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ASYMPTOTIC PROPERTIES OF ONE DIFFERENTIAL EQUATION

WITH UNBOUNDED DELAY
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Abstract. We study the asymptotic behavior of the solutions of a differential equation
with unbounded delay. The results presented are based on the first Lyapunov method,
which is often used to construct solutions of ordinary differential equations in the form of
power series. This technique cannot be applied to delayed equations and hence we express
the solution as an asymptotic expansion. The existence of a solution is proved by the retract
method.
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1. Introduction

The first method of Lyapunov is a well known technique used to study the asymp-

totic behavior of ordinary differential equations in the form of a linear system with

perturbation. This method uses the solution in the form of a convergent power

series, for details see [1]. The results for equations in the implicit form [2] or for

integro-differential equations [8] were derived by modifying the first method of Lya-

punov. The existence of solutions with a certain asymptotic form were proved in the

results cited using Ważewski’s topological method. For analogous representations

of solutions for a retarded differential equation, see [6], [7]. The perturbation has a

polynomial form in both cases. In this paper, we study an equation in the form

(1.1) ẏ(t) = −a(t)y(t) +

∞∑

|i|=2

ci(t)

n∏

j=1

(
y(ξj(t))

)ij
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where i = (i1, . . . , in) is a multiindex, ij > 0 are integers and |i| =
n∑

j=1

ij . The

continuous functions ξj(t) satisfy t > ξj(t) > r0 for all t ∈ [t0,∞) and the function

ξ(t), which is defined as ξ(t) = min
16i6n

ξi(t), is nondecreasing for t > t0. Therefore, all

asymptotic relations such as the Landau symbols o, O and the asymptotic equivalence

∼ will be considered for t→ ∞. This fact will not be pointed out in the sequel.

The function a(t) satisfies the following conditions:

(C1) a(t) is continuous and positive on the interval [t0,∞) and 1/a(t) = O(1),

(C2) (t− ξ(t))ã(t) = o (A(t)) where the functions A(t), ã(t) are defined as A(t) =∫ t

t0
a(u) du, ã(t) = max

u6t
(a(u)).

Further conditions for continuous functions ci(t) : [t0,∞) → R will be given later.

In order to apply the first method of Lyapunov to the equation (1.1) we assume the

solution in the form of a formal series

(1.2) y(t, C) =
∞∑

n=1

fn(t)ϕn(t, C)

where ϕ(t, C) is the solution of the homogeneous equation ẏ(t) = −a(t)y(t) given by

the formula ϕ(t, C) = C exp(−A(t)), the function f1(t) ≡ 1, and the functions fk(t)

for k = 2, . . . , n are particular solutions of a certain system of auxiliary differential

equations. Using Ważewski’s topological method in the form as used in [3] and [4]

for differential equations with unbounded delay and finite memory, we prove the

existence of a solution yn(t, C) ∼ Yn(t, C) =
n∑

k=1

fk(t)ϕk(t, C).

2. Preliminaries

Lemma 2.1. Let a function a(t) satisfy conditions (C1), (C2). Then

(2.1) A(t) ∼ A(ξi(t)) as t→ ∞ for any integer i ∈ N

where ξ1(t) = ξ(t), and for i > 1, the functions ξi(t) are defined by

ξi+1(t) = ξ(ξi(t)).

P r o o f. First, we see that, by virtue of condition (C2), the assertion is true for

i = 1:
∫ t

ξ(t)

a(u) du 6 (t− ξ(t))ã(t) = o(A(t)) and lim
t→∞

A(ξ(t))

A(t)

= 1 − lim
t→∞

∫ t

ξ(t)
a(u) du

A(t)
= 1.
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The assumption ξ(t) 6→ ∞ for t→ ∞ implies that there exists a constant ξ(∞) and

condition (C2) is not satisfied. If ξ(t) → ∞ for t → ∞, then ξi(t) → ∞ for t → ∞,

too. Now we use the assertion for i = 1 substituting ξi(t) for t and the proof follows

by induction. �

R em a r k 2.1. Note that condition (C1) implies the divergence of the integral∫ ∞

t0
a(u) du, which has two consequences.

First, the function ϕ(t, C) satisfies the relation ϕk(t, C) = o
(
ϕl(t, C)

)
for k > l,

which guarantees that the sequence {ϕn(t, C)}∞n=1 is asymptotic.

Second, the divergence implies the relation 1/A(t) = o(1) which is suitable for

asymptotic estimation.

In order to specify the asymptotic behavior of the solution of the auxiliary equa-

tions we consider the equation

(2.2) ẏ(t) = na(t)y(t) + f(t)

where n > 0 is a constant and the properties of the function f(t) are described by a

function k(t), a constant K, and the relations

(F1) lim
t→∞

f(t) exp (τk(t)) = 0 for all τ < K,

(F2) lim
t→∞

|f(t)| exp (τk(t)) = ∞ for all τ > K.

The asymptotic behavior of the solution of equation (2.2) depends on the relation

between the functions k(t) and na(t).

Lemma 2.2. Let either k(s) − k(t) = o(
∫ s

t
na(u) du) or k(s) − k(t) =

O(
∫ s

t
na(u) du) and K = 0 where K is the constant used in assumptions (F1),

(F2). Now if the function f(t) satisfies assumption (F1), then there exists at least

one solution Y (t) of equation (2.2) satisfying also assumption (F1). If the func-

tion f(t), moreover, satisfies assumption (F2), then the solution Y (t) also satisfies

assumption (F2).

P r o o f. We may rewrite assumptions (F1), (F2) for the function f(t) satisfying

them so that, for sufficiently large t and constants τ1, τ2 > 0, the function f(t)

satisfies the inequality

exp ((K − τ2)k(t)) 6 |f(t)| 6 exp ((K + τ1)k(t)) ,

and also, for the desired solution Y (t) =
∫ ∞

t
−f(s) exp

∫ s

t
−na(u) du ds, we have

estimates of the solution of equation (2.2)

exp((K + τ1)k(t))

∫ ∞

t

exp

{
− (K + τ1)(k(t) − k(s)) −

∫ s

t

na(u) du

}
ds > |Y (t)|

> exp((K − τ2)K(t))

∫ ∞

t

exp

{
− (K − τ2)τ(k(s) − k(t)) −

∫ s

t

na(u) du

}
ds.
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Now utilizing the assumptions of this lemma, we see that the asymptotic behavior

of exponents involved in both integrands are the same as the asymptotic behavior

of the function
∫ s

t
na(u) du. As the function (na(t))−1 is bounded, the integral∫ s

t
na(u) du is divergent for s→ ∞ and the integrals on both sides of the inequalities

are convergent and there exist constants A1, A2 such that

A1 exp ((K − τ2)k(t)) 6 |Y (t)| 6 A2 exp ((K + τ1)k(t)) .

Assumption (F1) implies the second inequality, which ensures the convergence and

thus the existence of the integral defining Y (t) which is the solution of the given

equation. �

To make the specification of the coefficients of the power series which is the product

of the power series raised to a power easier, we use the following notation: s =

(s1, . . . , sn) is an ordered n-tuple of sequences sj =
{
s
k
j

}∞

k=1
of nonnegative integers

with a finite sum |sj | =
∞∑

k=1

s
k
j , and we denote s! =

n∏
j=1

∞∏
k=1

s
k
j !, i(s)! =

n∏
j=1

|si|!, V (s) =

n∑
j=1

∞∑
k=1

ksk
j , i(s) = (|s1|, . . . , |sn|). For any ordered n-tuple of sequences (of numbers

or functions) C = (c1, . . . , cn) where cj = {ckj }
∞
k=1, we denote C

s =
n∏

j=1

∞∏
k=1

(
ckj

)
s

k
j

where
(
ckj

)0
= 1 for every ckj . Then it is possible to write

n∏

j=1

( ∞∑

k=1

ckjx
k

)ij

=
∞∑

k=|i|

xk
∑

i(s)=i

V (s)=k

i(s)!

s!
Cs

where the symbol
∑

i(s)=i

V (s)=k

denotes the sum over all s such that V (s) = k, i(s) = i and,

for empty set of s, this symbol equals 0.

3. Main results

We assume that the formal solution of equation (1.1) is expressed in the form (1.2)

where ϕ(t, C) is the general solution of the equation ẏ(t) = −a(t)y(t). Consequently,

ϕ(t, C) = C exp(−A(t)) where C 6= 0 is a constant, f1(t) = 1 and fk(t), k > 2 for the

time being are unknown functions. Substituting y(t) in equation (1.1) and matching

the coefficients at the same powers ϕk(t, C), we obtain an auxiliary system of linear

differential equations

(3.1) ḟk(t) = (k − 1)a(t)fk(t) +

∞∑

|i|=2

ci(t)
∑

i(s)=i

V (s)=k

i(s)!

s!
Fs
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where F(t) is the n-tuple of sequences {fk(ξi(t)) exp (k(A(t) −A(ξi(t))))}
∞
k=1 i.e.

F(t) =
(
. . . {fk(ξi(t)) exp (k(A(t) −A(ξi(t))))}

∞
k=1 , . . .). The facts V (s) = k > 2 and

|i(s)| > 2 imply s
l
i = 0 for l > k. Moreover, the auxiliary system (3.1) is recurrent.

Theorem 3.1. For the functions ci(t), let lim
t→∞

ci(t) exp(−τA(t)) = 0 for all

positive τ . Then there exists a sequence {fk(t)}∞k=1 of solutions of the auxiliary

system (3.1)

(3.2) fk(t) =

∫ ∞

t

−a(s) exp

{
−

∫ s

t

(k − 1)a(u) du

} ∞∑

|i|=2

ci(t)
∑

i(s)=i

V (s)=k

|i(s)|!

i(s)!
Fs ds

such that lim
t→∞

fk(t) exp(−τA(t)) = 0 for all τ .

P r o o f. Formula (3.2) can be obtained by integrating the system (3.1). When

applying Lemma 2.2, we put k(t) = A(t). Condition (C2) proves that for the func-

tion y(t) satisfying assumption (F1) of Lemma 2.2, the function y(ξj(t)) satisfies this

assumption, too. Therefore, the sum and the product of functions verifying assump-

tion (F1) of Lemma 2.1 satisfy the assumptions of Lemma 2.2. Using Lemma 2.2,

we can then easily show the convergence of (3.2) and the desired property. �

R em a r k 3.1. An assertion analogous to the one of Theorem 3.1 with the prop-

erty described by assumption (F2) of Lemma 2.2 cannot be proved as the sum of

functions verifying the assumption (F2) need not satisfy this assumption.

Let ‖ · ‖ denote the maximum norm on C0[r∗, t0]. Moreover, we denote

yk(t) =

k∑

l=1

fl(t)ϕ
l(t, C),

k∑
(t) =

∞∑

|i|=2

ci(t)
∑

i(α)=i

V (α)=k

i(α)!

α!
Fα.

Theorem 3.2. Let the assumptions of Theorem 3.1 hold and let

lim
t→∞

f−1
k+1(t) exp(−τA(t)) = 0

where τ < 1 is a constant. We denote r∗ = min
t>t0

(ξ(t)). Then for every C 6= 0 and

ψ ∈ C0[r∗, t0], ‖ψ‖ 6 1, ψ(t0) = 0, there exists a solution yC(t) of equation (1.1) such

that

(3.3) |yC(t) − yk(t)| 6 σ|fk+1(t)ϕ
k+1(t, C)|

for t ∈ [tC ,∞) where the functions fk(t) are solutions (3.2) of system (3.1), σ > 1 is

a constant. tC is a function of the parameter C and of σ, k.
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P r o o f. The existence of the solution yC(t) is proved by Theorem 1 in [3], which

is based on the retract method and the second method of Lyapunov. A sufficient

condition for the existence of a solution of the equation with unbounded delay and

finite memory is described there. The theory of this type of equations (referred to

as p-type retarded functional differential equation) is given in [5]. In this case we

put p(t, ϑ) = t+ ϑ(t− ψ(t)) and the function on the right hand side of the equation

f(t, yt) : R× C0[−1, 0] → R is defined by the formula:

f(t, ψ) = −a(t)ψ(p(t, 0)) +

∞∑

|i|=2

ci(t)

n∏

l=1

ψil(p(t, ϑil
(t)))

where ϑil
(t) = −(t− ξil

(t))/(t− ξ(t)). The set ω used in Theorem 1 is defined as

ω = {(y, t) : yk(t) − σ|fk+1|(t)ϕ
k+1 < y < yk(t) + σ|fk+1(t)|ϕ

k+1, t > tC}.

Note that the numbers p, n used in Theorem 1 in [3] equal 1 and, consequently,

the indices of functions δ, ̺ are omitted, i.e., δ = yk(t) + σ|fk+1|(t)ϕ
k+1(t, C) and

̺ = yk(t) − σ|fk+1|(t)ϕ
k+1(t, C). We verify the inequalities

δ′(t) > f(t, π) and ̺′(t) < f(t, π)

where π ∈ C([p(t,−1), t],R) is such that (θ, π(θ)) ∈ ω for all θ ∈ [p(t,−1), t) and

π(t) = δ(t) or π(t) = ̺(t), respectively, for a sufficiently large t. As the sequence

{ϕk(t, C)}∞k=1 is asymptotic, we can rearrange the terms in these inequalities with

respect to the powers of the functions ϕk(t, C). We verify the first inequality.

First, for sufficiently large t, fk+1ϕ
k+1(t, C) 6= 0 and the derivative δ′(t) exists:

δ′(t) =

k∑

l=1

(f ′
l (y) − la(t)fl(t))ϕ

l(t, C)

+ σ sign(fk+1(t))
(
f ′

k+1(t) − (k + 1)a(t)fk+1(t)
)
ϕk+1(t, C).

Second, for π(t) = δ(t) there exist suitable positive constants such that

f(t, πt) = − a(t)
(
yk(t) + σ|fk+1(t)|ϕ

k+1(t, C)
)

+
∞∑

|i|=2

ci(t)
n∏

l=1

(
yk(t) +Klσ|fk+1(t)|ϕ

k+1(t, C)
)il
.

Since the system (3.1) is recurrent, the coefficients at ϕl(t, C) after substitut-

ing y(t, C) in the form (1.2) and y(t) = yk(t) ± σ|fk+1|(t)ϕ
k+1(t, C) in the sum
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∞∑
|i|=2

ci(t)
(
y(ξ(t))

)i
coincide for l = 1, . . . , k + 1, i.e.

f(t, πt) = − a(t)

( k∑

l=1

fl(t)ϕ
l(t, C) + σ|fk+1|(t)ϕ

k+1(t, C)

)

+

k+1∑

j=1

j∑
(t)ϕ(t, C)j + ϕ(t, C)k+2R(t)

where R(t) is a function satisfying lim
t→∞

R(t) exp(−τ
∫ t

t0
du/g(u)) = 0 for all posi-

tive τ .

Now we can evaluate the sign of the difference δ′(t) − f(t, πt) (with π(t) = δ(t)):

δ′(t) − f(t, πt) =
k∑

l=1

(
f ′

l (y) −
(l − 1)fl(t)

g(t)
−

l∑
(t)

)
ϕl(t, C)

+

[
σ sign(fk+1(t))

(
f ′

k+1(t) −
kfk+1(t)

g(t)

)
−

k+1∑
(t)

]
ϕk+1(t, C) − ϕ(t, C)k+2R(t).

The functions fk(t) are solutions of (3.1) for l = 1, . . . , k. Therefore, the mini-

mal power of ϕ(t, C) in the difference δ′(t) − f(t, πt) is k + 1. Moreover, the term

ϕ(t, C)k+2R(t) and higher powers are very small for sufficiently large t, the sign of

this difference is given by the factor at the power ϕ(t, C)k+1, i.e.

sign(δ′(t) − f(t, πt)) = σ sign(fk+1(t))
(
f ′

k+1(t) −
kfk+1(t)

g(t)

)
−

k+1∑
(t)

= σ sign(fk+1(t))
k+1∑

(t) −
k+1∑

(t) = σ sign(fk+1(t))
k+1∑

(t).

Due to definition (3.2) of fk+1(t), we obtain sign(δ′(t) − f(t, πt)) = −1 and the

inequality δ′(t) > f(t, πt) holds, too. A similar consideration for the difference ̺
′(t)−

f(t, πt) (with π(t) = ̺(t)) gives ̺′(t) < f(t, πt). Now we may use Theorem 1 in [3]

to obtain the existence of a solution satisfying the estimate (3.6). �

Theorem 3.3. Let the assumptions of Theorem 3.1 be satisfied and let there exist

a sequence {Kk}
∞
k=1, K0 = 1 such that the assumptions of Theorem 3.2 are satisfied

for every Kk, i.e., lim
t→∞

f−1
Kk

(t) exp(−τA(t)) = 0. Then there exists an asymptotic

expansion of the solution yC(t) in the form

yC(t) ≈
∞∑

k=1

Fk(t), where Fk(t) =

Kk−1∑

l=Kk−1

fl(t)ϕ
l(t, C)

and fl(t) are solutions of (3.2).
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P r o o f. Since the assumptions of Theorem 3.2 are fulfilled for every Kk, there

exists a solution yC(t) satisfying the inequality in this theorem. Then the existence

of an asymptotic expansion follows from the fact that the sequence {Fk}
∞ is asymp-

totic, i.e., lim
t→∞

Fk+1(t)/Fk(t) = 0 and the assertion is proved. �

E x am p l e 1. We study the asymptotic properties of the solutions of the equation

ẏ(t) = −y cos(ty(ξ(t)) = −y(t) +
∞∑

k=1

(−1)k+1 t
2ky(t)(y(ξ(t)))2k

(2k)!

on the interval [1,∞) for two various delays r1(t) = r > 0, i.e., ξ1(t) = t − r, and

r2(t) = ln t, i.e., ξ2(t) = t − ln t. In this case we have a(t) = 1, A(t) = t − 1,

s = (s1, s2), c(1,2k) = (−1)k+1t2k/(2k)! (for other multiindices ci = 0). If we denote

F = ({fi(t)}
∞
i=1, {fi(ξ(t))e

i(t−ξ(t))}∞i=1), the system of auxiliary differential equations

of the form

ḟk(t) = (k − 1)fk(t) +
∞∑

i=1

(−1)i+1 t2i

(2i)!

∑

hi(s)=(1,2i)
V (s)=k

i(s)!

s!
Fs

has a particular solution f2k = 0. First, f2(t) = 0 is due to ḟ2(t) = f2(t). We will

prove by induction that the equation for the function f2k has the form ḟ2k(t) = f2k(t),

therefore, the odd (|i(s)| = 1 + 2l) sum of odd exponents (due to the induction

hypothesis) is not even (2k) and every product on the right-hand side of the auxiliary

equation contains zero multiplicands (f2i). The asymptotic form of the solutions

f2k+1 depends on the delay ri(t) but the property f2k−1(t) ∼ f2k−1(ξ(t)) holds for

both ri(t).

First, for r1(t) the solutions have the asymptotic form f2k+1 = t2k(c2k+1+O(1/t)),

where c1 = 1 and c2k+1 are given by the recurrent formula

c2k+1 =
1

2k

∞∑

i=1

(−1)i

(2i)!

∑

i(s)=(1,2i)
V (s)=2k+1

Cs1Cs2
r , where C = {ci}

∞
i=1, Cr = {ci exp(ir)}∞i=1.

Second, we have the relation exp(k(A(t) − A(ξ(t)))) = exp(k ln t) = tk for the

delay r2(t) and the function f3 satisfies the equation ḟ3(t) = 2f3(t) + 1
2 t

4 and we

obtain the solution f3(t) = t4(− 1
4 + O(1/t)). Applying induction for the solutions

f2k+1 in the form f2k−1(t) = tp(k)(d(k) + O(1/t)), we see that the main power

of t in the sum on the right hand side of the equation for f2k−1 is at the product

t2f1(t)f1(ξ(t))tf2k−3(ξ(t))t
2k−3 = t2k+p(k−1)(d(k − 1) + O(1/t)) and we obtain the

equation ḟ2k+1(t) = 2kf2k+1(t)+t
2k+p(k−1)(d(k−1)+O(1/t)). The solution f2k−1(t)

246



has the asymptotic form f2k+1 = −t2k+p(k−1) (d(k − 1)/2k +O(1/t)) . The constants

d(k) and p(k) satisfy the recurrent formulas d(k) = −d(k−1)/2k, p(k) = p(k−1)+2k,

otherwise d(k) = (−1)k−12−k/(k − 1)! and p(k) = (k + 2)(k − 1). By Theorem 3.3,

we obtain the existence of a pair of asymptotic expansions y1(t), y2(t) of the solutions

for two different delays r1(t), r2(t):

y1(t) ≈

∞∑

k=1

t2(k−1)c2k−1e
(2k−1)tC2k−1,

y2(t) ≈

∞∑

k=1

(−1)k−1t(k+2)(k−1)

2k(k − 1)!
e(2k−1)tC2k−1.

R em a r k 3.2. This example shows a fundamental dependence of the asymp-

totic properties of the expansion on the magnitude of the delay. For a small delay

(r1(t) → 0), the expansion y1(t) converges to the expansion of the solution of an

ordinary equation ẏ(t) = −y cos(ty(t)). For a sufficiently large delay r2(t) = ln(t),

the expansion y2(t) is the same as for the equation ẏ(t) = −y(t)+t2y(t)y2(t− ln t)/2,

i.e., the expansions for the perturbation with infinite sum and for the perturbation

with only the first summand are the same.
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