The Convexity of $\mathbf{C} \mapsto \mathbf{h}(\operatorname{det} \mathrm{C})$

M. Šilhavý

A simple proof is given of the characterization of the convexity of the function $\mathbf{C} \mapsto \mathbf{h}(\operatorname{det} \mathbf{C})$ on positive definite symmetric matrices due to Lehmich et al. (2014). The proof uses the classical characterization of convex functions depending on a symmetric matrix through its eigenvalues due to Davis (1957).

Introduction and proof

Motivated by the study of the neo-Hookean model energy function, Lehmich et al. (2014) examine the convexity of the stored energy function expressed as a function of the Cauchy-Green deformation tensor $\mathbf{C}=\mathbf{F}^{\mathrm{T}} \mathbf{F}$. Specifically, they prove the following result.

Theorem 1 Let $n \geq 2$ and let $h:(0, \infty) \rightarrow \mathrm{R}$ be a twice continuously differentiable function. Then the function

$$
\begin{equation*}
\mathbf{C} \mapsto h(\operatorname{det} \mathbf{C}) \tag{1}
\end{equation*}
$$

is convex on the set SymP of positive definite symmetric n by n matrices if and only if

$$
\begin{equation*}
n s h^{\prime \prime}(s)+(n-1) h^{\prime}(s) \geq 0 \quad \text { and } \quad h^{\prime}(s) \leq 0 \quad \text { for every } \quad s>0 . \tag{2}
\end{equation*}
$$

This was established in Lehmich et al. (2014) by a prevalently computational proof. Another proof was given recently by Spector (2015). Both the two proofs are rather involved compared with the simplicity of the context and result. Here I shall give a short proof based on the following result of (Davis, 1957, Corollary 1):

Theorem 2 Let $\phi: \Delta \rightarrow \mathrm{R}$ be a symmetric (under permutations of the components of $x \in \Delta$) function on an open symmetric domain $\Delta \subset \mathrm{R}^{n}$. Let $D=\left\{\mathbf{C}:\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Delta\right\}$ and let $f: D \rightarrow \mathrm{R}$ be defined by $f(\mathbf{C})=\phi\left(\lambda_{1}, \ldots, \lambda_{n}\right), \mathbf{C} \in D$ where $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ are the eigenvalues of \mathbf{C} respecting the multiplicities but otherwise arranged in arbitrary order. Then D is convex if and only if Δ is convex and f is convex if and only if ϕ is convex.

It is well known that the class of functions f admitting a representation in terms of ϕ as above is exactly the class of isotropic functions, i.e., those satisfying

$$
f\left(\mathbf{Q C Q}^{\mathrm{T}}\right)=f(\mathbf{C})
$$

for all $\mathbf{C} \in D$ and all orthogonal matrices \mathbf{Q} with $\operatorname{det} \mathbf{Q}=1$.

Proof of Theorem 1 The function (1) is convex on SymP if and only if the function $\phi\left(\lambda_{1}, \ldots, \lambda_{n}\right)=h\left(\lambda_{1} \cdots \lambda_{n}\right)$ is convex on $(0, \infty)^{n}$. If $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in(0, \infty)^{n}, s:=\left(\lambda_{1} \cdots \lambda_{n}\right)$, and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathrm{R}^{n}$ then the hessian of ϕ is found to be

$$
H(x, x):=\sum_{i, j=1}^{n} \mathrm{D}_{i j}^{2} \phi\left(\lambda_{1}, \ldots, \lambda_{n}\right) x_{i} x_{j}=\left(s^{2} h^{\prime \prime}(s)+s h^{\prime}(s)\right) \alpha^{2}-s h^{\prime}(s) \beta
$$

where

$$
\alpha=y_{1}+\ldots+y_{n}, \quad \beta=y_{1}^{2}+\ldots+y_{n}^{2}, \quad y_{i}=x_{i} / \lambda_{i} .
$$

Let us show that $H(x, x) \geq 0$ for every $x \in \mathrm{R}^{n}$ if and only if (2) hold at s. To see the necessity, take $y=(1, \ldots, 1)$ and $y=(1,-1,0, \ldots, 0)$, respectively. To prove the sufficiency, note that the numbers α, β satisfy $\alpha^{2} / n \leq \beta$. Indeed, using $y_{i} y_{j} \leq \frac{1}{2}\left(y_{i}^{2}+y_{j}^{2}\right)$, we find

$$
\alpha^{2}=\sum_{i, j=1}^{n} y_{i} y_{j} \leq \sum_{i, j=1}^{n} \frac{1}{2}\left(y_{i}^{2}+y_{j}^{2}\right)=n \beta
$$

Thus if (2) hold, we have

$$
H(x, x)=\left(s^{2} h^{\prime \prime}(s)+s h^{\prime}(s)\right) \alpha^{2}-s h^{\prime}(s) \beta \geq\left(s^{2} h^{\prime \prime}(s)+s h^{\prime}(s)\right) \alpha^{2}-s h^{\prime}(s) \alpha^{2} / n \geq 0
$$

This completes the proof.

Acknowledgment The research was supported by RVO:67985840.

References

Davis, C.: All convex invariant functions of hermitian matrices. Arch. Math., 8, (1957), 276-278.
Lehmich, S.; Neff, P.; Lankeit, J.: On the convexity of the function $c \mapsto f(\operatorname{det} c)$ on positive-definite matrices. Math. Mech. Solids, 19, (2014), 369-375.

Spector, S. J.: A note on the convexity of $c \mapsto h(\operatorname{det} c) . J$. Elasticity, 118, (2015), 251-256.

Address: Institute of Mathematics of the AV ČR, Žitná 25, 11567 Prague 1, Czech Republic email: silhavy@math.cas.cz

