OPERATORS ON LORENTZ SEQUENCE SPACES

S. C. Arora, Gopal Datt, Satish Verma, Delhi

(Received October 8, 2007)

Abstract. Description of multiplication operators generated by a sequence and composition operators induced by a partition on Lorentz sequence spaces $l(p, q), 1<p \leqslant \infty$, $1 \leqslant q \leqslant \infty$ is presented.

Keywords: composition operator, distribution function, Fredholm operator, Lorentz space, Lorentz sequence space, multiplication operator, non-increasing rearrangement

MSC 2000: 47B33, 47B38, 46E30

1. InTRODUCTION

Let f be a complex-valued measurable function defined on a σ-finite measure space (X, \mathcal{A}, μ). For $s \geqslant 0$, define the distribution function μ_{f} of f as

$$
\mu_{f}(s)=\mu\{x \in X:|f(x)|>s\}
$$

By f^{*} we mean the non-increasing rearrangement of f given as

$$
f^{*}(t)=\inf \left\{s>0: \mu_{f}(s) \leqslant t\right\}, \quad t \geqslant 0
$$

The Lorentz space $L(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, is the set of all complex-valued measurable functions f on X such that $\|f\|_{p q}^{*}<\infty$, where

$$
\|f\|_{p q}^{*}= \begin{cases}\left\{\frac{q}{p} \int_{0}^{\infty}\left(t^{1 / p} f^{*}(t)\right)^{q} \frac{\mathrm{~d} t}{t}\right\}^{1 / q}, & 1<p<\infty, 1 \leqslant q<\infty \\ \sup _{t>0} t^{1 / p} f^{*}(t), & 1<p \leqslant \infty, q=\infty\end{cases}
$$

$L(p, q)$ spaces are linear spaces and $\|\cdot\|_{p q}^{*}$ is a quasi-norm which is a norm for $1 \leqslant q<p<\infty$. For $t>0$, let

$$
f^{* *}(t)=\frac{1}{t} \int_{0}^{t} f^{*}(s) \mathrm{d} s
$$

Now the functional defined as

$$
\|f\|_{p q}= \begin{cases}\left\{\frac{q}{p} \int_{0}^{\infty}\left(t^{1 / p} f^{* *}(t)\right)^{q} \frac{\mathrm{~d} t}{t}\right\}^{1 / q}, & 1<p<\infty, 1 \leqslant q<\infty \\ \sup _{t>0} t^{1 / p} f^{* *}(t), & 1<p \leqslant \infty, q=\infty\end{cases}
$$

is equivalent to $\|\cdot\|_{p q}^{*}$ and $L(p, q)$ is a normed linear space with respect to $\|\cdot\|_{p q}$. The $L(p, q)$ space is moreover a Banach space. The L^{p}-spaces for $1<p \leqslant \infty$ are equivalent to the spaces $L(p, p)$. For more details on Lorentz spaces one can refer to $[2],[7]$ and $[8]$ and references therein. For $X=\mathbb{N}$ with $\mathcal{A}=2^{\mathbb{N}}$, the power set of X, and $\mu=$ counting measure, the distribution function of any complex-valued function $a=\{a(n)\}_{n \geqslant 1}$ can be written as

$$
\mu_{a}(s)=\mu\{n \in \mathbb{N}:|a(n)|>s\}, \quad s \geqslant 0
$$

The non-increasing rearrangement a^{*} of a is given as

$$
a^{*}(t)=\inf \left\{s>0: \mu_{a}(s) \leqslant t\right\}, \quad t \geqslant 0
$$

We can interpret the non-increasing rearrangement of a with $\mu_{a}(s)<\infty, s>0$, as a sequence $\left\{a^{*}(n)\right\}$ if we define for $n-1 \leqslant t<n$

$$
a^{*}(n)=a^{*}(t)=\inf \left\{s>0: \mu_{a}(s) \leqslant n-1\right\} .
$$

Then the sequence $a^{*}=\left\{a^{*}(n)\right\}$ is obtained by permuting $\{|a(n)|\}_{n \in S}, S=$ $\{n: a(n) \neq o\}$, in the decreasing order with $a^{*}(n)=0$ for $n>\mu(S)$ if $\mu(S)<\infty$.

The Lorentz sequence space $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, is the set of all complex sequences $a=\{a(n)\}$ such that $\|a\|_{(p, q)}<\infty$, where

$$
\|a\|_{(p, q)}= \begin{cases}\left\{\sum_{n=1}^{\infty}\left(n^{1 / p} a^{*}(n)\right)^{q} n^{-1}\right\}^{1 / q}, & 1<p<\infty, 1 \leqslant q<\infty \\ \sup _{n \geqslant 1} n^{1 / p} a^{*}(n), & 1<p \leqslant \infty, q=\infty\end{cases}
$$

The Lorentz sequence space $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, is a linear space and $\|\cdot\|_{(p, q)}$ is a quasi-norm. Moreover, $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, is complete with respect to the quasi-norm $\|\cdot\|_{(p, q)}$ and $l(p, q), 1 \leqslant q \leqslant p<\infty$ is a complete normed linear space with respect to $\|\cdot\|_{(p, q)}$. Throughout this paper we consider the spaces $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, with respect to $\|\cdot\|_{(p, q)}$. Such spaces $l(p, q)$ fall in the category of $L(p, q)$ spaces [8] as well as in the category of functional Banach spaces [7]. The l^{p}-spaces for $1<p \leqslant \infty$ are equivalent to the spaces $l(p, p)$. In [7], [9],
a description of the duals, isomorphic l^{p}-subspaces of Orlicz-Lorentz sequence spaces $L_{\varphi, w}$ is given and in [12] isomorphic properties of Orlicz-Lorentz sequence spaces are discussed.

The Lorentz sequence space $l(p, q)$ coincides with $L_{\varphi, w}$ when $\varphi(t)=t^{q}$ and the weight sequence is $w(n)=n^{(q / p)-1}$. In the case of the Lorentz sequence space $l(p, q)$ one can have a better feeling of the behavior of multiplication, composition operators and the inducing sequences while in the case of the abstract Lorentz space $L(p, q)$ as well as the Banach function spaces [6] it becomes difficult. Multiplication and composition operators are studied in various function spaces in [1], [3], [5], [6], [13] and [14]. In [15], Singh studied these operators on the weak Lebesgue space l^{p}.

Let $u=\{u(n)\}$ be a complex sequence. We define a linear transformation M_{u} on the Lorentz sequence space $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, into the linear space of all complex sequences by

$$
M_{u}(a)=u a=\{u(n) a(n)\}, \text { where } a=\{a(n)\}
$$

If M_{u} is bounded with range in $l(p, q)$, then it is called a multiplication operator on $l(p, q)$. For a mapping $T: \mathbb{N} \rightarrow \mathbb{N}$ we define a linear transformation C_{T} on the Lorentz sequence space $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, into the linear space of all complex sequences by

$$
C_{T}(a)=a \circ T=\{a(T(n))\}, \text { where } a=\{a(n)\}
$$

If C_{T} is bounded with range in $l(p, q)$, then it is called a composition operator on $l(p, q)$. By $\mathcal{B}(l(p, q))$ we mean the algebra of all bounded linear operators on $l(p, q)$. An operator $A \in \mathcal{B}(l(p, q))$ is said to be Fredholm if it has closed range, $\operatorname{dim}(\operatorname{Ker}(A))$ and $\operatorname{codim}(R(A))$ are finite, where $\operatorname{dim}(\operatorname{Ker}(A))$ is the dimension of the kernel of A and $\operatorname{codim}(R(A))$ is the co-dimension of the range of A, namely the dimension of any subspace complementary to the range of A.

In this paper we are interested in the study of compactness, Fredholmness, invertibility etc. of multiplication and composition operators on the Lorentz sequence spaces $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$. It is shown in this paper that there exists a plenty of compact multiplication operators on $l(p, q)$. Multiplication and composition operators having closed ranges are also characterized.

2. Characterizations: Multiplication operators

The section is devoted to the study of multiplication operators M_{u} on the space $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, induced by a sequence $u=\{u(n)\}$. It follows immediately from [6] Theorem 2.4 that the only compact multiplication operator on the non-atomic Lorentz space is the zero operator. In the case of the Lorentz sequence space we show the existence of plenty of compact non-zero multiplication operators on $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, and compact multiplication operators are characterized.

Theorem 2.1. Let $u=\{u(n)\}$ be a complex sequence. Then M_{u} induced by u is bounded on $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, if and only if $\{u(n)\}$ is bounded.

Proof. If M_{u} is a bounded operator, then there exists $K>0$ such that

$$
\left\|M_{u} a\right\|_{(p, q)} \leqslant K\|a\|_{(p, q)} \text { for all } a=\{a(n)\} \in l(p, q) .
$$

For each $n \in \mathbb{N}$ and $e_{n}=\left\{e_{n}(m)\right\}_{m}$ in $l(p, q)$, where

$$
e_{n}(m)=\left\{\begin{array}{ll}
1 & \text { if } m=n, \\
0 & \text { otherwise },
\end{array} \quad \text { and } \quad e_{n}^{*}(m)= \begin{cases}1 & \text { if } m=1 \\
0 & \text { otherwise }\end{cases}\right.
$$

we have $\left\|e_{n}\right\|_{(p, q)}=1$ and so

$$
\left\|M_{u} e_{n}\right\|_{(p, q)}^{q} \leqslant K^{q}\left\|e_{n}\right\|_{(p, q)}^{q} .
$$

This gives, for $1<p<\infty, 1 \leqslant q<\infty$,

$$
\begin{aligned}
& \sum_{m=1}^{\infty}\left(\left(u e_{n}\right)^{*}(m)\right)^{q} m^{(q / p)-1} \leqslant K^{q} \sum_{m=1}^{\infty}\left(e_{n}^{*}(m)\right)^{q} m^{(q / p)-1} \\
& \quad \Rightarrow\left(u e_{n}\right)^{*}(1) \leqslant K e_{n}^{*}(1), \text { that is, }|u(n)| \leqslant K,
\end{aligned}
$$

and for $q=\infty, 1<p \leqslant \infty$,

$$
\begin{aligned}
& \sup _{m \geqslant 1} m^{1 / p}\left(\left(u e_{n}\right)^{*}(m)\right) \leqslant K \sup _{m \geqslant 1} m^{1 / p}\left(e_{n}^{*}(m)\right) \\
& \quad \Rightarrow\left(u e_{n}\right)^{*}(1) \leqslant K e_{n}^{*}(1), \text { that is, }|u(n)| \leqslant K .
\end{aligned}
$$

Thus in any case $\{u(n)\}$ is a bounded sequence.
Conversely, if $u=\{u(n)\}$ satisfies $|u(n)| \leqslant K$ for all $n \in \mathbb{N}$ and some $K>0$, then for any $a=\{a(n)\}$ in $l(p, q), u a=\{u(n) a(n)\}$ satisfies

$$
|u(n) a(n)| \leqslant K|a(n)| .
$$

This gives $(u a)^{*}(n) \leqslant K a^{*}(n)$ for each $n \in \mathbb{N}$, and so we obtain

$$
\begin{aligned}
\left\|M_{u} a\right\|_{(p, q)} & = \begin{cases}\left\{\sum_{n=1}^{\infty}\left((u a)^{*}(n)\right)^{q} n^{(q / p)-1}\right\}^{1 / q}, & 1<p<\infty, 1 \leqslant q<\infty \\
\sup _{n \geqslant 1} n^{1 / p}(u a)^{*}(n), & 1<p \leqslant \infty, q=\infty\end{cases} \\
& \leqslant K\|a\|_{(p, q)}
\end{aligned}
$$

Thus M_{u} is bounded on $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$.

Theorem 2.2. Let $M_{u} \in \mathcal{B}(l(p, q)), 1<p \leqslant \infty, 1 \leqslant q<\infty$. Then M_{u} is invertible if and only if there is $\delta>0$ such that

$$
|u(n)| \geqslant \delta \quad \text { for all } n \in \mathbb{N} .
$$

Proof. If M_{u} is invertible then we find $\delta>0$ satisfying

$$
\left\|M_{u} a\right\|_{(p, q)} \geqslant \delta\|a\|_{(p, q)} \quad \text { for all } a \in l(p, q)
$$

In particular, for $e_{n}=\left\{e_{n}(m)\right\}$ this gives $|u(n)| \geqslant \delta$.
Conversely, if $|u(n)| \geqslant \delta$ for all $n \in \mathbb{N}$ and some $\delta>0$, then define another sequence $v=\{v(n)\}$ where $v(n)=1 / u(n)$. Clearly, in view of Theorem 2.1, M_{v} is bounded on $l(p, q)$ and $M_{v}=M_{u}^{-1}$.

Theorem 2.3. Let $M_{u} \in \mathcal{B}(l(p, q)), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$. Then M_{u} has closed range if and only if for some $\delta>0$,

$$
|u(n)| \geqslant \delta \quad \text { for all } n \in S
$$

where $S=\{n \in \mathbb{N}: u(n) \neq 0\}$.
Proof. Suppose $|u(n)| \geqslant \delta$ for all $n \in S$ and some $\delta>0$. We claim that $\left.M_{u}\right|_{l_{p q}(S)}$ has closed range where

$$
l_{p q}(S)=\{a=\{a(n)\} \in l(p, q): a(n)=0 \text { for } n \in \mathbb{N} \backslash S\} .
$$

Let $f, f_{k} \in l_{p q}(S)$ where $f=\{f(n)\}$ and for each $k \geqslant 1, f_{k}=\left\{f_{k}(n)\right\}$ are such that $M_{u} f_{k} \rightarrow f$ as $k \rightarrow \infty$. Then we have, as $n, m \rightarrow \infty$,

$$
\left\|M_{u} f_{n}-M_{u} f_{m}\right\|_{(p, q)} \rightarrow 0
$$

Put $a_{n m}=f_{n}-f_{m}$, then for each $s>0$,

$$
\left\{k \in \mathbb{N}:\left|u(k) a_{n m}(k)\right|>s\right\} \supseteq\left\{k \in \mathbb{N}:\left|a_{n m}(k)\right|>s / \delta\right\} .
$$

This gives $\delta a_{n m}^{*}(k) \leqslant\left(u a_{n m}\right)^{*}(k)$ for each $k \in \mathbb{N}$. Therefore

$$
\begin{aligned}
\left\|u a_{n m}\right\|_{(p, q)} & =\left\|M_{u} f_{n}-M_{u} f_{m}\right\|_{(p, q)} \\
& = \begin{cases}\left\{\sum_{k \in S}\left(\left(u a_{n m}\right)^{*}(k)\right)^{q} k^{(q / p)-1}\right\}^{1 / q}, & 1<p<\infty, 1 \leqslant q<\infty, \\
\sup _{k \in S} k^{1 / p}\left(u a_{n m}^{*}(k),\right. & 1<p \leqslant \infty, q=\infty\end{cases} \\
& \geqslant \begin{cases}\left\{\sum_{k \in S} \delta^{q}\left(\left(a_{n m}\right)^{*}(k)\right)^{q} k^{(q / p)-1}\right\}^{1 / q}, & 1<p<\infty, 1 \leqslant q<\infty, \\
\sup _{k \in S} k^{1 / p} \delta\left(a_{n m}^{*}(k),\right. & 1<p \leqslant \infty, q=\infty\end{cases} \\
& =\delta\left\|a_{n m}\right\|_{(p, q)} .
\end{aligned}
$$

Since $\left\|u a_{n m}\right\|_{(p, q)} \rightarrow 0$ as $n, m \rightarrow \infty$, this implies $a_{n m} \rightarrow 0$ as $n, m \rightarrow \infty$. This means $\left\{f_{k}\right\}$ is a Cauchy sequence in $l_{p q}(S)$, which is a closed subspace of $l(p, q)$.

Hence we can find $g \in l_{p q}(S)$ such that $f_{k} \rightarrow g$ as $k \rightarrow \infty$. By virtue of the continuity of $M_{u}, M_{u} f_{k} \rightarrow M_{u} g$. Hence $f=M_{u} g$ and thus $\left.M_{u}\right|_{l_{p q}(S)}$ has closed range. Since $\operatorname{Ker}\left(M_{u}\right)=l_{p q}(\mathbb{N} \backslash S)$, we find that M_{u} has closed range.

Conversely, if the condition does not hold, then for each $n \in \mathbb{N}$ we can find $k_{n} \in S$ satisfying

$$
\left|u\left(k_{n}\right)\right|<1 / n
$$

For each n, the sequence $e_{k_{n}}=\left\{e_{k_{n}}(m)\right\}$, where

$$
e_{k_{n}}(m)= \begin{cases}1 & \text { if } m=k_{n} \\ 0 & \text { otherwise }\end{cases}
$$

satisfies $\left\|e_{k_{n}}\right\|_{(p, q)}=1$ and

$$
\begin{aligned}
\left\|M_{u} e_{k_{n}}\right\|_{(p, q)} & =\left\|u e_{k_{n}}\right\|_{(p, q)} \\
& = \begin{cases}\left\{\sum_{m=1}^{\infty}\left(\left(u e_{k_{n}}\right)^{*}(m)\right)^{q} m^{(q / p)-1}\right\}^{1 / q}, & 1<p<\infty, 1 \leqslant q<\infty \\
\sup _{m \geqslant 1} m^{1 / p}\left(u e_{k_{n}}\right)^{*}(m), & 1<p \leqslant \infty, q=\infty\end{cases} \\
& =\left(u e_{k_{n}}\right)^{*}(1)=\left|u\left(k_{n}\right)\right|<\frac{1}{n}\left\|e_{k_{n}}\right\|_{(p, q)} .
\end{aligned}
$$

Thus M_{u} is not bounded away from zero, a contradiction. Hence the result.

Theorem 2.4. Let $M_{u} \in \mathcal{B}(l(p, q)), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$. A necessary and sufficient condition for M_{u} to be compact is that $|u(n)| \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Suppose $u(n)$ does not tend to 0 as $n \rightarrow \infty$. Then $|u(n)| \geqslant \delta$ for infinitely many values of n and some $\delta>0$. Let

$$
A=\{n \in \mathbb{N}:|u(n)| \geqslant \delta\} \quad \text { and } \quad B=\left\{e_{k}=\left\{e_{k}(n)\right\}: k \in A\right\}
$$

Then B is a bounded set in $l(p, q)$. Moreover, for each $n, k, l \in A$,

$$
\left|\left(u e_{k}-u e_{l}\right)(n)\right| \geqslant \delta\left|\left(e_{k}-e_{l}\right)(n)\right|
$$

and so

$$
\left(u e_{k}-u e_{l}\right)^{*}(n) \geqslant \delta\left(e_{k}-e_{l}\right)^{*}(n) .
$$

Thus

$$
\left\|M_{u} e_{k}-M_{u} e_{l}\right\|_{(p, q)} \geqslant \delta\left\|e_{k}-e_{l}\right\|_{(p, q)}
$$

or

$$
\left\|M_{u} e_{k}-M_{u} e_{l}\right\|_{(p, q)} \geqslant \delta \quad \text { for } k \neq l
$$

which shows that M_{u} is not compact.
Conversely, if $u(n) \rightarrow 0$ as $n \rightarrow \infty$, we can find $\delta>0$ and $n_{0} \in \mathbb{N}$ such that $|u(n)|<\delta$ for all $n \geqslant n_{0}$. For each $n \in \mathbb{N}$, define $u_{n} \equiv\left\{u_{n}(k)\right\}$, where

$$
u_{n}(k)= \begin{cases}u(k) & \text { if } k \leqslant n \\ 0 & \text { otherwise }\end{cases}
$$

Then $\left\{u_{n}(k)\right\}$ is a bounded sequence so that $M_{u_{n}}$ is bounded on $l(p, q)$. Moreover, each $M_{u_{n}}$ is compact and one can check that $M_{u_{n}} \rightarrow M_{u}$ uniformly. This yields that M_{u} is compact.

As one can easily find that if $\mathbb{N} \backslash S$ is a finite set then $\operatorname{Ker}\left(M_{u}\right)$ and range of M_{u} are subspaces generated by $\left\{e_{n}: n \in \mathbb{N} \backslash S\right\}$ and $\left\{e_{m}: m \in S\right\}$ respectively, we have

Theorem 2.5. Let $M_{u} \in \mathcal{B}(l(p, q)), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$. Then M_{u} is Fredholm if and only if $\mathbb{N} \backslash S$ is finite and there exists $\delta>0$ such that

$$
|u(n)| \geqslant \delta \quad \text { for all } n \in \mathbb{N}
$$

3. Characterizations: Composition operators

In this section, isometric and Fredholm composition operators are characterized. The study of boundedness, compactness and closed range of composition operators on $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, is also included.

Theorem 3.1. A mapping $T: \mathbb{N} \rightarrow \mathbb{N}$ induces a bounded composition operator

$$
C_{T}: a \mapsto a \circ T
$$

on $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, if and only if there exists $M>0$ such that

$$
\mu T^{-1}(\{n\}) \leqslant M \text { for all } n \in \mathbb{N} .
$$

Proof. In case C_{T} is bounded, we have for some $R>0$

$$
\left\|C_{T} a\right\|_{(p, q)} \leqslant R\|a\|_{(p, q)} \text { for all } a \in l(p, q) .
$$

Let $n \in \mathbb{N}$ be such that $T^{-1}(\{n\})$ is not empty.
Then $e_{n}=\left\{e_{n}(k)\right\} \in l(p, q)$ and hence

$$
\left\|C_{T} e_{n}\right\|_{(p, q)} \leqslant R\left\|e_{n}\right\|_{(p, q)}=R,
$$

that is,

$$
\left\|e_{T^{-1}(\{n\})}\right\|_{(p, q)} \leqslant R .
$$

However, $e_{T^{-1}(\{n\})}=\left\{e_{T^{-1}(\{n\})}(k)\right\}$ where

$$
e_{T^{-1}(\{n\})}(k)= \begin{cases}1 & \text { if } k \in T^{-1}(\{n\}) \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
e_{T^{-1}(\{n\})}^{*}(k)= \begin{cases}1 & \text { if } k=1,2, \ldots, \mu T^{-1}(\{n\}) \\ 0 & \text { otherwise }\end{cases}
$$

Hence

$$
\begin{aligned}
R & \geqslant\left\|e_{T^{-1}(\{n\})}\right\|_{(p, q)} \\
& =\left\{\begin{array}{ll}
\begin{cases}\mu T^{-1}(\{n\}) \\
\left.\sum_{k=1} k^{(q / p)-1}\right\}^{1 / q}, & 1<p<\infty, 1 \leqslant q<\infty, \\
\sup _{k=1,2, \ldots, \mu T^{-1}(\{n\})} k^{1 / p} e_{T^{-1}(\{n\})}^{*}(k), & 1<p \leqslant \infty, q=\infty\end{cases} \\
& = \begin{cases}\left\{(1)+\left(\frac{1}{\left.\left.2^{1-q / p}\right)+\ldots+\left(\frac{1}{\left(\mu T^{-1}(\{n\})\right)^{1-q / p}}\right)\right\}^{1 / q},} 1<p<\infty, 1 \leqslant q<\infty,\right.\right. \\
\left(\mu T^{-1}(\{n\})\right),\end{cases} \\
& \geqslant \begin{cases}\left\{\left(\mu T ^ { - 1 } (\{ n \}) \left(\frac{1}{\left.\left.\left(\mu T^{-1}(\{n\})\right)^{1-q / p}\right)\right\}^{1 / q},}\right.\right.\right. & 1 \leqslant q<p<\infty, \\
\left(\mu T^{-1}(\{n\})^{1 / q},\right. & 1<p \leqslant \infty, q=\infty \\
\left(\mu T^{-1}(\{n\})^{1 / p},\right. & 1<p \leqslant \infty, q=\infty\end{cases} \\
& = \begin{cases}\left(\mu T^{-1}(\{n\})^{1 / p},\right. & 1 \leqslant q<p<\infty \text { or } 1<p \leqslant \infty, q=\infty, \\
\left(\mu T^{-1}(\{n\})^{1 / q},\right. & 1<p \leqslant q<\infty .\end{cases}
\end{array} . \begin{array}{l}
1<\infty,
\end{array}\right.
\end{aligned}
$$

Hence in any case we can find $M>0$ such that $\mu T^{-1}(\{n\}) \leqslant M$ for each $n \in \mathbb{N}$.
Conversely, if $\mu T^{-1}(\{n\}) \leqslant M$ for some $M \in \mathbb{N}$ then for any $a=\{a(n)\}$ in $l(p, q)$ and $a \circ T=\{(a \circ T)(n)\}$ we have for all $t>0$

$$
(a \circ T)^{*}(M t) \leqslant a^{*}(t)
$$

and so for all $k \in \mathbb{N} \cup\{0\}$ and $m=1,2, \ldots, M$ we have

$$
(a \circ T)^{*}(k M+m) \leqslant a^{*}(k+1)
$$

Hence, for $1<p<\infty, 1 \leqslant q<\infty$, taking $r=1-q / p$ we obtain

$$
\left.\begin{array}{rl}
\| a \circ & T \|_{(p, q)}^{q} \\
= & \sum_{k=1}^{\infty}\left((a \circ T)^{*}(k)\right)^{q} k^{(q / p)-1} \\
= & {\left[\left((a \circ T)^{*}(1)\right)^{q}+\left((a \circ T)^{*}(2)\right)^{q} \frac{1}{2^{r}}+\ldots+\left((a \circ T)^{*}(M)\right)^{q} \frac{1}{M^{r}}\right]} \\
& +\left[\left((a \circ T)^{*}(M+1)\right)^{q} \frac{1}{(M+1)^{r}}+\ldots+\left((a \circ T)^{*}(2 M)\right)^{q} \frac{1}{(2 M)^{r}}\right]+\ldots \\
\leqslant & {\left[1+\frac{1}{2^{r}}+\ldots+\frac{1}{M^{r}}\right]\left(a^{*}(1)\right)^{q}+\left[\frac{1}{(M+1)^{r}}+\ldots+\frac{1}{(2 M)^{r}}\right]\left(a^{*}(2)\right)^{q}}
\end{array}\right] \begin{array}{lll}
\leqslant & +\left[\frac{1}{(2 M+1)^{r}}+\ldots+\frac{1}{(3 M)^{r}}\right]\left(a^{*}(3)\right)^{q}+\ldots \\
M^{(1-r)}\left[\left(a^{*}(1)\right)^{q}+\frac{1}{2^{r}}\left(a^{*}(2)\right)^{q}+\frac{1}{3^{r}}\left(a^{*}(3)\right)^{q}+\ldots\right], & 1<p \leqslant q<\infty \\
M\left[\left(a^{*}(1)\right)^{q}+\frac{1}{2^{r}}\left(a^{*}(2)\right)^{q}+\frac{1}{3^{r}}\left(a^{*}(3)\right)^{q}+\ldots\right], \\
= & \begin{cases}M^{2}\|a\|_{(p, q)}^{q}, & 1 \leqslant q<p<\infty, \\
M^{q / p}\|a\|_{(p, q)}^{q}, & 1<p \leqslant q<\infty\end{cases}
\end{array}
$$

and for $q=\infty, 1<p \leqslant \infty$ we have

$$
\|a \circ T\|_{(p, q)}^{q} \leqslant M\|a\|_{(p, q)}^{q} .
$$

Thus C_{T} is bounded on $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$.

Theorem 3.2. Let C_{T} be a bounded linear composition operator on $l(p, q)$, $1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$. Then the following conditions are equivalent:
(1) T is invertible,
(2) C_{T} is invertible,
(3) C_{T} is an isometry.

Proof. The proofs of (1) $\Leftrightarrow(2)$ follow the lines of the proof given in [15] in the case of l^{p}, which is independent of any other result except Theorem 3.1. Here we just prove the equivalence of (1) and (3). In case (1) holds, then for every $E \subseteq \mathbb{N}$

$$
\mu\left\{T^{-1}(E)\right\}=\mu(E)
$$

Then for each $a=\{a(n)\}$ in $l(p, q)$ and $a \circ T=\{(a \circ T)(n)\}$ we have for all $s>0$

$$
\mu_{a \circ T}(s)=\mu_{a}(s) \Rightarrow(a \circ T)^{*}(n)=a^{*}(n) \quad \text { for all } n \in \mathbb{N} .
$$

Hence $\left\|C_{T}\right\|_{(p, q)}=\|a\|_{(p, q)}$ so that C_{T} is an isometry.
Conversely, if C_{T} is an isometry, then for each $n \in \mathbb{N}$ we have

$$
\left\|C_{T} e_{n}\right\|_{(p, q)}=\left\|e_{n}\right\|_{(p, q)}=1
$$

This implies $\mu T^{-1}(\{n\})=1$. Thus $T^{-1}(\{n\})$ is a singleton for each $n \in \mathbb{N}$. Hence T is invertible.

Theorem 3.3. Let C_{T} be a bounded linear composition operator on $l(p, q)$, $1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$. Then C_{T} is Fredholm if and only if both $\{n \in \mathbb{N}$: $\left.\mu T^{-1}(\{n\}) \geqslant 2\right\}$ and $\mathbb{N} \backslash T(\mathbb{N})$ are finite.

Proof. Suppose C_{T} is Fredholm. If $E=\left\{n \in \mathbb{N}: \mu T^{-1}(\{n\}) \geqslant 2\right\}$ is not finite, then for each $k \in E$ let $n_{k}, m_{k} \in \mathbb{N}$ be such that $T\left(n_{k}\right)=T\left(m_{k}\right), n_{k} \neq m_{k}$. For each $k \in E$, define $f_{k}=\left\{f_{k}(m)\right\}$ where

$$
f_{k}(m)= \begin{cases}1 & \text { if } m=n_{k} \\ -1 & \text { if } m=m_{k} \\ 0 & \text { otherwise }\end{cases}
$$

Then each f_{k} lies in $l(p, q)$ but not in range of C_{T}. Moreover, $\left\{f_{k}: k \in E\right\}$ being linearly independent implies $l(p, q) \backslash R\left(C_{T}\right)$ is infinite dimensional, a contradiction. Thus the set E must be finite. Similarly, $\mathbb{N} \backslash T(\mathbb{N})$ being an infinite set implies that $\operatorname{Ker}\left(C_{T}\right)$ is infinite dimensional, a contradiction.

The converse is easy to prove. Hence the result follows.

Along the lines of the proof carried out in [15] for l_{p}-spaces, we arrive at the following results:
(1) Let C_{T} be a bounded linear composition operator on $l(p, q), 1<p \leqslant \infty, 1 \leqslant$ $q \leqslant \infty$. Then C_{T} has closed range but not a compact one.
(2) An operator A on $l(p, q), 1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, is a composition operator if and only if there exists a partition $\left\{P_{n}\right\}$ of \mathbb{N} such that

$$
A\left(e_{n}\right)=\sum_{m \in P_{n}} e_{m} .
$$

Acknowledgements. The authors are grateful to the referee for his valuable suggestions helping to improve the paper.

References

[1] M. B. Abrahamse: Multiplication Operators. Lecture Notes in Math., Vol. 693, Springer, 1978, pp. 17-36.
[2] G. D. Allen: Duals of Lorentz spaces. Pacific J. Math. 77 (1978), 287-291.
[3] S. C. Arora, Gopal Datt, Satish Verma: Composition operators on Lorentz spaces. Bull. Austral. Math. Soc. 76 (2007), 205-214.
[4] C. Bennett, R. Sharpley: Interpolation of Operators. Pure and Applied Math. Vol. 129, Academic Press Inc., New York, 1988.
[5] Y. Cui, H. Hudzik, Romesh Kumar, L. Maligranda: Composition operators in Orlicz spaces. J. Austral. Math. Soc. 76 (2004), 189-206.
[6] H. Hudzik, Rajeev Kumar, Romesh Kumar: Matrix multiplication operators on Banach function spaces. Proc. Indian Acad. Sci. (Math. Sci.) 116 (2006), 71-81.
[7] H. Hudzik, A. Kaminska, M. Mastylo: On the dual of Orlicz-Lorentz space. Proc. Amer. Math. Soc. 130 (2003), 1645-1654.
[8] R. A. Hunt: On $L(p, q)$ spaces. L'Enseignment Math. 12 (1966), 249-276.
[9] A. Kaminska, Y. Raynaud: Isomorphic $l p$-subspaces in Orlicz-Lorentz sequence spaces. Proc. Amer. Math. Soc. 134 (2006), 2317-2327.
[10] G. G. Lorentz: Some new functional spaces. Ann. Math. 51 (1950), 37-55.
[11] G. G. Lorentz: On the theory of spaces Λ. Pacific J. Math. 1 (1951), 411-429.
[12] S. J. Montgomery-Smith: Orlicz-Lorentz Spaces, Proceedings of the Orlicz Memorial Conference. Oxford, Mississippi, 1991.
[13] E. Nakai: Pointwise multipliers on the Lorentz spaces. Mem. Osaka Kyoiku Univ. III Natur. Sci. Appl. Sci. 45 (1996), 1-7.
[14] R. K. Singh and A. Kumar: Multiplication and composition operators with closed ranges. Bull. Aust. Math. Soc. 16 (1977), 247-252.
[15] R. K. Singh, J. S. Manhas: Composition Operators on Function Spaces. North Holland Math. Stud. 179, Elsevier Science Publications Amsterdem, 1993.
[16] Elias M. Stein, Guido Weiss: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Math. Series, Vol. 32, Princeton Univ. Press, Princeton N.J., 1971.
[17] H. Takagi: Fredholm weighted composition operators. Integral Equations Oper. Theory 16 (1933), 267-276.

Author's address: S. C.Arora, Department of Mathematics, University of Delhi, Delhi-110007, India, e-mail: scaroradu@gmail.com; Gopal Datt, Department of Mathematics, PGDAV College, University of Delhi, Delhi-110065, India, e-mail: gopal.d.sati@ gmail.com; Satish Verma, Department of Mathematics, SGTB Khalsa College, University of Delhi, Delhi-110007, India, e-mail: vermas@maths.du.ac.in.

