SOME ESTIMATES FOR THE FIRST EIGENVALUE OF THE STURM-LIOUVILLE PROBLEM WITH A WEIGHT INTEGRAL CONDITION

Maria Telnova, Moskva

(Received October 15, 2009)

Abstract. Let $\lambda_1(Q)$ be the first eigenvalue of the Sturm-Liouville problem

$$y'' - Q(x)y + \lambda y = 0$$
, $y(0) = y(1) = 0$, $0 < x < 1$.

We give some estimates for $m_{\alpha,\beta,\gamma}=\inf_{Q\in T_{\alpha,\beta,\gamma}}\lambda_1(Q)$ and $M_{\alpha,\beta,\gamma}=\sup_{Q\in T_{\alpha,\beta,\gamma}}\lambda_1(Q)$, where $T_{\alpha,\beta,\gamma}$ is the set of real-valued measurable on [0,1] $x^{\alpha}(1-x)^{\beta}$ -weighted L_{γ} -functions Q with non-negative values such that $\int_0^1 x^{\alpha}(1-x)^{\beta}Q^{\gamma}(x)\,\mathrm{d}x=1\ (\alpha,\beta,\gamma\in\mathbb{R},\gamma\neq0).$

Keywords: first eigenvalue, Sturm-Liouville problem, weight integral condition $MSC\ 2010$: 34L15

We consider the Sturm-Liouville problem

(1)
$$y'' - Q(x)y + \lambda y = 0, \quad x \in (0, 1),$$

$$(2) y(0) = y(1) = 0,$$

where Q is a real-valued measurable on [0,1] function with non-negative values such that the integral condition

(3)
$$\int_0^1 x^{\alpha} (1-x)^{\beta} Q^{\gamma}(x) dx = 1 \ (\alpha, \beta, \gamma \in \mathbb{R}, \gamma \neq 0)$$

holds whenever Q belongs to the $x^{\alpha}(1-x)^{\beta}$ -weighted L_{γ} -space. The set of all functions Q of this kind we denote by $T_{\alpha,\beta,\gamma}$.

By a solution of problem (1)–(2) we mean an absolutely continuous function y on the segment [0,1] such that y(0) = y(1) = 0; y' is absolutely continuous in the interval (0,1); equality (1) holds almost everywhere in the interval (0,1).

We study the dependence of the first eigenvalue λ_1 of problem (1)–(3) on the potential Q under different values of parameters α, β, γ . Our purpose is to give some estimates for

$$m_{\alpha,\beta,\gamma} = \inf_{Q \in T_{\alpha,\beta,\gamma}} \lambda_1(Q), \qquad M_{\alpha,\beta,\gamma} = \sup_{Q \in T_{\alpha,\beta,\gamma}} \lambda_1(Q).$$

Let H_Q be the closure of the set $C_0^{\infty}(0,1)$ in the norm $\|y\|_{H_Q}^2 = \int_0^1 (y'^2 + Qy^2) dx$, where $C_0^{\infty}(0,1)$ is the set of functions of $C^{\infty}(0,1)$ having their supports compactly embedded in (0,1). Let Γ be the set of functions y from H_Q such that $\int_0^1 y^2 dx = 1$.

Consider the functionals

$$R[Q,y] = \frac{\int_0^1 (y'^2(x) + Q(x)y^2(x)) \, \mathrm{d}x}{\int_0^1 y^2(x) \, \mathrm{d}x}, \quad F[Q,y] = \int_0^1 (y'^2(x) + Q(x)y^2(x)) \, \mathrm{d}x.$$

Note that the values of R and F are bounded from below. Let us show that the first eigenvalue λ_1 of problem (1)–(2) can be found as

$$\lambda_1(Q) = \inf_{y \in H_Q, y \neq 0} R[Q, y] = \inf_{y \in \Gamma} F[Q, y].$$

Step 1. Let $Q \in T_{\alpha,\beta,\gamma}$ and $m = \inf_{y \in \Gamma} F[Q,y]$. There exists $y \in \Gamma$ such that F[Q,y] = m.

For all functions $Q \in T_{\alpha,\beta,\gamma}$ and $y \in \Gamma$ one has $F[Q,y] = \int_0^1 (y'^2 + Qy^2) dx = \|y\|_{H_Q}^2$. Let $\{y_k\}$ be a minimizing sequence of the functional F[Q,y] in Γ . Then $F[Q,y_k] \leq m+1$ for all sufficiently large values of k. Hence $\|y_k(x)\|_{H_Q}^2 = F[Q,y_k] \leq m+1$. Since $\{y_k\}$ is a bounded sequence in a separable Hilbert space H_Q , it contains a subsequence $\{z_k\}$, which converges weakly in the space H_Q to a function y. So we get $\|y\|_{H_Q}^2 \leq m+1$.

Let us prove that the space H_Q is compactly embedded into the space C(0,1). First we shall establish the boundedness of the corresponding operator of embedding. Note that the inequality $||u||_C \leq ||u'||_{L_1} + (b-a)^{-1}||u||_{L_1}$ holds for any function $u(x) \in C[a,b]$. If $u(x) \in AC[0,1]$ and u(0) = u(1) = 0, then

$$||u||_{L_{1}} = \int_{0}^{1} |u| \, \mathrm{d}x = \int_{0}^{1} \left| \int_{0}^{x} u' \, \mathrm{d}x \right| \, \mathrm{d}x$$

$$\leq \int_{0}^{1} \left(\int_{0}^{1} |u'| \, \mathrm{d}x \right) \, \mathrm{d}x = \int_{0}^{1} |u'| \, \mathrm{d}x = ||u'||_{L_{1}}.$$

By the Hölder inequality we get

$$||u||_C \leqslant ||u'||_{L_1} + ||u||_{L_1} \leqslant 2||u'||_{L_1} \leqslant 2||u'||_{L_2} \leqslant 2||u||_{H_Q}.$$

The boundedness of this operator is proved.

Now let us prove the compactness of the operator of embedding. Let $M \in H_Q$ be a bounded set, i.e. there is a real number R such that $||u||_{H_Q} \leq R$ for all $u \in M$. We need to prove the precompactness of M in C(0,1). By the Arzela theorem it suffices to prove that the set M is uniformly bounded and equicontinuous.

The set M is called uniformly bounded if there is a real number R_1 such that $|u(x)| \leq R_1$ for all $u \in M$ and $x \in [0,1]$. In virtue of (4) we have $|u(x)| \leq ||u||_C \leq 2R = R_1$ for all $u \in M$ and $x \in [0,1]$.

Now let us prove that the set M is equicontinuous, i.e. for any $\varepsilon > 0$ one can find $\delta > 0$ such that $|u(x) - u(y)| < \varepsilon$ as $|x - y| < \delta$ for all $u \in M$. By the Newton-Leibniz formula we obtain: if $|x - y| < \delta = (\varepsilon R^{-1})^2$ then

$$|u(x) - u(y)| \le \left| \int_x^y |u'(\xi)| \, d\xi \right| \le |x - y|^{\frac{1}{2}} ||u'||_{L_2} \le |x - y|^{\frac{1}{2}} R < \varepsilon \quad \text{for all } u \in M.$$

The space H_Q is compactly embedded into the space C(0,1). Consequently, there is a converging in C(0,1) subsequence $\{u_k\}$ of the sequence $\{z_k\}$. Since C(0,1) is embedded into $L_p(0,1)$, where $p \ge 1$, then the sequence $\{u_k\}$ converges in $L_2(0,1)$ to a function $u \in L_2(0,1)$ such that $\int_0^1 u^2 dx = 1$.

Let us prove that the subsequence $\{u_k\}$ converges in H_Q . Since the functional F is quadric, we have the identity

$$F\left[Q, \frac{y_k - y_l}{2}\right] + F\left[Q, \frac{y_k + y_l}{2}\right] = \frac{1}{2}F[Q, y_k] + \frac{1}{2}F[Q, y_l].$$

Let $\varepsilon > 0$ and let k and l be so large that for u_k, u_l from the subsequence one has

$$F[Q, u_k] \leqslant m + \varepsilon, \quad F[Q, u_l] \leqslant m + \varepsilon, \quad \text{and} \quad \int_0^1 \left(\frac{u_k - u_l}{2}\right)^2 dx \leqslant \varepsilon^2.$$

Hence,

$$\int_0^1 \left(\frac{u_k + u_l}{2}\right)^2 dx = \int_0^1 \left(u_l + \frac{u_k - u_l}{2}\right)^2 dx$$
$$\geqslant (1 - \varepsilon) \int_0^1 u_l^2 dx - \frac{1}{\varepsilon} \int_0^1 \left(\frac{u_k - u_l}{2}\right)^2 dx \geqslant (1 - \varepsilon) - \varepsilon = 1 - 2\varepsilon.$$

Therefore, $F[Q, \frac{1}{2}(u_k + u_l)] \ge m(1 - 2\varepsilon)$ and $F[Q, \frac{1}{2}(u_k - u_l)] \le m + \varepsilon - m(1 - 2\varepsilon) = \varepsilon(1 + 2m)$. It means that the subsequence $\{u_k\}$ converges in H_Q . Since it converges

in H_Q weakly to y, then the limit function of this subsequence in H_Q is equal to y too. Then, taking into account that the functional F is continuous in H_Q , we obtain F[Q, y] = m.

Step 2. Let
$$y(x) \in \Gamma$$
 and $F[Q, y] = m = \inf_{y \in \Gamma} F[Q, y]$. Then

$$-y'' + Qy - \lambda y = 0,$$

where $\lambda = m$ is the minimal eigenvalue of the Sturm-Liouville problem (1)–(2).

First we note that $m=\inf_{y\in H_Q,y\neq 0}R[Q,y]$. We have that the minimum of the functional F[Q,y] is equal to m under the condition $\int_0^1y^2\,\mathrm{d}x=1$.

Let u(x) be an element of H_Q . Consider two functions of $t \in \mathbb{R}$

$$g(t) = \int_0^1 ((y' + tu')^2(x) + Q(x)(y + tu)^2(x)) dx, \quad h(t) = \int_0^1 (y + tu)^2 dx.$$

If h(0) = 1 then $g(t) \ge g(0) = m$, i.e. the function g has the minimal value at t = 0 under the condition h(0) = 1. Therefore, $g'(0) + \lambda_1 h'(0) = 0$, where λ_1 is a real number. Let $\lambda = -\lambda_1$. It means that for all $u(x) \in H_Q$ the equality $\int_0^1 (y'u' + Qyu) dx = \lambda \int_0^1 yu dx$ holds. In particular, if u = y, then we obtain $\lambda = m$. Consequently, $\int_0^1 (y'u' + Qyu - myu) dx = 0$.

This equality is valid for all $u \in C_0^{\infty}(0,1)$. It implies the existence of the generalized derivative of the function y' such that

(5)
$$-y(x)'' + Q(x)y(x) - my(x) = 0.$$

By the method of averaging one can obtain a sequence $\{y_k(x)\}$ of $C_0^{\infty}(0,1)$ functions with the following properties: 1) $\{y_k(x)\}$ converges uniformly in the space H_Q to the function y; 2) the sequence $\{Qy_k(x)\}$ also converges uniformly in H_Q to the function Qy. Then the sequence $\{y_k(x)''\}$ converges uniformly in this space to the function y''. Therefore the equality (5) holds almost everywhere in (0,1). Moreover, y(0) = y(1) = 0.

Thus y is a solution of the Sturm-Liouville problem (1)–(2) with the eigenvalue $\lambda = m$. For any solution z of this problem we have $\int_0^1 (z'^2(x) + Q(x)z^2(x)) dx = \lambda \int_0^1 z^2 dx$; then in virtue of (5) we obtain the relation $\lambda \ge m$. Consequently, m is the minimal eigenvalue.

The following theorems give some estimates for $m_{\alpha,\beta,\gamma}$ and $M_{\alpha,\beta,\gamma}$.

Theorem 1.

- (1) If $\gamma > 0$, then $m_{\alpha,\beta,\gamma} = \pi^2$.
- (2) If $\gamma < 0$, then $m_{\alpha,\beta,\gamma} < +\infty$.

Theorem 2.

- (1) If $\gamma < 0$ and $0 < \gamma < 1$, then $M_{\alpha,\beta,\gamma} = +\infty$.
- (2) If $\gamma \geqslant 1$, then $M_{\alpha,\beta,\gamma} < +\infty$.

Proof of Theorem 1. We emphasize that in virtue of Friedrichs' inequality the following relations hold for all $Q \in T_{\alpha,\beta,\gamma}$:

$$\lambda_1(Q) = \inf_{y \in H_Q, y \neq 0} \frac{\int_0^1 (y'^2(x) + Q(x)y^2(x)) \, \mathrm{d}x}{\int_0^1 y^2(x) \, \mathrm{d}x} \geqslant \inf_{y \in H_Q, y \neq 0} \frac{\int_0^1 y'^2(x) \, \mathrm{d}x}{\int_0^1 y^2(x) \, \mathrm{d}x} = \pi^2.$$

Hence, $m_{\alpha,\beta,\gamma} \geqslant \pi^2$.

1) Let $\gamma > 0$, α , β be arbitrary real numbers. We prove that $m_{\alpha,\beta,\gamma} = \pi^2$. Consider the functions

$$Q_{\theta,\alpha,\beta,\gamma}(x) = \begin{cases} 0, & x \in (0,\theta); \\ ((1-\theta)x^{\alpha}(1-x)^{\beta})^{-1/\gamma}, & x \in [\theta,1), \end{cases}$$
$$y_{\theta}(x) = \begin{cases} \sin \pi x/\theta, & x \in (0,\theta); \\ 0, & x \in [\theta,1), \ \theta \to 1-0. \end{cases}$$

Then we have $\int_0^1 Q_{\theta,\alpha,\beta,\gamma}(x) y_{\theta}(x)^2 dx = 0$ and the integral condition holds. Since $\int_0^1 y_{\theta}(x)^2 dx = \frac{1}{2}\theta$, $\int_0^1 y_{\theta}'(x)^2 dx = \frac{1}{2}\pi^2/\theta$, we obtain

$$\lim_{\theta \to 1-0} R[Q_{\theta}, y_{\theta}] = \lim_{\theta \to 1-0} \frac{\frac{1}{2}(\pi^{2}/\theta)}{(\frac{1}{2}\theta)} = \pi^{2}$$

and $m_{\alpha,\beta,\gamma} = \inf_{Q \in T_{\alpha,\beta,\gamma}} \lambda_1(Q) \leqslant \pi^2$. Therefore, $m_{\alpha,\beta,\gamma} = \pi^2$.

2.1) First we suppose that $\gamma < 0$, $\beta \ge 0$, $\alpha > 2\gamma - 1$. Consider the function $Q_{\theta}(x) = Cx^{-(\alpha+1)/\gamma+\theta/\gamma}(1-x)^{-\beta/\gamma}$, where θ is a positive real number such that $\alpha \ge 2\gamma - 1 + \theta$. We take the constant C such that $\int_0^1 Q_{\theta}(x)^{\gamma} x^{\alpha} (1-x)^{\beta} dx = 1$, i.e. $C = \theta^{1/\gamma}$. By the Hardy inequality we obtain

$$\int_0^1 Q_\theta(x) y^2 \, \mathrm{d}x = C \int_0^1 \frac{(1-x)^{-\beta/\gamma} y^2}{x^{(\alpha+1-\theta)/\gamma}} \, \mathrm{d}x \leqslant C \int_0^1 x^{-2} y^2 \, \mathrm{d}x \leqslant 4C \int_0^1 y'^2 \, \mathrm{d}x.$$

Then it follows from $C = \theta^{1/\gamma}$ that $m_{\alpha,\beta,\gamma} \leqslant (1 + 4(\alpha - 2\gamma + 1)^{1/\gamma})\pi^2$.

2.2) Suppose that $\gamma < 0, \, \beta \geqslant 0$ and $\alpha \leqslant 2\gamma - 1$. Consider the functions

$$Q_{\varepsilon,\alpha,\beta,\gamma}(x) = \varepsilon x^{-\alpha/\gamma} (1-x)^{-\beta/\gamma} x^{(\varepsilon^{\gamma}-1)/\gamma} \text{ and } y_1(x) = \begin{cases} x^{\theta}, & 0 \leqslant x \leqslant \frac{1}{2}; \\ (1-x)^{\theta}, & \frac{1}{2} < x \leqslant 1, \end{cases}$$

where θ is a real number such that $2\theta - \alpha/\gamma + (\varepsilon^{\gamma} - 1)/\gamma > -1$ and $2\theta > 1$. Denote $\int_0^1 y_1'^2 dx = C_1$, $\int_0^1 y_1^2 dx = C_2$, $\int_0^1 x^{-\alpha/\gamma} x^{(\varepsilon^{\gamma} - 1)/\gamma} y_1^2 dx = C_3$. Then $R[Q_{\varepsilon,\alpha,\beta,\gamma}, y_1] = (C_1 + \varepsilon C_3)/C_2$ and $m_{\alpha,\beta,\gamma} \leqslant C_1/C_2$. The case $\alpha \geqslant 0$, $\beta < 0$ is symmetric to the case $\beta \geqslant 0$, $\alpha < 0$.

2.3) Now we assume that $\gamma < 0$, $2\gamma - 1 < \alpha < 0$ and $2\gamma - 1 < \beta < 0$. Consider the function

$$Q_{\theta,\alpha,\beta,\gamma}(x) = \begin{cases} C x^{-(\alpha+1)/\gamma + \theta/\gamma} (1-x)^{-\beta/\gamma}, & 0 < x < \frac{1}{2}; \\ C x^{-\alpha/\gamma} (1-x)^{-(\beta+1)/\gamma + \theta/\gamma}, & \frac{1}{2} \leqslant x < 1, \end{cases}$$

where θ is a positive real number such that $\alpha \ge 2\gamma - 1 + \theta$. By the Hardy inequality

$$\int_{0}^{1} Q_{\theta,\alpha,\beta,\gamma} y^{2}(x) \, \mathrm{d}x \leqslant C 2^{\frac{2\gamma-1}{\gamma}} \int_{0}^{\frac{1}{2}} x^{-\frac{\alpha+1}{\gamma} + \frac{\theta}{\gamma}} y^{2} \, \mathrm{d}x + C 2^{\frac{2\gamma-1}{\gamma}} \int_{\frac{1}{2}}^{1} (1-x)^{-\frac{\beta+1}{\gamma} + \frac{\theta}{\gamma}} y^{2} \, \mathrm{d}x$$
$$\leqslant C 2^{\frac{2\gamma-1}{\gamma}} \left(\int_{0}^{\frac{1}{2}} x^{-2} y^{2} \, \mathrm{d}x + \int_{\frac{1}{2}}^{1} (1-x)^{-2} y^{2} \, \mathrm{d}x \right) \leqslant C 2^{\frac{4\gamma-1}{\gamma}} \int_{0}^{1} y'^{2} \, \mathrm{d}x$$

and $m_{\alpha,\beta,\gamma} \leq (1 + C2^{(4\gamma-1)/\gamma})\pi^2$. For $\theta = \alpha - 2\gamma + 1$ and $C = (\theta 2^{\theta-1})^{1/\gamma}$ we have $m_{\alpha,\beta,\gamma} \leq (1 + (\alpha - 2\gamma + 1)^{1/\gamma}2^{(\alpha+2\gamma-1)/\gamma})\pi^2$.

2.4) Consider the case $\gamma < 0$, $\alpha \leq 2\gamma - 1$ and $\beta < 0$. Consider the functions

$$Q_{\varepsilon,\alpha,\beta,\gamma}(x) = \varepsilon x^{-\alpha/\gamma} (1-x)^{-\beta/\gamma} x^{(\varepsilon^{\gamma}-1)/\gamma} \quad \text{and} \quad y_1(x) = \begin{cases} x^{\theta}, & 0 \leqslant x \leqslant \frac{1}{2}; \\ (1-x)^{\theta}, & \frac{1}{2} < x \leqslant 1, \end{cases}$$

where θ is a real number such that $2\theta - \alpha/\gamma + (\varepsilon^{\gamma} - 1)/\gamma > -1$, $2\theta > 1$ and $2\theta - \beta/\gamma > -1$. Denote $\int_0^1 y_1'^2 dx = C_1$, $\int_0^1 y_1^2 dx = C_2$, $\int_0^1 Q_{\varepsilon,\alpha,\beta,\gamma}(x)y_1^2 dx = \varepsilon C_3$. Then $R[Q_{\varepsilon,\alpha,\beta,\gamma},y_1] = (C_1 + \varepsilon C_3)/C_2$ and $m_{\alpha,\beta,\gamma} \leqslant C_1/C_2$. The case $\beta \leqslant 2\gamma - 1$, $\alpha < 0$ is symmetric to the case $\alpha \leqslant 2\gamma - 1$, $\beta < 0$. By substitution x = 1 - t, $\alpha \leftrightarrow \beta$ the case $2\gamma - 1 < \alpha < 0$ and $\beta \leqslant 2\gamma - 1$ can be included into the case 2.4).

Proof of Theorem 2. 1.1) First we suppose that $\gamma < 0$, $\alpha > 0$, $\beta > 0$. Let us prove that $M_{\alpha,\beta,\gamma} = +\infty$. Assume that $\alpha \geqslant \beta$. Consider the function

$$Q_{\varepsilon,\alpha,\beta,\gamma}(x) = \begin{cases} ((1-\varepsilon^{2\alpha}(1-\varepsilon)^{\alpha})/2\varepsilon)^{1/\gamma}x^{-\alpha/\gamma}(1-x)^{-\beta/\gamma}, & x \in (0,1) \setminus (\varepsilon,1-\varepsilon); \\ (\varepsilon^{2\alpha}(1-\varepsilon)^{\alpha}/(1-2\varepsilon))^{1/\gamma}x^{-\alpha/\gamma}(1-x)^{-\beta/\gamma}, & x \in (\varepsilon,1-\varepsilon), \end{cases}$$

where $\varepsilon \to +0$. Thus we have

$$\int_{\varepsilon}^{1-\varepsilon} y^{2}(x) dx \leq \int_{\varepsilon}^{1-\varepsilon} \frac{x^{-\alpha/\gamma} (1-x)^{-\alpha/\gamma}}{\varepsilon^{-\alpha/\gamma} (1-\varepsilon)^{-\alpha/\gamma}} y^{2}(x) dx$$

$$\leq \int_{\varepsilon}^{1-\varepsilon} \frac{x^{-\alpha/\gamma} (1-x)^{-\alpha/\gamma}}{\varepsilon^{-\alpha/\gamma} (1-\varepsilon)^{-\alpha/\gamma}} (1-x)^{(\alpha-\beta)/\gamma} y^{2}(x) dx$$

$$= \frac{\varepsilon^{-\alpha/\gamma}}{(1-2\varepsilon)^{-1/\gamma}} \int_{\varepsilon}^{1-\varepsilon} Q_{\varepsilon,\alpha,\beta,\gamma}(x) y^{2}(x) dx.$$

By the Hölder inequality we get

$$\begin{split} \int_0^1 y^2(x) \, \mathrm{d}x &\leqslant \frac{\varepsilon^2}{2} \int_0^\varepsilon y'^2(x) \, \mathrm{d}x + \frac{\varepsilon^{-\frac{\alpha}{\gamma}}}{(1 - 2\varepsilon)^{-\frac{1}{\gamma}}} \int_\varepsilon^{1 - \varepsilon} Q_{\varepsilon, \alpha, \beta, \gamma}(x) y^2(x) \, \mathrm{d}x \\ &+ \frac{\varepsilon^2}{2} \int_{1 - \varepsilon}^1 y'^2(x) \, \mathrm{d}x \leqslant a(\varepsilon) \bigg(\int_0^1 y'^2(x) \, \mathrm{d}x + \int_0^1 Q_{\varepsilon, \alpha, \beta, \gamma}(x) y^2(x) \, \mathrm{d}x \bigg), \end{split}$$

where $a(\varepsilon) = \varepsilon^2/2 + \varepsilon^{-\alpha/\gamma}/(1-2\varepsilon)^{-1/\gamma}$. Then $R[Q_{\varepsilon,\alpha,\beta,\gamma},y] \geqslant 1/a(\varepsilon)$ for all functions $y \in H_Q$. Consequently, $\inf_{y \in H_Q,y \neq 0} R[Q,y] \geqslant 1/a(\varepsilon)$. Taking into account that $a(\varepsilon) \to 0$ as $\varepsilon \to 0$, we obtain $M_{\alpha,\beta,\gamma} = +\infty$.

1.2) Consider the case $\gamma < 0$, $\alpha > 0$, $\beta \leq 0$. Let us prove that $M_{\alpha,\beta,\gamma} = +\infty$. For $\varepsilon \to +0$ consider the function

$$Q_{\varepsilon,\alpha,\beta,\gamma}(x) = \begin{cases} (\alpha+1)^{1/\gamma} \varepsilon^{-(\alpha+1)/\gamma} (1-\varepsilon)^{1/\gamma} (1-x)^{-\beta/\gamma}, & 0 < x < \varepsilon; \\ (\alpha+1)^{1/\gamma} \varepsilon^{1/\gamma} (1-\varepsilon^{\alpha+1})^{-1/\gamma} (1-x)^{-\beta/\gamma}, & \varepsilon < x < 1. \end{cases}$$

As in the previous case $\int_0^1 y^2(x) dx \leq a(\varepsilon) (\int_0^1 y'^2(x) dx + \int_0^1 Q_{\varepsilon,\alpha,\beta,\gamma}(x) y^2)$, where $a(\varepsilon) = \varepsilon^2/2 + (1/(\alpha+1))^{1/\gamma} \varepsilon^{-1/\gamma} (1-\varepsilon^{\alpha+1})^{1/\gamma}$, and by the same argument $M_{\alpha,\beta,\gamma} = +\infty$. The case $\gamma < 0, \beta > 0, \alpha \leq 0$ is symmetric to the case $\gamma < 0, \alpha > 0, \beta \leq 0$.

1.3) Now suppose that $\gamma < 0$, $\alpha \leq 0$, $\beta \leq 0$. Let us prove that $M_{\alpha,\beta,\gamma} = +\infty$. Consider the function

$$Q_{\varepsilon,\alpha,\beta,\gamma}(x) = \begin{cases} (1-\varepsilon)^{1/\gamma} \varepsilon^{-1/\gamma} x^{-\alpha/\gamma} (1-x)^{-\beta/\gamma}, & 0 < x < \varepsilon; \\ (1-\varepsilon)^{-1/\gamma} \varepsilon^{1/\gamma} x^{-\alpha/\gamma} (1-x)^{-\beta/\gamma}, & \varepsilon < x < 1, \end{cases}$$

where $\varepsilon \to +0$. By the same argument $M_{\alpha,\beta,\gamma} = +\infty$.

2.1) Consider the case $0 < \gamma < 1$, $\alpha \ge 0$, $\beta \ge 0$. Divide the segment [0,1] by points $0 = \varepsilon_0 < \varepsilon_1 < \ldots < \varepsilon_n = 1$ to equal segments of length ε . Consider the function $Q_{\varepsilon}(x)$ on the segment [0,1] defined on each interval $[\varepsilon_{i-1}, \varepsilon_i)$ $(1 \le i \le n)$ as follows:

$$Q_{\varepsilon}(x) = \begin{cases} \varepsilon^{-\mu} x^{-\alpha/\gamma} (1-x)^{-\beta/\gamma}, & \varepsilon_{i-1} \leqslant x < \varepsilon_{i-1} + \varepsilon^{\varrho}; \\ 0, & \varepsilon_{i-1} + \varepsilon^{\varrho} \leqslant x < \varepsilon_{i}, \end{cases}$$

where $\varepsilon \to +0$, $\varrho = (1+\gamma)/(1-\gamma)$, $\mu = 2/(1-\gamma)$. Then there is $\theta_i \in [\varepsilon_{i-1}, \varepsilon_{i-1} + \varepsilon^{\varrho})$ such that

$$\int_{\varepsilon_{i-1}}^{\varepsilon_{i-1}+\varepsilon^{\varrho}} Q_{\varepsilon}(x) y^2 \, \mathrm{d}x = \varepsilon^{-\mu} \varepsilon^{\varrho} \theta_i^{-\alpha/\gamma} (1-\theta_i)^{-\beta/\gamma} y^2(\theta_i) = \varepsilon^{-1} \theta_i^{-\alpha/\gamma} (1-\theta_i)^{-\beta/\gamma} y^2(\theta_i).$$

Since $y(x) = y(\theta_i) + \int_{\theta_i}^x y'(x) dx$, we have by the Hölder inequality

$$\int_{\varepsilon_{i-1}}^{\varepsilon_{i}} y^{2} dx = \int_{\varepsilon_{i-1}}^{\varepsilon_{i}} \left(y(\theta_{i}) + \int_{\theta_{i}}^{x} y'(x) dx \right)^{2} dx \leqslant 2\varepsilon y^{2}(\theta_{i}) + 2\varepsilon^{2} \int_{\varepsilon_{i-1}}^{\varepsilon_{i}} y'^{2} dx$$

$$= 2\varepsilon^{2} \left(\theta_{i}^{\alpha/\gamma} (1 - \theta_{i})^{\beta/\gamma} \int_{\varepsilon_{i-1}}^{\varepsilon_{i}} Q_{\varepsilon}(x) y^{2} dx + \int_{\varepsilon_{i-1}}^{\varepsilon_{i}} y'^{2} dx \right)$$

$$< 2\varepsilon^{2} \left(\int_{\varepsilon_{i-1}}^{\varepsilon_{i}} Q_{\varepsilon}(x) y^{2} dx + \int_{\varepsilon_{i-1}}^{\varepsilon_{i}} y'^{2} dx \right)$$

and $\int_0^1 y^2 dx < 2\varepsilon^2 (\int_0^1 Q_\varepsilon y^2 dx + \int_0^1 y'^2 dx)$. Hence, $M_{\alpha,\beta,\gamma} = +\infty$.

2.2) If $0 < \gamma < 1$, $\alpha < 0$, $\beta \ge 0$, then divide the segment [0,1] in a way similar to the previous case and define the function Q_{ε} on each interval $[\varepsilon_{i-1}, \varepsilon_i)$ $(1 \le i \le n)$ as follows:

$$Q_{\varepsilon}(x) = \begin{cases} 0, \ \varepsilon_{i-1} \leqslant x < \varepsilon_{i-1} + \frac{1}{2}\varepsilon - \frac{1}{2}\varepsilon^{\varrho} & \text{or} \quad \varepsilon_{i-1} + \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon^{\varrho} \leqslant x < \varepsilon_{i}; \\ \varepsilon^{-\mu}x^{-\alpha/\gamma}(1-x)^{-\beta/\gamma}, \quad \varepsilon_{i-1} + \frac{1}{2}\varepsilon - \frac{1}{2}\varepsilon^{\varrho} \leqslant x < \varepsilon_{i-1} + \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon^{\varrho}, \end{cases}$$

where $\varepsilon \to +0$, $\varrho = (1+\gamma-\alpha)/(1-\gamma)$, $\mu = (2-\alpha/\gamma)/(1-\gamma)$. By the same argument as for the case $\alpha \geqslant 0$, $\beta \geqslant 0$ we have

$$\begin{split} \int_0^1 y^2 \, \mathrm{d}x &\leqslant 2\varepsilon^2 \bigg(\max_i (\theta_i^{\alpha/\gamma}) \varepsilon^{-\alpha/\gamma} \int_0^1 Q_\varepsilon y^2 \, \mathrm{d}x + \int_0^1 y'^2 \, \mathrm{d}x \bigg) \\ &= 2\varepsilon^2 \bigg(\theta_1^{\alpha/\gamma} \varepsilon^{-\alpha/\gamma} \int_0^1 Q_\varepsilon y^2 \, \mathrm{d}x + \int_0^1 y'^2 \, \mathrm{d}x \bigg) \\ &< 2^{1-\alpha/\gamma} \varepsilon^2 (1-\varepsilon^{\varrho-1})^{\alpha/\gamma} \bigg(\int_0^1 Q_\varepsilon y^2 \, \mathrm{d}x + \int_0^1 y'^2 \, \mathrm{d}x \bigg). \end{split}$$

Taking a sufficiently small ε we get $R[Q_{\varepsilon},y] \geqslant (\frac{1}{2})^{-\alpha/\gamma}/2^{1-\alpha/\gamma}\varepsilon^2$. Therefore, $M_{\alpha,\beta,\gamma}=+\infty$. Note that the case $0<\gamma<1,\ \beta<0,\ \alpha\geqslant 0$ is symmetric to the case $0<\gamma<1,\ \alpha<0,\ \beta\geqslant 0$.

2.3) Consider the case $0 < \gamma < 1$, $\alpha < 0$, $\beta < 0$. If for example $\beta > \alpha$, then divide the segment [0,1] in a way similar to the previous cases and define the function Q_{ε} on each interval $[\varepsilon_{i-1}, \varepsilon_i)$ $(1 \le i \le n)$ as follows:

$$Q_{\varepsilon}(x) = \begin{cases} 0, & \varepsilon_{i-1} \leqslant x < \varepsilon_{i-1} + \frac{1}{2}\varepsilon - \frac{1}{2}\varepsilon^{\varrho} \text{ or } \varepsilon_{i-1} + \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon^{\varrho} \leqslant x < \varepsilon_{i}; \\ \varepsilon^{-\mu} x^{-\alpha/\gamma} (1-x)^{-\beta/\gamma}, & \varepsilon_{i-1} + \frac{1}{2}\varepsilon - \frac{1}{2}\varepsilon^{\varrho} \leqslant x < \varepsilon_{i-1} + \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon^{\varrho}, \end{cases}$$

where $\varepsilon \to +0$, $\varrho = (1+\gamma-\alpha)/(1-\gamma)$, $\mu = (2-\alpha/\gamma)/(1-\gamma)$. The proof in this case is similar to the proof of 2.2) and also $M_{\alpha,\beta,\gamma} = +\infty$.

3.1) Consider the case $\gamma = 1$, $0 \le \alpha \le 1$, $\beta < 0$. Since $y^2(x) \le x \int_0^1 y'^2 dt$ for all $x \in (0,1)$, we have

$$\int_0^1 Qy^2(x) \, \mathrm{d} x \leqslant \sup_{[0,1]} \frac{y^2}{x^\alpha} \int_0^1 Qx^\alpha (1-x)^\beta \, \mathrm{d} x \leqslant \sup_{[0,1]} \frac{y^2}{x} \leqslant \int_0^1 y'^2(x) \, \mathrm{d} x.$$

Therefore, $M_{\alpha,\beta,\gamma} \leq 2\pi^2$. Note that the case $\gamma = 1, \ 0 \leq \beta \leq 1, \ \alpha < 0$ is symmetric to the case $\gamma = 1, \ 0 \leq \alpha \leq 1, \ \beta < 0$.

3.2) Consider the case $\gamma=1,\ 0\leqslant\alpha\leqslant1,\ 0\leqslant\beta\leqslant1.$ We have $M_{\alpha,\beta,\gamma}\leqslant3\pi^2,$ because

$$\int_0^1 Qy^2(x) \, \mathrm{d}x \leqslant \sup_{[0,1]} \frac{y^2}{x^\alpha (1-x)^\beta} \int_0^1 Qx^\alpha (1-x)^\beta \, \mathrm{d}x \leqslant \sup_{[0,1]} \frac{y^2}{x} + \sup_{[0,1]} \frac{y^2}{1-x}.$$

3.3) Now suppose that $\gamma = 1$, $\alpha < 0$, $\beta < 0$.

One can show [1], [2] that for all $y \in H_Q$ the following inequality holds: $\sup_{[0,1]} y^2 \le \frac{1}{4} \int_0^1 y'^2(x) dx$. Then

$$\int_0^1 Qy^2(x) \, \mathrm{d} x \leqslant \sup_{[0,1]} \frac{y^2}{x^\alpha} \int_0^1 Qx^\alpha (1-x)^\beta \, \mathrm{d} x \leqslant \sup_{[0,1]} \frac{y^2}{x^\alpha} \leqslant \sup_{[0,1]} y^2 \leqslant \frac{1}{4} \int_0^1 y'^2(x) \, \mathrm{d} x.$$

Hence, $M_{\alpha,\beta,\gamma} \leqslant \frac{5}{4}\pi^2$.

3.4) Now we consider the case $\gamma > 1, \ 0 \le \alpha \le 2\gamma - 1, \ \beta < 0$. By the Hölder inequality we have

$$\int_0^1 Qy^2(x) \, \mathrm{d}x \leqslant \left(\int_0^1 |y|^{\frac{2\gamma}{\gamma-1}} x^{\frac{\alpha}{1-\gamma}} (1-x)^{\frac{\beta}{1-\gamma}} \, \mathrm{d}x \right)^{\frac{\gamma-1}{\gamma}} \leqslant \left(\int_0^1 |y|^{\frac{2\gamma}{\gamma-1}} x^{-\frac{2\gamma-1}{\gamma-1}} \, \mathrm{d}x \right)^{\frac{\gamma-1}{\gamma}}.$$

By the generalized Hardy inequality [3]

$$\left(\int_{0}^{1} |y|^{\frac{2\gamma}{\gamma-1}} x^{-\frac{2\gamma-1}{\gamma-1}} \, \mathrm{d}x\right)^{\frac{\gamma-1}{2\gamma}} \leqslant \left(\frac{2\gamma-1}{\gamma}\right)^{\frac{2\gamma-1}{2\gamma}} \left(\int_{0}^{1} y'^{2}(x) \, \mathrm{d}x\right)^{\frac{1}{2}}$$

we have $\int_0^1 Qy^2(x) dx \le ((2\gamma - 1)/\gamma)^{(2\gamma - 1)/\gamma} \int_0^1 y'^2(x) dx$ and $M_{\alpha,\beta,\gamma} \le (1 + ((2\gamma - 1)/\gamma)^{(2\gamma - 1)/\gamma})\pi^2$. The case $\gamma > 1, \ 0 \le \beta \le 2\gamma - 1, \ \alpha < 0$ is symmetric to the case $\gamma > 1, \ 0 \le \alpha \le 2\gamma - 1, \ \beta < 0$.

3.5) Now consider the case $\gamma > 1, \, 0 \leqslant \alpha \leqslant 2\gamma - 1, \, 0 \leqslant \beta \leqslant 2\gamma - 1$. Since

$$\int_0^1 Qy^2(x)\,\mathrm{d}x \leqslant \bigg(\int_0^1 Q^\gamma x^\alpha (1-x)^\beta\,\mathrm{d}x\bigg)^\frac{1}{\gamma} \bigg(\int_0^1 |y|^\frac{2\gamma}{\gamma-1} x^\frac{\alpha}{1-\gamma} (1-x)^\frac{\beta}{1-\gamma}\,\mathrm{d}x\bigg)^\frac{\gamma-1}{\gamma},$$

we have by the generalized Hardy inequality

$$\int_0^1 |y|^{\frac{2\gamma}{\gamma-1}} x^{\frac{\alpha}{1-\gamma}} (1-x)^{\frac{\beta}{1-\gamma}} \, \mathrm{d}x \leqslant 2C \left(\frac{2\gamma-1}{\gamma}\right)^{\frac{2\gamma-1}{\gamma-1}} \left(\int_0^1 y'^2(x) \, \mathrm{d}x\right)^{\frac{\gamma}{\gamma-1}},$$

where $C = 2^{(2\gamma-1)/(\gamma-1)}$ and $M_{\alpha,\beta,\gamma} \leq (1 + 2^{(3\gamma-2)/\gamma}((2\gamma-1)/\gamma)^{(2\gamma-1)/\gamma})\pi^2$.

3.6) Suppose that $\gamma > 1, \, \alpha < 0, \, \beta < 0$. It follows from

$$\int_0^1 Qy^2(x) \, \mathrm{d}x \leqslant \left(\int_0^1 |y|^{\frac{2\gamma}{\gamma - 1}} x^{\frac{\alpha}{1 - \gamma}} (1 - x)^{\frac{\beta}{1 - \gamma}} \, \mathrm{d}x \right)^{\frac{\gamma - 1}{\gamma}}$$
$$\leqslant \left(\int_0^1 |y|^{\frac{2\gamma}{\gamma - 1}} \, \mathrm{d}x \right)^{\frac{\gamma - 1}{\gamma}} \leqslant \int_0^1 y'^2(x) \, \mathrm{d}x$$

that $M_{\alpha,\beta,\gamma} \leq 2\pi^2$.

3.7) Consider the case $\gamma \geqslant 1$, $\alpha > 2\gamma - 1$, $\beta < 0$. Let $y_1 = x^{\alpha/(2\gamma)} \sin \pi x$ and $\int_0^1 y_1'^2 dx = C_1$, $\int_0^1 y_1^2 dx = C_2$. Then we have that $M_{\alpha,\beta,\gamma} \leqslant (C_1 + 1)/C_2$, because

$$R[Q, y_1] \leqslant \frac{C_1 + \int_0^1 Q(x) x^{\alpha/\gamma} \, \mathrm{d}x}{C_2} \leqslant \frac{C_1 + \left(\int_0^1 Q^{\gamma}(x) x^{\alpha} (1 - x)^{\beta} \, \mathrm{d}x\right)^{1/\gamma}}{C_2} = \frac{C_1 + 1}{C_2}.$$

The case $\gamma \geq 1$, $\beta > 2\gamma - 1$, $\alpha < 0$ is symmetric to the case $\gamma \geq 1$, $\alpha > 2\gamma - 1$, $\beta < 0$. 3.8) Finally, let $\gamma \geq 1$, $\alpha > 2\gamma - 1$, $\beta \geq 0$. Taking $y_1 = x^{\alpha/(2\gamma)}(1-x)^{\beta/(2\gamma)}\sin \pi x$ the proof in this case is similar to the proof 3.7) and $M_{\alpha,\beta,\gamma} \leq (C_1+1)/C_2$. Note that by substitution x = 1 - t, $\alpha \leftrightarrow \beta$ the case $\gamma = 1$, $0 \leq \alpha \leq 1$, $\beta > 1$ can be included into the case 3.8).

References

- Yu. V. Egorov, V. A. Kondrat'ev. Estimates for the first eigenvalue in some Sturm-Liouville problems. Russ. Math. Surv. 51 (1996); translation from Usp. Math. Nauk 51 (1996), 73–144.
- [2] K. Z. Kuralbaeva: On estimate of the first eigenvalue of a Sturm-Liouville operator. Differents, Urayn. 32 (1996), 852–853.
- [3] O. V. Besov, V. P. Il'in, S. M. Nikol'skiy: Integral Representations of Functions and Imbedding Theorems. Nauka, Moskva, 1996. (In Russian.)

Author's address: Maria Telnova, Moscow State University of Economics, Statistics, and Informatics, 119501, Nezhinskaya st., 7, Moskva, Russia, e-mail: mytelnova@ya.ru.