1}+1\right) / C_{2}$. Note that by substitution $x=1-t, \alpha \leftrightarrow \beta$ the case $\gamma=1,0 \leqslant \alpha \leqslant 1, \beta>1$ can be included into the case 3.8).

References

[1] Yu. V. Egorov, V.A. Kondrat'ev: Estimates for the first eigenvalue in some SturmLiouville problems. Russ. Math. Surv. 51 (1996); translation from Usp. Math. Nauk 51 (1996), 73-144.
[2] K. Z. Kuralbaeva: On estimate of the first eigenvalue of a Sturm-Liouville operator. Differents. Uravn. 32 (1996), 852-853.
[3] O. V. Besov, V. P. Il'in, S. M. Nikol'skiy: Integral Representations of Functions and Imbedding Theorems. Nauka, Moskva, 1996. (In Russian.)

Author's address: Maria Telnova, Moscow State University of Economics, Statistics, and Informatics, 119501, Nezhinskaya st., 7, Moskva, Russia, e-mail: mytelnova@ya.ru.

