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Abstract. In the paper, we prove two theorems on |A, δ|k summability, 1 6 k 6 2, of
orthogonal series. Several known and new results are also deduced as corollaries of the main
results.
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1. Introduction

Let
∞
∑

n=0
an be a given infinite series with its partial sums {sn} and let A := (anv) be

a normal matrix, i.e. a lower triangular matrix with non-zero diagonal entries. Then

A defines the sequence-to-sequence transformation, mapping the sequence s := {sn}

to As := {An(s)}, where

An(s) :=

n
∑

v=0

anvsv, n = 0, 1, 2, . . .

In 1957, Flett [5] gave the following definition:

The infinite series
∞
∑

n=0
an is said to be absolutely |A|k-summable, k > 1, if

∞
∑

n=0

nk−1|∆̄An(s)|k

converges, where

∆̄An(s) = An(s) − An−1(s).
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If this is the case, we write
∞
∑

n=0

an ∈ |A|k.

In [6], Flett considered a further extension of absolute summability in which he

introduced a further parameter δ. The series
∞
∑

n=0
an is said to be |A, δ|k-summable,

k > 1, δ > 0, if
∞
∑

n=0

nδk+k−1|∆̄An(s)|k < ∞.

Let p denote the sequence {pn}. For two given sequences p and q, the convolution

(p ∗ q)n is defined by

(p ∗ q)n =

n
∑

m=0

pmqn−m =

n
∑

m=0

pn−mqm.

When (p ∗ q)n 6= 0 for all n, the generalized Nörlund transform of the sequence {sn}

is the sequence {tp,q
n } obtained by putting

tp,q
n =

1

(p ∗ q)n

n
∑

m=0

pn−mqmsm.

The infinite series
∞
∑

n=0
an is absolutely (N, p, q)-summable if the series

∞
∑

n=0

|tp,q
n − tp,q

n−1|

converges, and we write
∞
∑

n=0

an ∈ |N, p, q|.

The notion of |N, p, q| summability was introduced by Tanaka [3].

Let {ϕj} be an orthonormal system defined in the interval (a, b). We assume that

f belongs to L2(a, b) and

(1.1) f(x) ∼
∞
∑

j=0

cjϕj(x),

where cj =
∫ b

a
f(x)ϕj(x) dx (j = 0, 1, 2, . . .).

18



Following [4] we write

Rn := (p ∗ q)n, Rj
n :=

n
∑

m=j

pn−mqm

where

Rn+1
n = 0, R0

n = Rn.

We recall two results from [4].

Theorem 1.1 [4]. If the series

∞
∑

n=0

{ n
∑

j=1

(Rj
n

Rn
−

Rj
n−1

Rn−1

)2

|cj |
2

}
1

2

converges, then the orthogonal series

∞
∑

j=0

cjϕj(x)

is |N, p, q|-summable almost everywhere.

Theorem 1.2 [4]. Let {Ω(n)} be a positive sequence such that {Ω(n)/n} is a non-

increasing sequence and the series
∞
∑

n=1
(nΩ(n))−1 converges. Let {pn} and {qn} be

non-negative. If the series
∞
∑

n=1
|cn|

2Ω(n)w(1)(n) converges, then the orthogonal series

∞
∑

j=0

cjϕj(x) ∈ |N, p, q| almost everywhere, where w(1)(n) is defined by w(1)(j) :=

j−1
∞
∑

n=j

n2(Rj
n/Rn − Rj

n−1/Rn−1)
2.

The main purpose of the present paper is to generalize Theorems 1.1 and 1.2 for

|A, δ|k summability of the orthogonal series (1.1), where 1 6 k 6 2. Before stating

the main results, we introduce some further notation.

With a normal matrix A := (anv) we associate two semi lower matrices Ā := (ānv)

and Â := (ânv) as follows:

ānv :=

n
∑

i=v

ani, n, i = 0, 1, 2, . . .

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . .
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It may be noted that Ā and Â are the well-known matrices of series-to-sequence and

series-to-series transformations, respectively.

Throughout this paper we denote by K a constant that depends only on k and

may be different in different relations.

2. Main results

We prove the following theorem.

Theorem 2.1. If the series

∞
∑

n=0

{

n2(δ+1−1/k)
n

∑

j=0

|ân,j |
2|cj |

2

}k/2

converges for 1 6 k 6 2, then the orthogonal series

∞
∑

j=0

cjϕj(x)

is |A, δ|k-summable almost everywhere.

P r o o f. Let

sv(x) =
v

∑

j=0

cjϕj(x)

be the partial sums of order v of the series (1.1). Then, for the matrix transform

An(s)(x) of the partial sums sv(x), we have

An(s)(x) =

n
∑

v=0

anvsv(x) =

n
∑

v=0

anv

v
∑

j=0

cjϕj(x)

=

n
∑

j=0

cjϕj(x)

n
∑

v=j

anv =

n
∑

j=0

ānjcjϕj(x).

Hence

∆̄An(s)(x) =
n

∑

j=0

ānjcjϕj(x) −
n−1
∑

j=0

ān−1,jcjϕj(x)

= ānncnϕn(x) +

n−1
∑

j=0

(ān,j − ān−1,j) cjϕj(x)

= ânncnϕn(x) +

n−1
∑

j=0

ân,jcjϕj(x) =

n
∑

j=0

ân,jcjϕj(x).
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Using Hölder’s inequality and orthogonality, we have that

∫ b

a

|∆̄An(s)(x)|k dx 6 (b − a)
1−k/2

(
∫ b

a

|An(s)(x) − An−1(s)(x)|2 dx

)k/2

= (b − a)
1−k/2

(
∫ b

a

∣

∣

∣

∣

n
∑

j=0

ân,jcjϕj(x)

∣

∣

∣

∣

2

dx

)k/2

= (b − a)1−k/2

[ n
∑

j=0

|ân,j |
2|cj |

2

]k/2

.

Thus, the series

(2.1)

∞
∑

n=1

nδk+k−1

∫ b

a

|∆̄An(s)(x)|k dx 6 K

∞
∑

n=1

[

n2(δ+1)−2/k
n

∑

j=0

|ân,j|
2|cj |

2

]k/2

converges since the last one does by the assumption. Now, the Lemma of Beppo-Lévi

implies the theorem. �

If we put

(2.2) w(k)(A, δ; j) :=
1

j2/k−1

∞
∑

n=j

n2(δ+1/k)|ân,j|
2

then the following theorem holds.

Theorem 2.2. Let 1 6 k 6 2 and let {Ω(n)} be a positive sequence such

that {Ω(n)/n} is a non-increasing sequence and the series
∞
∑

n=1
(nΩ(n))−1 converges.

If the series
∞
∑

n=1
|cn|

2Ω2/k−1(n)w(k)(A, δ; n) converges, then the orthogonal series

∞
∑

j=0

cjϕj(x) is |A, δ|k-summable almost everywhere, where w(k)(A, δ; n) is defined

by (2.2).

P r o o f. Applying Hölder’s inequality to the inequality (2.1) we get that

∞
∑

n=1

nδk+k−1

∫ b

a

|∆̄An(s)(x)|k dx 6 K

∞
∑

n=1

nδk+k−1

[ n
∑

j=0

|ân,j|
2|cj |

2

]k/2

= K

∞
∑

n=1

1

(nΩ(n))1−k/2

[

n2δ+1Ω2/k−1(n)

n
∑

j=0

|ân,j |
2|cj |

2

]k/2
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6 K

(

∞
∑

n=1

1

(nΩ(n))

)1−k/2[ ∞
∑

n=1

n2δ+1Ω2/k−1(n)
n

∑

j=0

|ân,j |
2|cj |

2

]k/2

6 K

{ ∞
∑

j=1

|cj |
2

∞
∑

n=j

n2δ+1Ω2/k−1(n)|ân,j |
2

}k/2

6 K

{ ∞
∑

j=1

|cj |
2
(Ω(j)

j

)2/k−1 ∞
∑

n=j

n2(δ+1/k)|ân,j |
2

}k/2

= K

{ ∞
∑

j=1

|cj |
2Ω2/k−1(j)w(k)(A, δ; j)

}k/2

,

which is finite by virtue of the hypothesis of the theorem, and this completes the

proof. �

The next section is devoted to applications of our main results.

3. Applications of the main results

We can specialize the matrix A = (anv) so that |A, δ|k summability reduces to

some known notions of absolute summability. This means that sufficient condi-

tions obtained in the main results, under which the orthogonal series (1.1) is |A, δ|k-

summable almost everywhere (1 6 k 6 2), include sufficient conditions under which

the orthogonal series (1.1) is absolute summable almost everywhere with different

kinds of absolute summability notions. The most important particular cases of the

|A, δ|k summability notions are:

1. For an,v = (n+1)−1 we obtain the Cesàro means An(s) = (n+1)−1
n
∑

v=0
sv, and

|A, δ|k ≡ |C, 1, δ|k summability.

2. For an,v = ((n − v + 1) log n)−1 we obtain the harmonic means An(s) =

(log n)−1
n
∑

v=0
sv/(n − v + 1), and |A, δ|k ≡ |H, 1, δ|k summability.

3. For an,v =
(

n−v+α+1
α−1

)

/
(

n+α
α

)

, 0 6 α 6 1, we obtain the Cesàro means (of or-

der α) An(s) =
(

n+α
α

)

−1 n
∑

v=0

(

n−v+α+1
α−1

)

sv, and |A, δ|k ≡ |C, α, δ|k summability.

4. For an,v = pn−v/Pn we obtain the Nörlund means An(s) = P−1
n

n
∑

v=0
pn−vsv,

and |A, δ|k ≡ |N, pn, δ|k summability.

5. For an,v = qv/Qn we obtain the Riesz means An(s) = Q−1
n

n
∑

v=0
qvsv, and

|A, δ|k ≡ |N, qn, δ|k summability.
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6. For an,v = pn−vqv/Rn, where Rn =
n
∑

v=0
pvqn−v, we obtain the generalized Nör-

lund means An(s) = R−1
n

n
∑

v=0
pn−vqvsv, and |A, δ|k ≡ |N, pn, qn, δ|k summabil-

ity.

7. For an,v = (n + 1)−1P−1
v

v
∑

k=0

pv−k, we obtain the tCN
n means (see [7]) An(s) =

(n + 1)−1
n
∑

v=0
P−1

v

v
∑

k=0

pv−ksk, and |A, δ|k ≡ |C1 · Np, δ|k summability.

Now we shall discuss only some of the above cases for δ = 0 (the other cases can

be discussed in a similar way). For this purpose, first let us clarify that the results

of [4] follow from the main results of this paper. Indeed, for an,v = pn−vqv/Rn we

have that

ân,v = ān,v − ān−1,v =

n
∑

j=v

anj −

n−1
∑

j=v

an−1,j

=
1

Rn

n
∑

j=v

pn−jqj −
1

Rn−1

n−1
∑

j=v

pn−1−jqj =
Rj

n

Rn
−

Rj
n−1

Rn−1
,

whence

|ân,v|
2 =

(

Rj
n

Rn
−

Rj
n−1

Rn−1

)2

.

Therefore, if we insert this equality, and take δ = 0 and k = 1 in Theorems 2.1

and 2.2, then Theorems 1.1 and 1.2 follow immediately.

Also, some other known results are included in Theorem 2.1. Namely, for an,v =

pn−v/Pn we get

ân,j = ān,j − ān−1,j

=
1

Pn

n
∑

i=j

pn−i −
1

Pn−1

n−1
∑

i=j

pn−1−i

=
1

PnPn−1
(Pn−1Pn−j − PnPn−1−j)

=
1

PnPn−1
((Pn − pn)Pn−j − Pn(Pn−j − pn−j))

=
pn

PnPn−1

(Pn

pn
−

Pn−j

pn−j

)

pn−j .

Hence, using Theorem 2.1 for δ = 0 and k = 1, the following result holds.
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Corollary 3.1 [1]. If the series

∞
∑

n=0

pn

PnPn−1

{ n
∑

j=1

p2
n−j

(Pn

pn
−

Pn−j

pn−j

)2

|cj|
2

}1/2

converges, then the orthogonal series
∞
∑

j=0

cjϕj(x) is |N, p|-summable almost every-

where.

Also, for an,v = qv/Qn one can find that

ân,j = ān,j − ān−1,j = −
qnQj−1

QnQn−1
.

Therefore, using again Theorem 2.1 for δ = 0 and k = 1, we obtain

Corollary 3.2 [2]. If the series

∞
∑

n=0

qn

QnQn−1

{ n
∑

j=1

Q2
j−1|cj |

2

}
1

2

converges, then the orthogonal series
∞
∑

j=0

cjϕj(x) is |N, q|-summable almost every-

where.

Some other interesting consequences are the corollaries formulated below.

Corollary 3.3. If the series

∞
∑

n=0

(

n2(1−1/k)/kpn

PnPn−1

)k{ n
∑

j=1

p2
n−j

(Pn

pn
−

Pn−j

pn−j

)2

|cj |
2

}k/2

converges for 1 6 k 6 2, then the orthogonal series
∞
∑

j=0

cjϕj(x) is |N, p|k-summable

almost everywhere.

R em a r k 3.1. We note here that:

1. If pn = 1 for all values of n then |N, p|k summability reduces to |C, 1|k summa-

bility

2. If k = 1 and pn = 1/(n+1) then |N, p|k is equivalent to |R, log n, 1| summability.
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Corollary 3.4. If the series

∞
∑

n=0

(

n2(1−1/k)/kqn

QnQn−1

)k{ n
∑

j=1

Q2
j−1|cj |

2

}k/2

converges for 1 6 k 6 2, then the orthogonal series
∞
∑

j=0

cjϕj(x) is |N, q|k-summable

almost everywhere.

A c k n ow l e d gm e n t. The author would like to express his sincerest thanks to

the referee for her/his valuable suggestions for the improvement of this paper.
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