
INSTITUTE OF MATHEMATICS
TH

E
CZ
EC
H
AC

AD
EM

Y
O
F
SC
IE
NC

ES Perfect independent sets with respect
to infinitely many relations

Martin Doležal

WiesławKubiś

Preprint No. 54-2015

PRAHA 2015





Perfect independent sets with respect to infinitely
many relations

Martin Doležal∗
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Abstract

We prove a result on perfect cliques with respect to countably many Gδ rela-
tions on a complete metric space. As an application, we show that a Polish group
contains a free subgroup generated by a perfect set as long as it contains any
uncountable free subgroup. This answers a recent question of G la̧b and Strobin.
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1 Introduction

Given an n-ary relation R on a set X, a subset S of X is said to be R-independent if
for every sequence s1, . . . , sn of pairwise distinct elements of S it holds that

(s1, . . . , sn) /∈ R.

This is one of the standard notions of independence considered widely in the literature,
under various names. The above concept becomes more useful after generalizing to ar-
bitrary families of relations. Namely, assuming R is a family of relations on X (possibly,
each of different arity), we say that S ⊆ X is R-independent if it is R-independent for
every R ∈ R. Independence with respect to a family of relations was considered (with
a slightly more technical definition) by Mycielski [7].

Our aim is to present a dichotomy concerning the existence of independent sets in
completely metrizable topological spaces. Here is our main result:

Theorem 1.1. Let X be a completely metrizable space of weight κ ≥ ℵ0, and let R be a
countable family of Fσ relations on X. Then exactly one of the following two statements
holds.

(S) There exists an ordinal γ < κ+ such that every R-independent set has Cantor-
Bendixson rank < γ (that is, γth Cantor-Bendixson derivative of every R-inde-
pendent set is empty).

(P) There exists a perfect R-independent set.

Recall that a set P is perfect if it is nonempty, completely metrizable and has no isolated
points. Every perfect set contains a compact perfect set, namely, a topological copy of
the Cantor set. Note that the existence of a nonempty (even countable) dense-in-itself
R-independent set already implies (P). Furthermore, (P) holds whenever there exists
an R-independent set of cardinality > κ, as such a set always contains a dense-in-itself
subset of cardinality > κ.

Special case of Theorem 1.1 has already been proved by the second author [5], under
the assumptions that X is separable and R = {R}, where R ⊆ Xn is a symmetric
relation.

Theorem 1.1 is parallel to the following result of Mycielski:

Theorem 1 ([7]). Let X be a completely metrizable space without isolated points, and
let R be a countable family of relations on X such that each R ∈ R is of the first
category. Then there exists a perfect R-independent set.

Clearly, every first category relation is contained in a first category Fσ relation. Thus,
Mycielski’s theorem says that if (S) holds in our dichotomy then at least one of the
relations is not meager.
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It is necessary to point out that the dichotomy totally fails when increasing the Borel
complexity of the relations. Namely, there exists aGδ binary relationR on the Cantor set
2ω such that every maximal R-independent set has cardinality exactly ℵ1 and no perfect
set is R-independent. A concrete example of such a relation was found by Vejnar and
the second author [6, Thm. 2.1], although its existence was proved earlier by Shelah [8].

On the other hand, concerning a single binary relation, there is a significantly stronger
result proved by Feng [3] for separable spaces and by Chaber and Pol [2] for arbitrary
spaces:

Theorem 2. Let X be a continuous image of a complete metric space of weight κ ≥ ℵ0,
and let R ⊆ X2 be a closed symmetric relation containing the diagonal of X. Then
either X =

⋃
α<κXα such that each X2

α ⊆ R for every α < κ or there exists a perfect
R-independent set.

In fact, Chaber and Pol formulated and proved a more technical statement implying
the one above. Theorem 2 can be viewed as a far reaching generalization of the old and
classical theorem of Suslin: every uncountable analytic set contains a perfect subset
(just let R be the diagonal of X).

A recent result of G la̧b and Strobin [4] asserts that a countable product of countable
groups either contains a free group of cardinality 2ℵ0 or else all of its free subgroups are
countable. They also ask whether such a dichotomy holds for all automorphism groups
of countable first order structures. In both cases, the groups carry a natural Polish
topology, therefore our dichotomy provides an affirmative answer to the question of
G la̧b and Strobin, providing additional information concerning the topological structure
of sets of free generators. The details are explained in Section 3.

Clearly, our main result (Theorem 1.1) can be rephrased dually, in terms of Gδ relations.
Namely, given a relation R ⊆ Xn, a set S ⊆ X is an R-clique1 if (s1, . . . , sn) ∈ R
whenever s1, . . . , sn ∈ S are pairwise distinct. Clearly, S is an R-clique if and only if it
is R′-independent, where R′ = Xn \R. The notion of an R-clique, where R is a family
of relations, is defined in the obvious way. Now our dichotomy can be reformulated as
follows:

Theorem 1.2. Let X be a completely metrizable space of weight κ ≥ ℵ0, and let R be a
countable family of Gδ relations on X. Then exactly one of the following two statements
holds.

(S) There exists an ordinal γ < κ+ such that every R-clique has Cantor-Bendixson
rank < γ.

(P) There exists a perfect R-clique.

The next section is devoted to the proof of this statement. Section 3 explains appli-
cations to general topological algebras (including free groups), while the last section
contains specific examples from group theory.

1The name clique comes from graph theory, where R is the edge relation.
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2 Proof of the main result

Recall that the weight of a topological space is the least cardinality of an open base of
the space. A Polish space is a completely metrizable separable topological space. Recall
that a topological space is analytic if it is a continuous image of a Polish space.

For any subset A of a topological space X and for any ordinal γ, we denote by A(γ)

the γ-th Cantor-Bendixson derivative of A. We also define the Cantor-Bendixson rank
of A as the least ordinal γ such that A(γ) = ∅. If such γ does not exist, then the
Cantor-Bendixson rank of A is +∞ which is, by definition, above all ordinals.

Proof of Theorem 1.2. Let R = {Rn}n∈ω. Then each Rn is the intersection of countably
many open relationsRm

n ,m ∈ ω. If we put R̃ = {Rm
n }n,m∈ω thenR-cliques and R̃-cliques

coincide. Therefore without loss of generality, we may suppose that R consists of open
relations.

Suppose that X contains R-cliques of Cantor-Bendixson rank arbitrarily close to κ+.
Let R = {Rn}n∈ω and let rn be such that Rn ⊆ Xrn . Fix a complete metric % ≤ 1 on
X and fix a base B of X of cardinality ≤ κ. We construct inductively a Cantor tree
{Us}s∈2<ω ⊆ B with the following properties:

(1) diam(Us) ≤ 2− length(s) for s ∈ 2<ω.

(2) For every k ∈ ω, for every γ < κ+ there exists an R-clique Ak,γ such that

A
(γ)
k,γ ∩ Us 6= ∅

whenever s ∈ 2k.

(3) For every k ∈ ω, for every i ≤ k, for every pairwise distinct s1, . . . , sri ∈ 2k it
holds that

Us1 × · · · × Usri ⊆ Ri.

Note that (3) is automatically fulfilled when ri > 2k. We start with U∅ := X if r0 > 1
and with U∅ := R0 if r0 = 1. Then (3) holds. The existence of R-cliques of Cantor-
Bendixson rank arbitrarily close to κ+ guarantees (2). Condition (1) holds by the choice
of %. Fix n > 0 and suppose {Us}s∈2<n has already been constructed.

Claim 2.1. Let F be a finite R-clique and fix n ∈ ω. Then there exists a family {Vx}x∈F
of pairwise disjoint open sets such that x ∈ Vx for every x ∈ F and such that for every
i ≤ n and for every S ∈ [F ]ri it holds that∏

x∈S

Vx ⊆ Ri.
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Proof. We may suppose that there is i ≤ n such that ri ≤ |F |, otherwise this is trivial.
For each i ≤ n and for each S ∈ [F ]ri choose a disjoint family of open sets {W S

x,i}x∈S
such that x ∈ W S

x,i for every x ∈ S and such that∏
x∈S

W S
x,i ⊆ Ri.

Let
Vx =

⋂
{W S

x,i : i ≤ n, S ∈ [F ]ri is such that x ∈ S}.

Then {Vx}x∈F is as required.

Now, given γ < κ+, choose Fγ ⊆ A
(γ)
n−1,γ+1∩

⋃
s∈2n−1 Us such that |Fγ ∩Us| = 2 for every

s ∈ 2n−1. In particular, |Fγ| = 2n. Using the claim above, we find a disjoint family of
open sets {Vγ,x}x∈Fγ such that x ∈ Vγ,x for every x ∈ Fγ and such that∏

x∈S

Vγ,x ⊆ Ri

whenever i ≤ n and S ∈ [F ]ri . Without loss of generality, we may assume that the
closure of each Vγ,x is contained in the appropriate Us (where s ∈ 2n−1 is such that
x ∈ Us) and that Vγ,x ∈ B for every x ∈ Fγ and γ < κ+. We may also assume that each
Vγ,x has diameter ≤ 2−n. Using the fact that B has cardinality ≤ κ, there is a cofinal
set C ⊆ κ+ such that the family {Vγ,x}x∈Fγ is equal to some {Vs}s∈2n for every γ ∈ C,
and Vs ⊆ Us�(n−1) for every s ∈ 2n. Define Us := Vs for s ∈ 2n. Then {Us}s∈2≤n clearly
satisfies (1) and (3). Condition (2) is witnessed by An,γ := An−1,γ+1 whenever γ is from
the cofinal set C.

Finally, the Cantor set resulting from the tree {Us}s∈2<ω is an R-clique, thanks to
condition (3).

We also note the following consequence of the main result.

Theorem 2.2. Let X be a continuous image of a completely metrizable space of weight
≤ κ and let R be a countable family of Gδ relations on X. If there exists an R-clique
of cardinality κ+ then there also exists a perfect R-clique.

Proof. Fix a continuous surjection f : X̃ → X, where X̃ is a completely metrizable
space of weight ≤ κ. Given R ∈ R of arity n, define

R̃ = {(x1, . . . , xn) ∈ X̃n : (f(x1), . . . , f(xn)) ∈ R}.

Note that if (x1, . . . , xn) ∈ R̃ then in particular f �{x1,...,xn} is one-to-one. The family

R̃ = {R̃}R∈R is clearly a countable family of Gδ relations on X̃. Suppose that A ⊆ X is
an R-clique of cardinality κ+. Choose Ã ⊆ f−1(A) such that for every a ∈ A, it contains
precisely one element from the preimage f−1(a). Then Ã is an R̃-clique of cardinality
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κ+. Knowing that X̃ has weight ≤ κ, it is easy to see that for every γ < κ+, we have
|Ã\ Ã(γ)| ≤ κ, and so Ã(γ) 6= ∅. It follows that the Cantor-Bendixson rank of Ã is ≥ κ+.
Finally, Theorem 1.2 provides the existence of a perfect R̃-clique P ⊆ X̃. Assuming
that P is compact, f [P ] becomes a perfect R-clique in X.

Corollary 2.3. Let X be an analytic space and let R be a countable family of Gδ

relations on X. If there exists an uncountable R-clique then there also exists a perfect
R-clique.

3 Independence in topological algebras

Recall that an abstract algebra is a structure of the form (X,F), where F is a family
of operations on the set X, where an operation is simply a function f : Xn → X with
n ≥ 1 (the number n is the arity of f). A topological algebra is an algebra (X,F), where
X is a topological space and all operations in F are continuous.

In order to define independence in abstract algebras, we need to recall the notion of a
term and equation. Namely, assuming F = {fXi }i∈I , the language of (X,F) is the set
L = {fi}i∈I of formal operation symbols such that fi has the same arity as fXi . A term
is, roughly speaking, an arbitrary formal operation that can be written as composition
of formal operations from L and replacements of variables by other terms. The precise
definition is recursive, of course. For details we refer to any textbook in model theory
or logic. Given two terms t1, t2 with variables (x1, . . . , xm), the expression

t1(x1, . . . , xm) = t2(x1, . . . , xm)

is called an equation.

Now let S be a set of equations in L and let (X,F) be an algebra whose language
is L. We say that S ⊆ X is S-independent if for every equation t1(x1, . . . , xm) =
t2(x1, . . . , xm) in S, it holds that

t1(s1, . . . , sm) 6= t2(s1, . . . , sm)

whenever s1, . . . , sm ∈ S are pairwise distinct. As an example, note that in the language
of groups (where the operations are (x1, x2) 7→ x1 ·x2, x 7→ x−1, and the constant x 7→ 1)
typical independence is with respect to all equations of the form w(x1, . . . , xm) = 1,
where w ranges over all nontrivial reduced words (which are of course terms). Indepen-
dent sets with respect to all these equations generate free subgroups.

Finally, notice that if (X,F) is a topological algebra whose underlying topology is
Hausdorff, then for every equation t1(x1, . . . , xm) = t2(x1, . . . , xm) the relation

Rt1,t2 = {(a1, . . . , am) ∈ Xm : t1(a1, . . . , am) = t2(a1, . . . , am)}

is closed. Clearly, Rt1,t2-independence is the same as independence with respect to the
equation t1 = t2. Evidently, if the language L is countable then the set of all equations
is countable, too. Thus from our main result we obtain:
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Theorem 3.1. Let (X,F) be a topological algebra of a countable language, whose un-
derlying topology is metrizable and has weight κ ≥ ℵ0. Let S be a fixed set of equations
in the language of (X,F). Then exactly one of the following possibilities hold.

(S) There exists an ordinal γ < κ+ such that γth Cantor-Bendixson derivative of
every S-independent subset of X is empty.

(P) There exists a perfect S-independent set.

In particular, (P) holds whenever there exists a dense-in-itself S-independent set.

As a concrete example, we turn to the variety of groups. The main consequences of
Theorem 3.1 are the following.

Corollary 3.2. Let G be a completely metrizable topological group. If G has a dense-
in-itself set of free generators then G contains a free subgroup generated by a perfect
set.

Corollary 3.3. Let G be an analytic group. Then either all free subgroups of G are
countable or else G contains a free subgroup generated by a perfect set.

Note that the above corollary can be applied to any group of the form Aut(M) with
M a countable first order structure, as such a group carries a natural Polish topology
(namely, it is a closed subgroup of S∞, the countable infinite permutation group). This
provides an affirmative answer to a question of G la̧b and Strobin [4].

4 Other examples from group theory

In this section we demonstrate applications of our dichotomy to selected classes of
groups.

4.1 Free abelian subgroups

It was proved in [1, Theorem 4] that every locally compact non-0-dimensional group
contains a free abelian subgroup generated by a set of cardinality c. Here we provide
examples of groups containing free abelian subgroups generated by a perfect set.

Theorem 4.1. Let G be a completely metrizable topological group of weight ≤ κ. If
for every ordinal γ < κ+ there exists a set Sγ ⊆ G of Cantor-Bendixson rank ≥ γ
generating a free abelian group, then G has a perfectly generated free abelian subgroup.
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Proof. Let Rn be the following n-ary relation: (x1, . . . , xn) ∈ Rn if and only if

xk11 . . . xknn 6= 1

whenever k1, . . . , kn ∈ Z\{0}. Let R be a binary relation defined by (x1, x2) ∈ R if and
only if x1, x2, x

−1
1 , x−12 commute with each other. Clearly, each Rn is a Gδ relation and

R is a closed relation. It is also clear that a subset of G generates a free abelian group
if and only if it is an R-clique, where R = {Rn}n∈N ∪ {R}. Thus, the statement above
follows from Theorem 1.2.

Corollary 4.2. Let G be a completely metrizable topological group. If G has a free
abelian subgroup which is dense-in-itself then G contains a free abelian subgroup gener-
ated by a perfect set.

Corollary 4.3. Let G be an analytic group. Then either all free abelian subgroups of
G are countable or else G contains a free abelian subgroup generated by a perfect set.

4.2 Torsion-free subgroups

Theorem 4.4. Let G be a completely metrizable topological group of weight ≤ κ. If for
every ordinal γ < κ+ there exists a set Sγ ⊆ G of Cantor-Bendixson rank ≥ γ generating
a torsion-free (resp. abelian torsion-free) group, then G has a perfectly generated torsion-
free (resp. abelian torsion-free) subgroup.

Proof. For n, k ∈ N, let Rn,k be the following n-ary relation: (x1, . . . , xn) ∈ Rn,k if and
only if either

w(x1, . . . , xn) = 1

or
(w(x1, . . . , xn))k 6= 1

whenever w is any word with the domain Gn. We put R = {Rn,k}n,k∈N. Clearly, each
Rn,k is a Gδ relation. It is also clear that a subset of G generates a torsion-free group
if and only if it is an R-clique. Thus, the statement for general torsion-free subgroups
follows from Theorem 1.2.

In the case of abelian torsion-free subgroups, we add one more binary relation R defined
by (x1, x2) ∈ R if and only if x1, x2, x

−1
1 , x−12 commute with each other. This relation is

clearly closed (and therefore Gδ).

Corollary 4.5. Let G be a completely metrizable topological group. If G has a torsion-
free (resp. abelian torsion-free) subgroup which is dense-in-itself then G contains a
torsion-free (resp. abelian torsion-free) subgroup generated by a perfect set.

Corollary 4.6. Let G be an analytic group. Then either all torsion-free (resp. abelian
torsion-free) subgroups of G are countable or else G contains a torsion-free (resp. abelian
torsion-free) subgroup generated by a perfect set.
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4.3 Subgroups where all elements have a fixed order

Theorem 4.7. Let F ⊆ {2, 3, . . .} be a finite set. Let G be a completely metrizable
topological group of weight ≤ κ. If for every ordinal γ < κ+ there exists a set Sγ ⊆ G
of Cantor-Bendixson rank ≥ γ generating a group where the order of each nonidentity
element is in F , then G has a perfectly generated subgroup where the order of each
nonidentity element is in F .

Proof. For n ∈ N, let Rn be the following n-ary relation: (x1, . . . , xn) ∈ Rn if and only
for any word w with the domain Gn either w(x1, . . . , xn) = 1 or there is k ∈ F such
that

(i) (w(x1, . . . , xn))i 6= 1 for i = 1, . . . , k − 1,

(ii) (w(x1, . . . , xn))k = 1.

We put R = {Rn}n∈N. Clearly, each Rn is a Gδ relation. It is also clear that a subset of
G generates a group where the order of each nonidentity element is in F if and only if
it is an R-clique. Thus, the statement follows from Theorem 1.2.

Corollary 4.8. Let F ⊆ {2, 3, . . .} be a finite set. Let G be a completely metrizable
topological group. If G has a dense-in-itself subgroup where the order of each nonidentity
element is in F , then G contains a perfectly generated subgroup where the order of each
nonidentity element is in F .

Corollary 4.9. Let F ⊆ {2, 3, . . .} be a finite set and let G be an analytic group.
Then either all subgroups of G where the order of each nonidentity element is in F are
countable, or else G contains a perfectly generated subgroup where the order of each
nonidentity element is in F .

4.4 CA-subgroups

Recall that a group is said to be a CA-group (or a centralizer abelian group) if the
centralizer of any nonidentity element is an abelian subgroup.

Theorem 4.10. Let G be a completely metrizable topological group of weight ≤ κ. If
for every ordinal γ < κ+ there exists a set Sγ ⊆ G of Cantor-Bendixson rank ≥ γ
generating a CA-subgroup then G has a perfectly generated CA-subgroup.

Proof. For n ∈ N, let Rn be the following n-ary relation: (x1, . . . , xn) ∈ Rn if and only
for any words wi, i = 1, 2, 3, where the domain of each wi is Gn it holds under the
notation

w̃i = wi(x1, . . . , xn), i = 1, 2, 3,

that
w̃2 = 1 or w̃1w̃2 6= w̃2w̃1 or w̃3w̃2 6= w̃2w̃3 or w̃1w̃3 = w̃3w̃1.
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We put R = {Rn}n∈N. Clearly, each Rn is a Gδ relation. It is also clear that a subset
of G generates a CA-group if and only if it is an R-clique. Thus, the statement follows
directly from Theorem 1.2.

Corollary 4.11. Let G be a completely metrizable topological group. If G has a dense-
in-itself CA-subgroup then G contains a perfectly generated CA-subgroup.

Corollary 4.12. Let G be an analytic group. Then either all CA-subgroups of G are
countable, or else G contains a perfectly generated CA-subgroup.
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