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Introduction

Grillet and Varlet [2] introduced the concept of 0-distributive lattices as a gener-

alization of distributive lattices.

A lattice L with 0 is called 0-distributive if, for every triplet 〈a, b, c〉 of elements of

L, a∧ b = a ∧ c = 0 implies a ∧ (b ∨ c) = 0. Dually, one can define the 1-distributive

lattice.

Grillet (see Varlet [4]) has given the forbidden configuration of modular 0-

distributive lattices as follows:

Theorem 1. A modular lattice L with 0 is 0-distributive if and only if it contains

no sublattice isomorphic to the lattice of Figure 1(a) or to the lattice of Figure 1(b)

(next page).

In Stern [3], it is mentioned that, till now no such forbidden configuration is known

for 0-distributivity.

This research was supported by the Board of College and University Development, Uni-
versity of Pune, via the project SC-66.
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In this paper we obtain forbidden configuration for 0-distributive lattices. The

idea of the proof is taken from the paper of Davey, Poguntke and Rival [1].

A subset A of a lattice L is an antichain if x is incomparable with y for each pair of

distinct elements x, y in A. For example, if a triplet 〈a, b, c〉 of elements of L violates

0-distributivity, then {a, b, c} must be a three-element antichain.

For antichains A and B in L we define A ≪ B if, for every a ∈ A there is b ∈ B

such that a 6 b; this defines a partial order on the set of antichains in L.

Throughout this paper, let L be a lattice of finite length with 0 which does not

satisfy 0-distributivity and let {a, b, c} be a maximal antichain in L such that 〈a, b, c〉

violates 0-distributivity. Since L is of finite length we may, without loss of generality,

assume that every proper sub-interval of L satisfies 0-distributivity and a∨b∨ c = 1.
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Figure 1

Lemma 1. (i) If b < s < 1, then b∧ c = s ∧ c. (ii) If c < t < 1, then b∧ c = b∧ t.

P r o o f . Assume b∧c < s∧c. Hence b < [b∨ (s∧c)]. Clearly, a∧ [b∨ (s∧c)] > 0.

We claim that a∧ [b∨(s∧c)] = 0. If a∧ [b∨(s∧c)] > 0, then 〈a ∧ [b ∨ (s ∧ c)], b, s ∧ c〉

is a triplet which violates 0-distributivity in the interval [0, s], a contradiction to the

assumption that every proper sub-interval satisfies 0-distributivity.

Therefore a∧ [b∨ (s∧ c)] = 0. But then 〈a, [b ∨ (s ∧ c)], c〉 violates 0-distributivity,

a contradiction to maximality of {a, b, c}. Thus, b ∧ c = s ∧ c. Similarly (ii) can be

proved. �
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Lemma 2. (i) If b∧ c < s < b, then s∨ c = 1. (ii) If b∧ c < t < c, then b∨ t = 1.

P r o o f . Suppose s∨c < 1. Clearly c < s∨c < 1. By Lemma 1, b∧c = b∧(s∨c).

But then b ∧ c = b ∧ (s ∨ c) > s > b ∧ c, a contradiction. Hence s ∨ c = 1. Similarly

(ii) can be proved. �

Theorem 2. A finite lattice L with 0 is 0-distributive if and only if it contains

no sublattice isomorphic to one of the lattices of Figure 1(a), (b), (c), (d), (e), (f),

(g), (h), (i).

P r o o f . Suppose a ∧ b = a ∧ c = 0 but a ∧ (b ∨ c) 6= 0. Let p be an atom of L

such that p 6 a ∧ (b ∨ c). Then p 6 b ∨ c implies b ∨ c = (b ∨ p) ∨ (c ∨ p).

We have the following three main cases:

[A] p ∨ b = p ∨ c;

[B] p ∨ b 6 p ∨ c;

[C] p ∨ b ‖ p ∨ c.

C a s e [A]: Suppose b ∨ p = c ∨ p. Then b ∨ c = b ∨ p = c ∨ p. This case has the

following two subcases:

[A1] (b ∧ c) ∨ p = b ∨ p;

[A2] (b ∧ c) ∨ p < b ∨ p.

S u b c a s e [A1]: If (b ∧ c) ∨ p = b ∨ p, then b ∧ c 6= 0, otherwise p = b, a

contradiction to the fact that p 66 b. Therefore, L1 = {0, b, c, b ∧ c, p, b ∨ c} forms a

sublattice isomorphic to the lattice of Figure 1(c).

S u b c a s e [A2]: Let (b ∧ c) ∨ p < b ∨ p . This subcase has the following three

subcases:

[A21] [(b ∧ c) ∨ p] ∧ b = b ∧ c = [(b ∧ c) ∨ p] ∧ c;

[A22] [(b ∧ c) ∨ p] ∧ b > b ∧ c = [(b ∧ c) ∨ p] ∧ c;

[A23] [(b ∧ c) ∨ p] ∧ b > b ∧ c < [(b ∧ c) ∨ p] ∧ c.

S u b c a s e [A21]: If [(b∧c)∨p]∧b = b∧c = [(b∧c)∨p]∧c, then L2 = {0, p, b, c, b∧

c, (b ∧ c) ∨ p, b ∨ c} forms a sublattice isomorphic to the lattice of Figure 1(b) when

b ∧ c > 0 and to the lattice of Figure 1(a) if b ∧ c = 0.

S u b c a s e [A22]: Suppose b∧ c < [(b∧ c)∨ p]∧ b and b∧ c = [(b∧ c)∨ p]∧ c holds.

Clearly, b∧c < [(b∧ c)∨p]∧ b 6 b. If [(b∧ c)∨p]∧b = b, then [(b∧ c)∨p] = b∨p, a

contradiction to [(b∧c)∨p] < b∨p (Subcase [A2]). Thus, b∧c < [(b∧c)∨p]∧b < b. By

Lemma 2, {[(b∧c)∨p]∧b}∨c = 1. Then L3 = {0, b∧c, p, (b∧c)∨p, [(b∧c)∨p]∧b, c, 1}

forms a sublattice isomorphic to the lattice of Figure 1(e). Note that in this case

b ∧ c 6= 0, otherwise 0 = b ∧ c < [(b ∧ c) ∨ p] ∧ b = p ∧ b = 0.

From the symmetry of b, c, the subcases b∧c < [(b∧c)∨p]∧c and b∧c = [(b∧c)∨p]∧b

follow.

S u b c a s e [A23]: Suppose b∧ c < [(b∧ c)∨ p]∧ b and b∧ c < [(b∧ c)∨ p]∧ c hold.
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Put [(b ∧ c) ∨ p] ∧ b = x and [(b ∧ c) ∨ p] ∧ c = y. As shown in case [A22], we

have b ∧ c < [(b ∧ c) ∨ p] ∧ b < b and b ∧ c < [(b ∧ c) ∨ p] ∧ c < c. By Lemma 2,

{[(b∧c)∨p]∧b}∨c = 1 and {[(b∧c)∨p]∧c}∨b = 1, that is, x∨c = y∨b = 1. Clearly,

p ∧ x = p ∧ y = 0 and every proper sub-interval [0, (b ∧ c) ∨ p] of L is 0-distributive,

hence we have p∧ (x∨ y) = 0. Clearly, x∨ y 6 (b∧ c)∨ p. If x∨ y < (b∧ c)∨ p, then

L4 = {0, p, c, y, x ∨ y, [(b ∧ c) ∨ p], 1} forms a sublattice isomorphic to the lattice of

Figure 1(e) and if x∨ y = (b∧ c)∨ p, then L4 = {0, p, x, y, x∨ y, x∧ y = b∧ c} forms

a sublattice isomorphic to the lattice of Figure 1(c).

C a s e [B]: Without loss of generality, suppose b ∨ p < c ∨ p. Then b ∨ c = c ∨ p.

Note that (b∧ c)∨ p 6= b∨ c, otherwise b∨ p = c∨ p, a contradiction to b∨ p < c∨ p.

This case has the following two subcases:

[B1] (b ∧ c) ∨ p = b ∨ p;

[B2] (b ∧ c) ∨ p < b ∨ p.

S u b c a s e [B1]: Suppose (b ∧ c) ∨ p = b ∨ p holds. Clearly, b < b ∨ p < 1, and

by Lemma 1, b ∧ c = (b ∨ p) ∧ c. Then L5 = {0, b, c, b ∧ c, p, b ∨ p, b ∨ c} forms a

sublattice isomorphic to the lattice of Figure 1(e) when b ∧ c > 0 and is isomorphic

to the lattice of Figure 1(i) when b ∧ c = 0.

S u b c a s e [B2]: Suppose (b∧ c)∨ p < b∨ p. We have the following three subcases

in this case.

[B21] [(b ∧ c) ∨ p] ∧ b = b ∧ c = [(b ∧ c) ∨ p] ∧ c;

[B22] [(b ∧ c) ∨ p] ∧ b > b ∧ c = [(b ∧ c) ∨ p] ∧ c;

[B23] [(b ∧ c) ∨ p] ∧ b = b ∧ c < [(b ∧ c) ∨ p] ∧ c;

[B24] [(b ∧ c) ∨ p] ∧ b > b ∧ c < [(b ∧ c) ∨ p] ∧ c.

S u b c a s e [B21]: Suppose [(b ∧ c) ∨ p] ∧ b = b ∧ c = [(b ∧ c) ∨ p] ∧ c holds.

It is clear that b < b ∨ p < 1, hence by Lemma 1, b ∧ c = (b ∨ p) ∧ c. Thus,

L6 = {0, b, c, b∧c, p, (b∧c)∨p, b∨p, b∨c} forms a sublattice isomorphic to the lattice

of Figure 1(d) when b ∧ c > 0 and is isomorphic to the lattice of Figure 1(i) when

b ∧ c = 0.

S u b c a s e [B22]: Suppose [(b∧ c)∨ p]∧ b > b∧ c = [(b∧ c)∨ p]∧ c holds. Further,

we claim that [(b ∧ c) ∨ p] ∧ b 6= b. If possible, then b 6 [(b ∧ c) ∨ p]. Taking join

with p, we get b ∨ p 6 (b ∧ c) ∨ p, a contradiction to (b ∧ c) ∨ p < b ∨ p. Hence

(b ∧ c) < [(b ∧ c) ∨ p] ∧ b < b. By Lemma 2, {[(b ∧ c) ∨ p] ∧ b} ∨ c = 1. Thus,

L7 = {0, c, b∧ c, p, [(b∧ c) ∨ p]∧ b, (b∧ c)∨ p, 1} forms a sublattice isomorphic to the

lattice of Figure 1(e).

S u b c a s e [B23]: Suppose [(b ∧ c) ∨ p] ∧ b = b ∧ c < [(b ∧ c) ∨ p] ∧ c holds. Along

similar lines as in Subcase [B22], one can show that {[(b ∧ c) ∨ p] ∧ c} ∨ b = 1, which

implies that b ∨ p = 1, a contradiction to b ∨ p < 1. Hence this case can not occur.

Similarly, Subcase [B24] also.
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C a s e [C]: Suppose b∨ p ‖ c∨ p. Then b∨ p, c∨ p < b∨ c. Note that (b∧ c)∨ p 6

(b ∨ p) ∧ (c ∨ p) is always true. Hence, we have the following two subcases:

[C1] (b ∧ c) ∨ p = (b ∨ p) ∧ (c ∨ p);

[C2] (b ∧ c) ∨ p < (b ∨ p) ∧ (c ∨ p).

S u b c a s e [C1]: Suppose (b∧ c)∨ p = (b∨ p)∧ (c∨ p) holds. For this subcase, we

have the following three subcases:

[C11] [(b ∧ c) ∨ p] ∧ b = b ∧ c = [(b ∧ c) ∨ p] ∧ c;

[C12] [(b ∧ c) ∨ p] ∧ b > b ∧ c = [(b ∧ c) ∨ p] ∧ c;

[C13] [(b ∧ c) ∨ p] ∧ b = b ∧ c < [(b ∧ c) ∨ p] ∧ c.

S u b c a s e [C11]: Suppose [(b ∧ c) ∨ p] ∧ b = b ∧ c = [(b ∧ c) ∨ p] ∧ c holds. This

together with (b∧c)∨p = (b∨p)∧(c∨p) gives [(b∧c)∨p]∧b = b∧c = [(b∧c)∨p]∧c =

b ∧ (c ∨ p) = c ∧ (b ∨ p). Thus, L8 = {0, p, b, c, (b ∧ c) ∨ p, b ∨ p, c ∨ p, b ∨ c} forms

a sublattice isomorphic to the lattice of Figure 1(g) when b ∧ c 6= 0 and L8 forms a

sublattice isomorphic to the lattice of Figure 1(f) when b ∧ c = 0.

S u b c a s e [C12]: Suppose [(b∧c)∨p]∧b > b∧c = [(b∧ c)∨p]∧ c holds. We claim

that b∧ (c∨ p) 6= b. Otherwise b 6 c∨ p, which gives b∨ c 6 c∨ p, a contradiction to

c ∨ p < b ∨ c. Hence b ∧ c < b ∧ (c ∨ p) < b. By Lemma 2, [b ∧ (c ∨ p)] ∨ c = 1, which

implies c ∨ p = 1, a contradiction. Thus, this case can not occur. Similarly, one can

show that the Subcase [C13] can not occur.

S u b c a s e [C2]: Suppose (b∧ c)∨p < (b∨p)∧ (c∨p) < 1 holds. For this subcase,

we have the following three subcases.

[C21] [(b ∧ c) ∨ p] ∧ b = b ∧ c = [(b ∧ c) ∨ p] ∧ c;

[C22] [(b ∧ c) ∨ p] ∧ b > b ∧ c = [(b ∧ c) ∨ p] ∧ c;

[C23] [(b ∧ c) ∨ p] ∧ b = b ∧ c < [(b ∧ c) ∨ p] ∧ c.

S u b c a s e [C21]: Suppose [(b ∧ c) ∨ p] ∧ b = b ∧ c = [(b ∧ c) ∨ p] ∧ c holds. This

subcase has again the following three subcases.

[C211] (b ∨ p) ∧ c = b ∧ c = (c ∨ p) ∧ b;

[C212] (b ∨ p) ∧ c = b ∧ c < (c ∨ p) ∧ b;

[C213] (b ∨ p) ∧ c > b ∧ c < (c ∨ p) ∧ b.

S u b c a s e [C211]: Suppose (b ∨ p) ∧ c = b ∧ c = (c ∨ p) ∧ b holds. Then L9 =

{0, p, b, c, b∧c, (b∧c)∨p, (b∨p)∧(c∨p), b∨p, c∨p, b∨c} forms a sublattice isomorphic to

the lattice of Figure 1(h) when b∧c > 0 and L9 = {0, b, c, (b∨p)∧(c∨p), b∨p, c∨p, b∨c}

forms a sublattice isomorphic to the lattice of Figure 1(f) when b ∧ c = 0.

From Subcase C12, we can show that the Subcases [C212], [C213], [C22] and [C23]

can not occur.

The converse is obvious.

This completes the proof. �
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R em a r k. Note that the lattice of Figure 2 violates 0-distributivity, but has no

sublattice isomorphic to Figure 1 (a), (b), (c), (d), (e), (f), (g), (e), (h) or (i). Hence,

Theorem 2 fails in a lattice of infinite chains.

0L

a

b

c

Figure 2

From the proof of Theorem 2 and Lemma 2, the next theorem can be easily proved.

Theorem 3. A finite modular lattice L with 0 is 0-distributive if and only if it

contains no sublattice isomorphic to the lattice of Figure 3(a) or to the lattice of

Figure 3(b) (where covers indicated by double lines are preserved).
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Figure 3
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