CLASSIFYING TREES WITH EDGE-DELETED CENTRAL APPENDAGE NUMBER 2

Shubhangi Stalder, Waukesha, Linda Eroh, John Koker, Hosien S. Moghadam, Steven J. Winters, Oshkosh

(Received November 9, 2007)

Abstract

The eccentricity of a vertex v of a connected graph G is the distance from v to a vertex farthest from v in G. The center of G is the subgraph of G induced by the vertices having minimum eccentricity. For a vertex v in a 2-edge-connected graph G, the edge-deleted eccentricity of v is defined to be the maximum eccentricity of v in $G-e$ over all edges e of G. The edge-deleted center of G is the subgraph induced by those vertices of G having minimum edge-deleted eccentricity. The edge-deleted central appendage number of a graph G is the minimum difference $|V(H)|-|V(G)|$ over all graphs H where the edgedeleted center of H is isomorphic to G. In this paper, we determine the edge-deleted central appendage number of all trees.

Keywords: graphs, trees, central appendage number
MSC 2000: 05C05

1. Introduction

The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. The eccentricity $e(v)$ of a vertex v in a connected graph G is the distance between v and a vertex farthest from v in G. The minimum eccentricity among the vertices of G is called the radius $\operatorname{rad}(G)$ of G, while the maximum eccentricity is the diameter $\operatorname{diam}(G)$ of G. A vertex v is called a central vertex if $e(v)=\operatorname{rad}(G)$ and called a peripheral vertex if $e(v)=\operatorname{diam}(G)$. The center $C(G)$ of G is the subgraph induced by the central vertices of G while the periphery $P(G)$ of G is the subgraph induced by the peripheral vertices of G.

A graph G is 2-edge-connected if the removal of any edge of G never results in a disconnected graph. For a vertex v in a 2 -edge-connected graph G, the edgedeleted eccentricity $g(v)$ of v is defined to be the maximum eccentricity of v in $G-e$
over all edges e of G. The vertices of G with minimum edge-deleted eccentricity are called edge-deleted central vertices while the vertices of maximum edge-deleted eccentricity are called edge-deleted peripheral vertices. The subgraph induced by the edge-deleted central vertices of G is called the edge-deleted center $\operatorname{EDC}(G)$ of G and the subgraph induced by the edge-deleted peripheral vertices $\operatorname{EDP}(G)$ is called the edge-deleted periphery. Properties about the edge-deleted eccentricity of vertices and the edge-deleted center of 2-edge-connected graphs were given in [3].

The central appendage number of a graph G is the minimum difference $|V(H)|-$ $|V(G)|$ over all graphs H with $C(H) \cong G$. Buckley, Miller, and Slater [2] characterized trees with central appendage number 2 and showed that there are no trees with central appendage number 3. The papers [1] and [5] also study this question. The edge-deleted central appendage number $A(G)$ of a graph G is the minimum difference $|V(H)|-|V(G)|$ over all graphs H with $\operatorname{EDC}(H) \cong G$. The edge-deleted central appendage number of several classes of graphs was studied in [4]. In particular, the edge-deleted central appendage number of trees was shown to be 2 or 3 . In this paper, we give necessary and sufficient conditions for a tree to have edge-deleted central appendage number 2.

2. Results

Throughout the paper, let T be a tree with $A(T)=2$ and let H be a graph with $V(H)=V(T) \cup\{x, y\}$ and $\operatorname{EDC}(H)=T$. Since x and y are the only edgedeleted peripheral vertices in H, let $g(x)=g(y)=k$ with $e \in E(H)$ such that $d_{H-e}(x, y)=k$. Let D be the set of peripheral vertices of T and define a branch of T as a component of $T-V(C(T))$.

Lemma 1. Suppose that T is a tree with $A(T)=2$. Then $g_{H}(u)=k-1$ for all $u \in V(T)$.

Proof. We know that $g_{H}(x)=g_{H}(y)=k$ and that there exists a fixed n, $2 \leqslant n \leqslant k-1$, such that $g_{H}(u)=n$ for every $u \in V(T)$. Thus it will suffice to show that $g_{H}(u)=k-1$ for some $u \in V(T)$.

Let $x, u_{1}, u_{2}, \ldots, u_{k-1}, y$ be a shortest $x-y$ path in $H-e$. Clearly $u_{i} \in V(T)$ for each $i, 1 \leqslant i \leqslant k-1$. Since the distance between u_{1} and y is at least $k-1$ in $H-e$, $g_{H}\left(u_{1}\right)=k-1$. Therefore $g\left(u_{1}\right)=k-1$.

Lemma 2. Suppose that T is a tree with $A(T)=2$. If e is an edge of H with $d_{H-e}(x, y)=k$, then $e \notin E(T)$.

Proof. If $x y \in H$, then the result is obvious. Suppose that $x y \notin E(H)$ and that $e=u u^{\prime} \in E(T)$. Let $x, u_{1}, u_{2}, \ldots, u_{m}, u$ be a shortest $x-u$ path in $H-e$ and $y, u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{r}^{\prime}, u^{\prime}$ be a shortest $y-u^{\prime}$ path in $H-e$.

Now, $y \neq u_{i}$ for $1 \leqslant i \leqslant m$ because if so, then $d_{H-e}(x, u)>d_{H-e}(x, y)=k$, which is a contradiction. Similarly, $x \neq u_{i}^{\prime}$ for $1 \leqslant i \leqslant r$. Consider a shortest $u_{1}-u_{1}^{\prime}$ path in $H-e$. This path must contain either x or y. If not, this path, $u_{1}-u$ path, $u^{\prime}-u_{1}^{\prime}$ path, along with the edge $u u^{\prime}$ would produce a cycle in T. Suppose that the path contains x. Then $k-1 \geqslant d_{H-e}\left(u_{1}, u_{1}^{\prime}\right) \geqslant d_{H-e}\left(x, u_{1}^{\prime}\right)+1 \geqslant k$, a contradiction. Switching the roles of x and y in the previous sentence completes the proof.

Lemma 3. Suppose that T is a tree with $A(T)=2$. If $u, v \in V(T)$ such that $u x$ and $v y$ are edges in $H-e$, then
(1) a shortest $u-v$ path in $H-e$ lies entirely in T
(2) $d_{H-e}(u, v)=k-1$ or $k-2$
(3) $e_{H-e}(u)=e_{H-e}(v)=k-1$.

Proof. If (1) is false, then a shortest $u-v$ path contains x or y. Without loss of generality, assume that it contains x. Then $k=d_{H-e}(x, y)=d_{H-e}(x, v)+1=$ $d_{H-e}(u, v)=k-1$, a contradiction.

Now Lemma 1 implies that $d_{H-e}(u, v) \leqslant k-1$, and $d_{H-e}(x, y)=k$ implies that $d_{H-e}(u, v) \geqslant k-2$; which proves (2).

Finally, $d_{H-e}(x, v)=k-1=d_{H-e}(y, u)$ gives $e_{H-e}(u) \geqslant k-1$ and $e_{H-e}(v) \geqslant$ $k-1$. But $g_{H-e}(u)=g_{H-e}(v)=k-1$ implies $e_{H-e}(u)=e_{H-e}(v) \leqslant k-1$. Thus, (3) holds.

Lemma 4. Let T be a tree with $A(T)=2$. Let u and v be peripheral vertices with $u x, v y \in E(H-e)$. Then $d_{H-e}(u, v)=k-2=\operatorname{diam}(T)$.

Proof. Let if possible $d_{H-e}(u, v)<\operatorname{diam}(T)$. If $C(T)=\langle\{w\}\rangle$, then u and v must be end-vertices on the same branch of w. If $C(T)=\left\langle\left\{w, w^{\prime}\right\}\right\rangle$, then without loss of generality, u and v must be end-vertices on the branches of w (either on the same branch or two separate branches of w). Let $u^{\prime} \in D$, with $d_{T}\left(u, u^{\prime}\right)=\operatorname{diam}(T)$ (note that in the case where $C(T)=\left\langle\left\{w, w^{\prime}\right\}\right\rangle, u^{\prime}$ must be an end-vertex on the branch of w^{\prime}, if u is on the branch of w). If $C(T)=\langle\{w\}\rangle$, or if $C(T)=\left\langle\left\{w, w^{\prime}\right\}\right\rangle$ and u and v are on the same branch of w or $d_{H-e}(u, v)=k-1$, then either $d_{H-e}\left(u, u^{\prime}\right)$ or $d_{H-e}\left(u^{\prime}, v\right)$ is greater than $k-1$.

We may assume that $C(T)=\left\langle\left\{w, w^{\prime}\right\}\right\rangle$ and u and v are on two separate branches of w. If there is no vertex on a branch of w^{\prime} which is adjacent to x, then $d_{H-e}\left(u^{\prime}, x\right)$ is at least k, which contradicts $g\left(u^{\prime}\right)<k$. Similarly, if there is no vertex on a branch of w^{\prime} adjacent to y, then $d_{H-e}\left(u^{\prime}, y\right) \geqslant k$. We may assume that there are vertices
z and z^{\prime} on branches of w^{\prime} with $z x$ and $z^{\prime} y \in E(H-e)$. Notice that one of these vertices may be u^{\prime}. Since $d_{H-e}(x, y)=k$, we must have $d_{H-e}\left(z, z^{\prime}\right) \geqslant k-2$, and necessarily z and z^{\prime} are both end-vertices.

If u^{\prime} is not adjacent to either x or y in $H-e$, then $e=u^{\prime} x$ or $u^{\prime} y$. But then $d_{H-w w^{\prime}}\left(w, w^{\prime}\right)=k$. We may assume without loss of generality that $u^{\prime}=z$.

The edge e is incident with at least one of x and y. If $e=x y$ or if e joins either x or y to an end-vertex of T, then $d_{H-w w^{\prime}}\left(w, w^{\prime}\right)=k$. We may assume that e joins x or y to a vertex of T that is not an end-vertex of T. Without loss of generality, suppose e joins x to a vertex on a branch of w. Then $d_{H-y z^{\prime}}\left(y, z^{\prime}\right) \geqslant k$ which contradicts $g\left(z^{\prime}\right)=k-1$.

Therefore $d_{H-e}(u, v)=\operatorname{diam}(T)$.
Let if possible now $d_{H-e}(u, v)=\operatorname{diam}(T)=k-1$. Note that $d_{H-e}(x, y)=k$ and $g(s)=k-1$ for all $s \in V(T)$. Therefore for all $s \in V(T)$ with $s x \in E(H-e)$, we must have $d_{H-e}(s, y) \geqslant k-1$ and in particular $d_{H-e}(u, y)=k-1$. Therefore there exists an $s \in V(T)-D$ such that $s y \in E(H-e)$. Using Lemma 3 and the fact that $s \notin D$, we get $d_{H-e}(u, s)=k-2$. Note that s must be an end-vertex. Otherwise consider an end-vertex on the branch of s, say s^{\prime}, then $d_{H-e}\left(s^{\prime}, x\right)>k-1$ which is a contradiction to the fact that $e_{H-e}\left(s^{\prime}\right) \leqslant k-1$. By a similar argument we can find an end-vertex $z \notin D$ with $d_{H-e}(v, z)=k-2$ and $z x \in E(H-e)$.

Claim: $d_{H-e}(s, z)=\operatorname{diam}(T)$.
In $H-e$, let a shortest $u-v$ path be $u, u_{1}, u_{2}, \ldots, u_{r}, u_{r+1}, \ldots, u_{r+m}, \ldots, u_{k-2}, v$, shortest $u-s$ path be $u, u_{1}, u_{2}, \ldots, u_{r}, u_{r+1}^{\prime}, \ldots, u_{r+m}^{\prime}, \ldots, u_{k-3}^{\prime}, s$, shortest $v-z$ path be $v, u_{k-2}, u_{k-3}, \ldots, u_{r+m}, v_{r+m-1}, \ldots, v_{2}, z$. See Figure 1 .

Figure 1

Let $d\left(u_{r}, s\right)=a, d\left(u_{r+m}, z\right)=b, d\left(u_{r+m}, v\right)=c$. Then $r+m+c=k-1$, $r+a=k-2, c+b=k-2$ and $b+m+a=d_{H-e}(s, z)=k-2$ as $s, z \notin D$ and by Lemma 3. Solving these equations we would get $2 m=1$ which is not possible since m is a whole number. Therefore our assumption is false.

Lemma 5. Let T be a tree with $A(T)=2$. Then D must contain two vertices u and $v \in V(H-e)$, such that $u x, v y \in E(H-e)$.

Proof. Since all end-vertices of T must be adjacent to x or y in H, in $H-e$ all but possibly one of the end-vertices must be adjacent to either x or y. Let if possible D not contain two vertices u and v in $V(H-e)$, such that $u x, v y \in E(H-e)$. Then without loss of generality, we can assume that in $H-e$ all vertices in D are adjacent to x only (except possibly one). Consider a vertex $u \in D$ with $u x \in E(H-e)$. Note that in $H-e, d_{H-e}(x, y)=k$ and therefore all $x-y$ paths must be of length greater than or equal to k. Since $g(u)=k-1$, there must exist a $s \in V(T)-D$, with $s y \in E(H-e)$ and $d_{H-e}(u, s)=k-2$.

Case 1. Let if possible u and s be on the same branch of T.
Consider a vertex $u^{\prime} \in D$ with $d_{T}\left(u, u^{\prime}\right)=\operatorname{diam}(T)$. Now, $d_{T}\left(u^{\prime}, s\right) \geqslant d_{T}(u, s)+$ $2=k$. Since $g\left(u^{\prime}\right)=k-1$, there must be a shorter $u^{\prime}-s$ path in $H-e$. If this path goes through x, then $d_{H-e}\left(u^{\prime}, s\right) \geqslant d_{H-e}(x, s)+1=k$ which is not possible. The shortest $u^{\prime}-s$ path must go through y, so $d_{H-e}\left(u^{\prime}, y\right) \leqslant k-2$. Thus, u^{\prime} cannot be adjacent to x. Thus u^{\prime} is the unique vertex at distance $\operatorname{diam}(T)$ from u in T. Since $g\left(u^{\prime}\right)=k-1$, we have $d_{H-e}\left(u^{\prime}, x\right) \leqslant k-1$. On a shortest $u^{\prime}-x$ path, let x^{\prime} be the vertex adjacent to x. On a shortest $u^{\prime}-y$ path, let y^{\prime} be the vertex adjacent to y. We may assume without loss of generality that $y^{\prime} \notin D$. The portion of the $u^{\prime}-x^{\prime}$ and $u^{\prime}-y^{\prime}$ paths moving towards $C(T)$ must be the same. This common portion is more than half of the $u^{\prime}-y^{\prime}$ path and at least half of the $u^{\prime}-x^{\prime}$ path, so $d_{H-e}\left(x^{\prime}, y^{\prime}\right)=\left\lceil\frac{k-3}{2}\right\rceil-1+\left\lceil\frac{k-2}{2}\right\rceil=k-3$. But then $d_{H-e}(x, y) \leqslant k-1$, a contradiction.

C ase 2. Let if possible s belong to $C(T)$.
Note that if $C(T)$ has one vertex w, then $\operatorname{rad}(T)=k-2$ and $w y$ must be an edge in $H-e$. If $C(T)$ has two central vertices w and w^{\prime}, then both of them must be adjacent to y and $\operatorname{rad}(T)-1=k-2$. Note that in both these cases, only vertices in D can be adjacent to x in $H-e$, otherwise $x-y$ paths of length less than k would exist in $H-e$. To make the argument easier to understand we will show later that when s is a central vertex, all end-vertices of T must belong to D. Using some of the similar arguments we can also show that no other vertices of T besides the central vertices of T can be adjacent to y in $H-e$. Therefore, if we assume that all end-vertices of T are in $D, e=x y$ or $y z$ for some z in $V(T)$ in order for H to be 2-connected. (Note that in the case when there are two central vertices we also have to consider
$e=x z$ for some z in $V(T)$.) We will now show that e cannot equal $x y$ in the case $|C(T)|=1$. The case $|C(T)|=2$ is similar.

Claim: e cannot equal $x y$.
Proof of Claim: Let if possible $e=x y$. Let u_{1} be a vertex of T adjacent to w in $H-e$. Then $d_{H-w u_{1}}\left(w, u_{1}\right)>k-1$. See Figure 2.

Figure 2
Claim: e cannot equal $y z$, for some vertex z of $V(T)$.
Proof of Claim: If $e=y z$ for some vertex z of $V(T)$, then consider a vertex u_{1} of T adjacent to w in $H-e$ and belonging to a branch of T not containing z. Then $d_{H-w u_{1}}\left(w, u_{1}\right)>k-1$. See Figure 3.

Figure 3
Therefore it is clear that s does not belong to $C(T)$.
(Note that in the case when $|C(T)|=2$, we would also have to consider that $e=x z$ for z in $V(T)$. The proof to show that e cannot equal $x z$ for some vertex z of $V(T)$ is identical to the proof when we show e cannot equal $y z$ for some vertex z of $V(T)$. Also remember to insert $\operatorname{rad}(T)-1$ in place of $\operatorname{rad}(T)$ in the above proof.)

After proving the fact that all the end-vertices are in D, then we will know that s cannot be in $C(T)$.

Now we prove the fact that all end-vertices of T must belong to D. We will prove the result for the case when $C(T)$ has only one vertex.

We know that u is a peripheral vertex and s is the central vertex, and $d_{H-e}(u, s)=$ $k-2$. Thus, any vertex in T that is adjacent to x in $H-e$ must be a peripheral vertex of T. Suppose there is a branch of T so that no vertex on that branch is adjacent to x in $H-e$. Then for any vertex u^{\prime} on that branch, the shortest $x-u^{\prime}$ path in $H-e$ must go through either w or y, and so have length at least k. This is a contradiction; we can assume without loss of generality that every branch of T contains some peripheral vertex that is adjacent to x in $H-e$.

Let if possible there exist at least one end-vertex, say z, in $V(T)$ that is not in D. Then z is an end-vertex on a branch of T containing at least one end-vertex in D. Assume that at least one of the peripheral end-vertices on the branch containing z is adjacent to x. If $z y$ is an edge in $H-e$, then let u^{\prime} be the vertex on the branch of z adjacent to x and belonging to D. Let u be an end-vertex in D with $d_{T}\left(u, u^{\prime}\right)=\operatorname{diam}(T)$. Then the shortest $z-u$ path must be either a combination of a shortest $z-u^{\prime}$ path (which clearly must be of length $k-2$ or more in $H-e$) along with the edges $u^{\prime} x$ and $x u$, or a combination of a shortest $z-w$ path (which must be of length 2 or more) along with the shortest $u-w$ path. This would imply that $d(z, u)>k-1$.

If $z y$ is not an edge in $H-e$, without loss of generality we can assume that there are no end-vertices on the branch containing z that are not in D and are adjacent to y. Let u^{\prime} be one of the end-vertices on the branch of z, adjacent to x and in D. Let u be a vertex in D with $d\left(u, u^{\prime}\right)=\operatorname{diam}(T)$ in T. Clearly u is on another branch of T. Let the root of this branch be u_{1}. Let the shortest $u_{1}-u$ path be $u_{1}, u_{2}, u_{3}, \ldots, u_{k-2}$ where $u_{k-2}=u$. Let $d(z, w)=n$. Then $d\left(z, u_{k-n}\right)>k-1$.

When $C(T)$ has two vertices consider u_{1} be a vertex adjacent to the other central vertex and replace $k-n$ with $k-1-n$. Therefore all end-vertices must belong to D.

Case 3. Let u and s belong to different branches of T.
When there are two central vertices, note that u and s must belong to branches of different central vertices. Let u^{\prime} be an end-vertex on the branch of s farthest away from $C(T)$. Note that none of end-vertices on the branch of T containing s could be adjacent to x, otherwise there would exist an $x-y$ path of length less than $k-1$ in $H-e$. Therefore $d_{H-e}\left(u^{\prime}, x\right)>k-1$.
(In Case 3, if there are two central vertices w and w^{\prime} such that one of the branches of w^{\prime} contains s, then none of the end-vertices of all the branches of w^{\prime} can be adjacent to x in $H-e$.)

Figure 4
Therefore $d(u, s)=2 \operatorname{rad}(T)$ when there is one central vertex, and $d(u, w)=$ $2 \operatorname{rad}(T)-1$ when there are two central vertices. And hence there must be at least two vertices u, s in D with $u x$ and $s y$ as edges in $H-e$.

Theorem 1. Let T be a tree with $A(T)=2$. Then all the end-vertices are equidistant from the center.

Proof. In order to show that all end-vertices are equidistant from the center we will show that all end-vertices belong to D. Note that $|D| \geqslant 2$ for a tree. By Lemma 5, there exist vertices $u, v \in D$ with $u x, v y \in E(H-e)$. By Lemma 4, $d_{H-e}(u, v)=k-2=\operatorname{diam}(T)$. Therefore all end-vertices adjacent to x or y must be in D (otherwise there will exist an $x-y$ path of length less than k). Suppose there exists an end-vertex z, such that $z \notin D$. This would imply that $e=x z$ or $y z$. Without loss of generality assume that $e=x z$. In this case let z_{1} be a vertex of T adjacent to z. Then $d_{H-z z_{1}}(z, y)>k-1$ and therefore $g(z) \neq k-1$. Therefore all end-vertices must belong to D.

Lemma 6. Let T be a tree with $A(T)=2$. Let u_{n} and z_{n} be end-vertices of the same branch of T. If $u_{n} x \in E(H-e)$, then $z_{n} y \notin E(H-e)$ (in other words the end-vertices of the same branch of T cannot be adjacent to x and y in $H-e$).

Proof. Clearly from Lemma 4 if u_{n} and z_{n} are end-vertices with $u_{n} x, z_{n} y \in$ $E(H-e)$, then $d_{H-e}\left(u_{n}, z_{n}\right)=k-2=\operatorname{diam}(T)$. This implies that u_{n} and z_{n} cannot be the end-vertices of the same branch (otherwise $d_{H-e}\left(u_{n}, z_{n}\right)<\operatorname{diam}(T)$ a contradiction to Lemma 4).

Note 1. In $H-e$ only vertices in D can be adjacent to an x or y (by Lemma 4 and Lemma 5). Also note that it is clear that $e \neq x z$ for any z in D, otherwise $d_{H-z z_{1}}(z, y)>k-1$ where z_{1} is a vertex adjacent to z. A symmetric argument shows that $e \neq y z$ for any z in D.

Note 2. By Lemma 4, Theorem 1 and Lemma 6, for a tree T with $A(T)=2$, it follows that $k=2 \operatorname{rad}(T)+2$ when $C(T)=\langle\{w\}\rangle$ and $k=2 \operatorname{rad}(T)+1$ when $C(T)=\left\langle\left\{w, w^{\prime}\right\}\right\rangle$.

Lemma 7. If T is a tree with $C(T)=\left\langle\left\{w, w^{\prime}\right\}\right\rangle$, then $A(T) \neq 2$.
Proof. Let if possible $A(T)=2$. By the note above we know that $k=$ $2 \operatorname{rad}(T)+1$. Therefore all end-vertices of w are adjacent to x and that of w^{\prime} to y. In order for H to be 2-connected, $e=x y$. Then $d_{H-w w^{\prime}}\left(w, w^{\prime}\right)>k-1$ which is a contradiction to the fact that $g(w)=k-1$.

Lemma 8. Let T be a tree with $A(T)=2$ and $C(T)=\langle\{w\}\rangle$. Then $e=x y$.
Proof. From Lemma 5 it is clear that $d_{H-e}(x, y)=k=\operatorname{diam}(T)+2$. Note 1 gives us that $e \neq x z$ for any $z \in D$. Let if possible $e=x z$ for $z \in V(T)-D$. For cases 1 through 3 , let $z \in V(T)-(D \cup\{w\})$.

Case 1. Let z belong to a branch of w where all end-vertices are adjacent to x. In this case in order for H to be 2-edge-connected, we must have $\operatorname{deg}(w) \geqslant 4$, at least two of the branches must have all their end-vertices adjacent to x, and at least two of the branches must have all their end-vertices adjacent to y. Let $u_{1} \in V(T)$ be a vertex on a branch whose end-vertices are adjacent to x, with $u_{1} w \in E(T)$. Then $d_{H-u_{1} w}\left(u_{1}, y\right)>k-1$ which is a contradiction to the fact that $g_{H}\left(u_{1}\right)=k-1$.

Figure 5

Case 2. Let z belong to a branch of w where all end-vertices are adjacent to y and there is more than one branch of w whose end-vertices are adjacent to y. Let $u_{1} \in V(T)$ be a vertex on a branch whose end-vertices are adjacent to x with $u_{1} w \in E(T)$. Consider a branch of w not containing z whose end-vertices are adjacent to y. Let w_{1} be a vertex on this branch adjacent to w. Then $d_{H-w_{1} w}\left(u_{1}, w_{1}\right)>k-1$ which is a contradiction to the fact that $g_{H}\left(u_{1}\right)=k-1$. See Figure 5 .

Case 3. Let z belong to a branch of w where all the end-vertices are adjacent to y and there is only one branch of w whose end-vertices are adjacent to y. For H to remain 2-edge-connected, the degree of y must be 2 or more and the degree of at least one of the vertices z^{\prime} on the branch containing z with $d_{T}\left(z^{\prime}, w\right) \leqslant d_{T}(z, w)$ must be at least 3. Notice that $e_{H-e}(z)<k-1$ for all edges $e \in E(H)$. Therefore $g(z)<k-1$ which is a contradiction. See Figure 6.

Figure 6

Case 4. Let $z=w$. Without loss of generality we can assume that $e=x w$. Consider a vertex u_{1} on a branch of w where end-vertices are adjacent to x and $u_{1} w \in E(T)$. Then $d_{H-u_{1} w}\left(u_{1}, y\right)>k-1$ which is a contradiction. When $e=y w$ a similar proof can be given.

Therefore $e=x y$.

Lemma 9. Let T be a tree with $A(T)=2$ and $C(T)=\langle\{w\}\rangle$. Then $\operatorname{deg}(w) \geqslant 4$.
Proof. Let if possible $\operatorname{deg}(w)<4$. Clearly $\operatorname{deg}(w) \geqslant 2$, therefore without loss of generality let us assume that only one branch of T has end-vertices adjacent to x. Let u_{1} be a vertex on this branch with $u_{1} w \in E(T)$. By Lemma 8 , since $e=x y$, $d_{H-u_{1} w}\left(u_{1}, w\right)>k-1$. This is a contradiction to the fact that $g\left(u_{1}\right)=k-1$.

Theorem 2. Let T be a tree with $C(T)=\langle\{w\}\rangle$. Then $A(T)=2$ if and only if the following are satisfied:
(a) All end-vertices are equidistant from the center.
(b) $\operatorname{deg}(w) \geqslant 4$, and
(c) for $z \in V(T)$, if $1 \leqslant d_{T}(z, w)<n-1$, then $\operatorname{deg}_{T}(z)=2$, and if $d_{T}(w, z)=n-1$, then $\operatorname{deg}_{T}(z) \geqslant 2$.

Figure 7
Proof. From [4], we have that a), b) and c) imply $A(T)=2$. To see this, construct a graph H from the tree T by adding two new vertices x and y to T, joining x to all end-vertices of T in two branches of w, joining y to the remaining end-vertices of T, and adding the edge $x y$. In the graph H, we calculate $g(z)=2 n+1$ for $z \in V(T)$ and $g(x)=g(y)=2 n+2$.

If $A(T)=2$, then there is a graph H with $V(H)=V(T) \cup\{x, y\}$ with $\operatorname{EDC}(H)=$ T. It follows that all end-vertices are equidistant from the center by Theorem 1 and $\operatorname{deg}(w) \geqslant 4$ by Lemma 9 . Let $u_{i} \in V(T)$ such that $d\left(u_{i}, w\right)<n-1$ and $\operatorname{deg}(w)>2$. Let u_{1} be a vertex on this branch adjacent to w and without loss of generality, assume that all end-vertices of this branch are adjacent to x. Also assume that $u_{i}, u_{i+1}, \ldots, u_{n}$ and $u_{i}, u_{i+1}^{\prime}, \ldots, u_{n}^{\prime}$, are at least two of the sub-branches of this vertex. If $i \neq 1$, then $g\left(u_{i+1}\right)<k-1$ and if $i=1$, then $g\left(u_{3}\right)<k-1$, which are both contradictions. See Figure 7.

References

[1] H. Bielak: Minimal realizations of graphs as central subgraphs. Graphs, Hypergraphs, and Matroids. Zágán, Poland, 1985, pp. 13-23.
[2] F. Buckley, Z. Miller, P. J. Slater: On graphs containing a given graph as center. J. Graph Theory 5 (1981), 427-434.
[3] J. Koker, K. McDougal, S. J. Winters: The edge-deleted center of a graph. Proceedings of the Eighth Quadrennial Conference on Graph Theory, Combinatorics, Algorithms and Applications. 2 (1998), 567-575.
[4] J. Koker, H. Moghadam, S. Stalder, S. J. Winters: The edge-deleted central appendage number of graphs. Bull. Inst. Comb. Appl. 34 (2002), 45-54.
[5] J. Topp: Line graphs of trees as central subgraphs. Graphs, Hypergraphs, and Matroids. Zágán, Poland, 1985, pp. 75-83.

Authors' addresses: Shubhangi Stalder, Mathematics Department, University of Wisconsin Waukesha, Waukesha, WI 53188-2799, USA, e-mail: shubhangi.stalder@uwc.edu; Linda Eroh, Mathematics Department, University of Wisconsin Oshkosh, Oshkosh WI 54901-8619, USA, e-mail: eroh@uwosh.edu; John Koker, Mathematics Department, University of Wisconsin Oshkosh, Oshkosh WI 54901-8619, USA, e-mail: koker@uwosh. edu; Hosien S. Moghadam, Mathematics Department, University of Wisconsin Oshkosh, Oshkosh WI 54901-8619, USA, e-mail: moghadam@uwosh.edu; Steven J. Winters, Mathematics Department, University of Wisconsin Oshkosh, Oshkosh WI 54901-8619, USA, e-mail: winters @uwosh.edu.

