ON $|A, \delta|_{k}$-SUMMABILITY OF ORTHOGONAL SERIES

Xhevat Z. Krasniqi, Prishtinë

(Received May 20, 2010)

Dedicated to the memory of my Professor Muharrem Berisha

Abstract. In the paper, we prove two theorems on $|A, \delta|_{k}$ summability, $1 \leqslant k \leqslant 2$, of orthogonal series. Several known and new results are also deduced as corollaries of the main results.

Keywords: orthogonal series, matrix summability
MSC 2010: 42C15, 40F05, 40D15

1. Introduction

Let $\sum_{n=0}^{\infty} a_{n}$ be a given infinite series with its partial sums $\left\{s_{n}\right\}$ and let $A:=\left(a_{n v}\right)$ be a normal matrix, i.e. a lower triangular matrix with non-zero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s:=\left\{s_{n}\right\}$ to $A s:=\left\{A_{n}(s)\right\}$, where

$$
A_{n}(s):=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1,2, \ldots
$$

In 1957, Flett [5] gave the following definition:
The infinite series $\sum_{n=0}^{\infty} a_{n}$ is said to be absolutely $|A|_{k}$-summable, $k \geqslant 1$, if

$$
\sum_{n=0}^{\infty} n^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}
$$

converges, where

$$
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s) .
$$

If this is the case, we write

$$
\sum_{n=0}^{\infty} a_{n} \in|A|_{k}
$$

In [6], Flett considered a further extension of absolute summability in which he introduced a further parameter δ. The series $\sum_{n=0}^{\infty} a_{n}$ is said to be $|A, \delta|_{k}$-summable, $k \geqslant 1, \delta \geqslant 0$, if

$$
\sum_{n=0}^{\infty} n^{\delta k+k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty
$$

Let p denote the sequence $\left\{p_{n}\right\}$. For two given sequences p and q, the convolution $(p * q)_{n}$ is defined by

$$
(p * q)_{n}=\sum_{m=0}^{n} p_{m} q_{n-m}=\sum_{m=0}^{n} p_{n-m} q_{m}
$$

When $(p * q)_{n} \neq 0$ for all n, the generalized Nörlund transform of the sequence $\left\{s_{n}\right\}$ is the sequence $\left\{t_{n}^{p, q}\right\}$ obtained by putting

$$
t_{n}^{p, q}=\frac{1}{(p * q)_{n}} \sum_{m=0}^{n} p_{n-m} q_{m} s_{m}
$$

The infinite series $\sum_{n=0}^{\infty} a_{n}$ is absolutely (N, p, q)-summable if the series

$$
\sum_{n=0}^{\infty}\left|t_{n}^{p, q}-t_{n-1}^{p, q}\right|
$$

converges, and we write

$$
\sum_{n=0}^{\infty} a_{n} \in|N, p, q|
$$

The notion of $|N, p, q|$ summability was introduced by Tanaka [3].
Let $\left\{\varphi_{j}\right\}$ be an orthonormal system defined in the interval (a, b). We assume that f belongs to $L^{2}(a, b)$ and

$$
\begin{equation*}
f(x) \sim \sum_{j=0}^{\infty} c_{j} \varphi_{j}(x) \tag{1.1}
\end{equation*}
$$

where $c_{j}=\int_{a}^{b} f(x) \varphi_{j}(x) \mathrm{d} x \quad(j=0,1,2, \ldots)$.

Following [4] we write

$$
R_{n}:=(p * q)_{n}, \quad R_{n}^{j}:=\sum_{m=j}^{n} p_{n-m} q_{m}
$$

where

$$
R_{n}^{n+1}=0, \quad R_{n}^{0}=R_{n} .
$$

We recall two results from [4].
Theorem 1.1 [4]. If the series

$$
\sum_{n=0}^{\infty}\left\{\sum_{j=1}^{n}\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}\left|c_{j}\right|^{2}\right\}^{\frac{1}{2}}
$$

converges, then the orthogonal series

$$
\sum_{j=0}^{\infty} c_{j} \varphi_{j}(x)
$$

is $|N, p, q|$-summable almost everywhere.
Theorem 1.2 [4]. Let $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n) / n\}$ is a nonincreasing sequence and the series $\sum_{n=1}^{\infty}(n \Omega(n))^{-1}$ converges. Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be non-negative. If the series $\sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \Omega(n) w^{(1)}(n)$ converges, then the orthogonal series $\sum_{j=0}^{\infty} c_{j} \varphi_{j}(x) \in|N, p, q|$ almost everywhere, where $w^{(1)}(n)$ is defined by $w^{(1)}(j):=$ $j^{-1} \sum_{n=j}^{\infty} n^{2}\left(R_{n}^{j} / R_{n}-R_{n-1}^{j} / R_{n-1}\right)^{2}$.

The main purpose of the present paper is to generalize Theorems 1.1 and 1.2 for $|A, \delta|_{k}$ summability of the orthogonal series (1.1), where $1 \leqslant k \leqslant 2$. Before stating the main results, we introduce some further notation.

With a normal matrix $A:=\left(a_{n v}\right)$ we associate two semi lower matrices $\bar{A}:=\left(\bar{a}_{n v}\right)$ and $\hat{A}:=\left(\hat{a}_{n v}\right)$ as follows:

$$
\bar{a}_{n v}:=\sum_{i=v}^{n} a_{n i}, \quad n, i=0,1,2, \ldots
$$

and

$$
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots
$$

It may be noted that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively.

Throughout this paper we denote by K a constant that depends only on k and may be different in different relations.

2. Main results

We prove the following theorem.
Theorem 2.1. If the series

$$
\sum_{n=0}^{\infty}\left\{n^{2(\delta+1-1 / k)} \sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right\}^{k / 2}
$$

converges for $1 \leqslant k \leqslant 2$, then the orthogonal series

$$
\sum_{j=0}^{\infty} c_{j} \varphi_{j}(x)
$$

is $|A, \delta|_{k}$-summable almost everywhere.
Proof. Let

$$
s_{v}(x)=\sum_{j=0}^{v} c_{j} \varphi_{j}(x)
$$

be the partial sums of order v of the series (1.1). Then, for the matrix transform $A_{n}(s)(x)$ of the partial sums $s_{v}(x)$, we have

$$
\begin{aligned}
A_{n}(s)(x) & =\sum_{v=0}^{n} a_{n v} s_{v}(x)=\sum_{v=0}^{n} a_{n v} \sum_{j=0}^{v} c_{j} \varphi_{j}(x) \\
& =\sum_{j=0}^{n} c_{j} \varphi_{j}(x) \sum_{v=j}^{n} a_{n v}=\sum_{j=0}^{n} \bar{a}_{n j} c_{j} \varphi_{j}(x) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\bar{\Delta} A_{n}(s)(x) & =\sum_{j=0}^{n} \bar{a}_{n j} c_{j} \varphi_{j}(x)-\sum_{j=0}^{n-1} \bar{a}_{n-1, j} c_{j} \varphi_{j}(x) \\
& =\bar{a}_{n n} c_{n} \varphi_{n}(x)+\sum_{j=0}^{n-1}\left(\bar{a}_{n, j}-\bar{a}_{n-1, j}\right) c_{j} \varphi_{j}(x) \\
& =\hat{a}_{n n} c_{n} \varphi_{n}(x)+\sum_{j=0}^{n-1} \hat{a}_{n, j} c_{j} \varphi_{j}(x)=\sum_{j=0}^{n} \hat{a}_{n, j} c_{j} \varphi_{j}(x) .
\end{aligned}
$$

Using Hölder's inequality and orthogonality, we have that

$$
\begin{aligned}
\int_{a}^{b}\left|\bar{\Delta} A_{n}(s)(x)\right|^{k} \mathrm{~d} x & \leqslant(b-a)^{1-k / 2}\left(\int_{a}^{b}\left|A_{n}(s)(x)-A_{n-1}(s)(x)\right|^{2} \mathrm{~d} x\right)^{k / 2} \\
& =(b-a)^{1-k / 2}\left(\int_{a}^{b}\left|\sum_{j=0}^{n} \hat{a}_{n, j} c_{j} \varphi_{j}(x)\right|^{2} \mathrm{~d} x\right)^{k / 2} \\
& =(b-a)^{1-k / 2}\left[\sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right]^{k / 2}
\end{aligned}
$$

Thus, the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k+k-1} \int_{a}^{b}\left|\bar{\Delta} A_{n}(s)(x)\right|^{k} \mathrm{~d} x \leqslant K \sum_{n=1}^{\infty}\left[n^{2(\delta+1)-2 / k} \sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right]^{k / 2} \tag{2.1}
\end{equation*}
$$

converges since the last one does by the assumption. Now, the Lemma of Beppo-Lévi implies the theorem.

If we put

$$
\begin{equation*}
w^{(k)}(A, \delta ; j):=\frac{1}{j^{2 / k-1}} \sum_{n=j}^{\infty} n^{2(\delta+1 / k)}\left|\hat{a}_{n, j}\right|^{2} \tag{2.2}
\end{equation*}
$$

then the following theorem holds.

Theorem 2.2. Let $1 \leqslant k \leqslant 2$ and let $\{\Omega(n)\}$ be a positive sequence such that $\{\Omega(n) / n\}$ is a non-increasing sequence and the series $\sum_{n=1}^{\infty}(n \Omega(n))^{-1}$ converges. If the series $\sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \Omega^{2 / k-1}(n) w^{(k)}(A, \delta ; n)$ converges, then the orthogonal series $\sum_{j=0}^{\infty} c_{j} \varphi_{j}(x)$ is $|A, \delta|_{k}$-summable almost everywhere, where $w^{(k)}(A, \delta ; n)$ is defined by (2.2).

Proof. Applying Hölder's inequality to the inequality (2.1) we get that

$$
\begin{gathered}
\sum_{n=1}^{\infty} n^{\delta k+k-1} \int_{a}^{b}\left|\bar{\Delta} A_{n}(s)(x)\right|^{k} \mathrm{~d} x \leqslant K \sum_{n=1}^{\infty} n^{\delta k+k-1}\left[\sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right]^{k / 2} \\
=K \sum_{n=1}^{\infty} \frac{1}{(n \Omega(n))^{1-k / 2}}\left[n^{2 \delta+1} \Omega^{2 / k-1}(n) \sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right]^{k / 2}
\end{gathered}
$$

$$
\begin{aligned}
& \leqslant K\left(\sum_{n=1}^{\infty} \frac{1}{(n \Omega(n))}\right)^{1-k / 2}\left[\sum_{n=1}^{\infty} n^{2 \delta+1} \Omega^{2 / k-1}(n) \sum_{j=0}^{n}\left|\hat{a}_{n, j}\right|^{2}\left|c_{j}\right|^{2}\right]^{k / 2} \\
& \leqslant K\left\{\sum_{j=1}^{\infty}\left|c_{j}\right|^{2} \sum_{n=j}^{\infty} n^{2 \delta+1} \Omega^{2 / k-1}(n)\left|\hat{a}_{n, j}\right|^{2}\right\}^{k / 2} \\
& \leqslant K\left\{\sum_{j=1}^{\infty}\left|c_{j}\right|^{2}\left(\frac{\Omega(j)}{j}\right)^{2 / k-1} \sum_{n=j}^{\infty} n^{2(\delta+1 / k)}\left|\hat{a}_{n, j}\right|^{2}\right\}^{k / 2} \\
& =K\left\{\sum_{j=1}^{\infty}\left|c_{j}\right|^{2} \Omega^{2 / k-1}(j) w^{(k)}(A, \delta ; j)\right\}^{k / 2}
\end{aligned}
$$

which is finite by virtue of the hypothesis of the theorem, and this completes the proof.

The next section is devoted to applications of our main results.

3. Applications of the main results

We can specialize the matrix $A=\left(a_{n v}\right)$ so that $|A, \delta|_{k}$ summability reduces to some known notions of absolute summability. This means that sufficient conditions obtained in the main results, under which the orthogonal series (1.1) is $|A, \delta|_{k^{-}}$ summable almost everywhere ($1 \leqslant k \leqslant 2$), include sufficient conditions under which the orthogonal series (1.1) is absolute summable almost everywhere with different kinds of absolute summability notions. The most important particular cases of the $|A, \delta|_{k}$ summability notions are:

1. For $a_{n, v}=(n+1)^{-1}$ we obtain the Cesàro means $A_{n}(s)=(n+1)^{-1} \sum_{v=0}^{n} s_{v}$, and $|A, \delta|_{k} \equiv|C, 1, \delta|_{k}$ summability.
2. For $a_{n, v}=((n-v+1) \log n)^{-1}$ we obtain the harmonic means $A_{n}(s)=$ $(\log n)^{-1} \sum_{v=0}^{n} s_{v} /(n-v+1)$, and $|A, \delta|_{k} \equiv|H, 1, \delta|_{k}$ summability.
3. For $a_{n, v}=\binom{n-v+\alpha+1}{\alpha-1} /\binom{n+\alpha}{\alpha}, 0 \leqslant \alpha \leqslant 1$, we obtain the Cesàro means (of or$\operatorname{der} \alpha) A_{n}(s)=\binom{n+\alpha}{\alpha}^{-1} \sum_{v=0}^{n}\binom{n-v+\alpha+1}{\alpha-1} s_{v}$, and $|A, \delta|_{k} \equiv|C, \alpha, \delta|_{k}$ summability.
4. For $a_{n, v}=p_{n-v} / P_{n}$ we obtain the Nörlund means $A_{n}(s)=P_{n}^{-1} \sum_{v=0}^{n} p_{n-v} s_{v}$, and $|A, \delta|_{k} \equiv\left|N, p_{n}, \delta\right|_{k}$ summability.
5. For $a_{n, v}=q_{v} / Q_{n}$ we obtain the Riesz means $A_{n}(s)=Q_{n}^{-1} \sum_{v=0}^{n} q_{v} s_{v}$, and $|A, \delta|_{k} \equiv\left|\bar{N}, q_{n}, \delta\right|_{k}$ summability.
6. For $a_{n, v}=p_{n-v} q_{v} / R_{n}$, where $R_{n}=\sum_{v=0}^{n} p_{v} q_{n-v}$, we obtain the generalized Nörlund means $A_{n}(s)=R_{n}^{-1} \sum_{v=0}^{n} p_{n-v} q_{v} s_{v}$, and $|A, \delta|_{k} \equiv\left|N, p_{n}, q_{n}, \delta\right|_{k}$ summability.
7. For $a_{n, v}=(n+1)^{-1} P_{v}^{-1} \sum_{k=0}^{v} p_{v-k}$, we obtain the $t_{n}^{C N}$ means (see [7]) $A_{n}(s)=$ $(n+1)^{-1} \sum_{v=0}^{n} P_{v}^{-1} \sum_{k=0}^{v} p_{v-k} s_{k}$, and $|A, \delta|_{k} \equiv\left|C^{1} \cdot N_{p}, \delta\right|_{k}$ summability.
Now we shall discuss only some of the above cases for $\delta=0$ (the other cases can be discussed in a similar way). For this purpose, first let us clarify that the results of [4] follow from the main results of this paper. Indeed, for $a_{n, v}=p_{n-v} q_{v} / R_{n}$ we have that

$$
\begin{aligned}
\hat{a}_{n, v} & =\bar{a}_{n, v}-\bar{a}_{n-1, v}=\sum_{j=v}^{n} a_{n j}-\sum_{j=v}^{n-1} a_{n-1, j} \\
& =\frac{1}{R_{n}} \sum_{j=v}^{n} p_{n-j} q_{j}-\frac{1}{R_{n-1}} \sum_{j=v}^{n-1} p_{n-1-j} q_{j}=\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}},
\end{aligned}
$$

whence

$$
\left|\hat{a}_{n, v}\right|^{2}=\left(\frac{R_{n}^{j}}{R_{n}}-\frac{R_{n-1}^{j}}{R_{n-1}}\right)^{2}
$$

Therefore, if we insert this equality, and take $\delta=0$ and $k=1$ in Theorems 2.1 and 2.2, then Theorems 1.1 and 1.2 follow immediately.

Also, some other known results are included in Theorem 2.1. Namely, for $a_{n, v}=$ p_{n-v} / P_{n} we get

$$
\begin{aligned}
\hat{a}_{n, j} & =\bar{a}_{n, j}-\bar{a}_{n-1, j} \\
& =\frac{1}{P_{n}} \sum_{i=j}^{n} p_{n-i}-\frac{1}{P_{n-1}} \sum_{i=j}^{n-1} p_{n-1-i} \\
& =\frac{1}{P_{n} P_{n-1}}\left(P_{n-1} P_{n-j}-P_{n} P_{n-1-j}\right) \\
& =\frac{1}{P_{n} P_{n-1}}\left(\left(P_{n}-p_{n}\right) P_{n-j}-P_{n}\left(P_{n-j}-p_{n-j}\right)\right) \\
& =\frac{p_{n}}{P_{n} P_{n-1}}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-j}}{p_{n-j}}\right) p_{n-j} .
\end{aligned}
$$

Hence, using Theorem 2.1 for $\delta=0$ and $k=1$, the following result holds.

Corollary 3.1 [1]. If the series

$$
\sum_{n=0}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left\{\sum_{j=1}^{n} p_{n-j}^{2}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-j}}{p_{n-j}}\right)^{2}\left|c_{j}\right|^{2}\right\}^{1 / 2}
$$

converges, then the orthogonal series $\sum_{j=0}^{\infty} c_{j} \varphi_{j}(x)$ is $|N, p|$-summable almost everywhere.

Also, for $a_{n, v}=q_{v} / Q_{n}$ one can find that

$$
\hat{a}_{n, j}=\bar{a}_{n, j}-\bar{a}_{n-1, j}=-\frac{q_{n} Q_{j-1}}{Q_{n} Q_{n-1}} .
$$

Therefore, using again Theorem 2.1 for $\delta=0$ and $k=1$, we obtain

Corollary 3.2 [2]. If the series

$$
\sum_{n=0}^{\infty} \frac{q_{n}}{Q_{n} Q_{n-1}}\left\{\sum_{j=1}^{n} Q_{j-1}^{2}\left|c_{j}\right|^{2}\right\}^{\frac{1}{2}}
$$

converges, then the orthogonal series $\sum_{j=0}^{\infty} c_{j} \varphi_{j}(x)$ is $|\bar{N}, q|$-summable almost everywhere.

Some other interesting consequences are the corollaries formulated below.

Corollary 3.3. If the series

$$
\sum_{n=0}^{\infty}\left(\frac{n^{2(1-1 / k) / k} p_{n}}{P_{n} P_{n-1}}\right)^{k}\left\{\sum_{j=1}^{n} p_{n-j}^{2}\left(\frac{P_{n}}{p_{n}}-\frac{P_{n-j}}{p_{n-j}}\right)^{2}\left|c_{j}\right|^{2}\right\}^{k / 2}
$$

converges for $1 \leqslant k \leqslant 2$, then the orthogonal series $\sum_{j=0}^{\infty} c_{j} \varphi_{j}(x)$ is $|N, p|_{k}$-summable almost everywhere.

Remark 3.1. We note here that:

1. If $p_{n}=1$ for all values of n then $|N, p|_{k}$ summability reduces to $|C, 1|_{k}$ summability
2. If $k=1$ and $p_{n}=1 /(n+1)$ then $|N, p|_{k}$ is equivalent to $|R, \log n, 1|$ summability.

Corollary 3.4. If the series

$$
\sum_{n=0}^{\infty}\left(\frac{n^{2(1-1 / k) / k} q_{n}}{Q_{n} Q_{n-1}}\right)^{k}\left\{\sum_{j=1}^{n} Q_{j-1}^{2}\left|c_{j}\right|^{2}\right\}^{k / 2}
$$

converges for $1 \leqslant k \leqslant 2$, then the orthogonal series $\sum_{j=0}^{\infty} c_{j} \varphi_{j}(x)$ is $|\bar{N}, q|_{k}$-summable almost everywhere.

Acknowledgment. The author would like to express his sincerest thanks to the referee for her/his valuable suggestions for the improvement of this paper.

References

[1] Y. Okuyama: On the absolute Nörlund summability of orthogonal series. Proc. Japan Acad. 54 (1978), 113-118.
[2] Y. Okuyama, T. Tsuchikura: On the absolute Riesz summability of orthogonal series. Anal. Math. 7 (1981), 199-208.
[3] M. Tanaka: On generalized Nörlund methods of summability. Bull. Austral. Math. Soc. 19 (1978), 381-402.
zbl
[4] Y. Okuyama: On the absolute generalized Nörlund summability of orthogonal series. Tamkang J. Math. 33 (2002), 161-165.
[5] T. M. Flett: On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. 7 (1957), 113-141.
[6] T. M. Flett: Some more theorems concerning the absolute summability of Fourier series and power series. Proc. London Math. Soc. 8 (1958), 357-387.
[7] S. Lal: Approximation of functions belonging to the generalized Lipschitz Class by $C^{1} \cdot N_{p}$

Author's address: Xhevat Z. Krasniqi, Department of Mathematics and Computer Sciences, University of Prishtina, Avenue Mother Theresa 5, Prishtinë, 10000, Republic of Kosova, e-mail: xhevat-z-krasniqi@hotmail.com.

