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Abstract. The differentiability of the metric projection P onto a closed convex set K in Rn is

examined. The boundary ãK can have singular points of orders k ¨ −1Ù 0Ù 1ÜÙ n − 1. Here k ¨ −1
corresponds to the interior points of K, k ¨ 0 to regular points of the boundary (i.e., faces),

k ¨ 1Ù Ü Ù n − 2 to edges and k ¨ n − 1 to vertices. It is assumed that for every k the set of all

singular points forms an n − k − 1 dimensional manifold Tk + 1 (possibly empty) of class p ³ 2.
Under a mild continuity assumption it is shown that then P is of class p−1 on an open setW whose

complement has null Lebesgue measure. The setW is the union of the interiors of inverse images

of Tk + 1 under PØ Moreover, a formula for the Fréchet derivative D P on each of these regions

is given that relates D P to the second fundamental form of the manifold Tk + 1Ø The results are

illustrated (a) on the metric projection P from the space Sym of symmetric matrices onto the

convex cone Sym + of positive semidefinite symmetric matrices and (b) on the metric projection

from Sym onto the unit ball under the operator norm. We prove the indefinite differentiability of

these projections on explicitly determined open sets with complements of measure 0 and give

explicit formulas for the derivatives. In (a) the method of proof, based on the above general result,

is different from the previous treatment in [17] and applies to situations [21] where the special

methods of [17] cannot be used. The case (b) is new.
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Chapter 1

Introduction

Let K be a nonempty closed convex set in Rn. Denote for every x X Rn by P�x� the
unique element of K such that

‖x − P�x�‖ ¨ inf !‖x − w‖ Ú w X K)

where ‖ ċ ‖ denotes the euclidean norm on RnØ The map P is called the metric
projection of Rn onto K Ø The purpose of this paper is to examine the differentiability
of P on U Ú¨ Rn ∼ K . It is well–known that P is nonexpansive, i.e.,

‖P�x� − P�y�‖ ² ‖x − y‖

for every xÙ y X Rn and thus Rademacher’s theorem [7; Theorem 3.1.6] implies that
P has a Fréchet derivative at almost every point of Rn with respect to the Lebesgue
measure. Alternatively, since P is the derivative of the convex function

f �x� ¨ 1
2
‖x‖ 2 − 1
2
‖x − P�x�‖ Ù

x X Rn [27, 12], the differentiability of P almost everywhere follows from the
Alexandrov theorem on the second differentiability of convex functions [3, 2], or
from the differentiability almost everywhere of maximal monotone maps [18, 2].

Holmes [12], considering projections onto convex sets in a possibly infinite
dimensional Hilbert space H proved that if K has non–empty interior and if the
boundary ãK of K is of locally class p, where p ³ 2Ù then P is locally of class
p − 1. He also gives a formula for D P�x�Ø We refer to Corollary 2.3.5, below, for a
more detailed discussion of Holmes’ result in the case of a finite dimensional space.
Fitzpatrick & Phelps [8] proved that under a natural invertibility condition on the
derivative the smoothness of class p of the boundary ofK is also necessary for P to be
of class p − 1 on H ∼ K Ø The differentiability in [12] and [8] is the classical Gateaux
or Fréchet differentiability. The use of the generalized derivatives was suggested by
Hiriart-Urruty [11], explored by Noll [20], and applied to the convex cone of positive
semidefinite matrices by Malick & Sendov [17].
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We here restrict to finite dimensional euclidean spaces, adhere to Fréchet deriva-
tives, and note that many useful convex sets arising in mathematical analysis have
boundaries with singularities forming edges and corners:

1.1 Examples. The following convex sets have boundaries with singular points:
(i) the n dimensional simplexes in Rn,
(ii) the orthant of points with nonnegative coordinates in RnÙ
(iii) the set of all positive semidefinite m � m real symmetric matrices,
(iv) the unit ball B in the space Sym of m � m real symmetric matrices under the

operator norm
ν�a� ¨ max!‖aξ‖ Ú ξ X RmÙ ‖ ξ‖ ² 1) (1.1)

a X SymÙ where ‖ ċ ‖ is the euclidean norm on Rm.
The singular points in (i) and (ii) are obvious; Examples 1.1(iii) and (iv) are treated
below in Chapters 4 and 5, respectively, with a detailed description of singularities.

The boundaries with singularities are not covered by the aforementioned works,
and the purpose of the present paper is to examine the differentiability of P in these
situations. Our main motivation is the differentiability of the stress function of no–
tension masonry materials of continuum mechanics [6, 9, 16, 21], which is closely
related to Example 1.1(iii); similarly a Hencky plastic material [24, 23] with the
Tresca yield criterion is related to Example 1.1(iv).

Throughout the note, let n be a positive integer and K a closed convex subset of
Rn.

For every y X K define the normal cone Nor + �K Ù y� ⊂ Rn to K at y by

Nor + �K Ù y� ¨  b X Rn Ú �y − z� ċ b ³ 0 for every z X K(Ø

For every integer r with 0 ² r ² n define the set

Tr ¨  y X K Ú dim Nor + �K Ù y� ¨ r( (1.2)

where the dimension of Nor + �K Ù r� is defined to be the dimension of the span of
Nor + �K Ù x�Ø We say that y X K is a singular point of order k ¨ −1Ù 0Ù 1ÙÜ Ù n − 1 if
it belongs to Tk + 1Ø Here k ¨ −1 corresponds to the interior points of K , k ¨ 0 to
regular points of the boundary, k ¨ 1ÙÜ Ù n − 2 to edges and k ¨ n − 1 to vertices. For
convenience we stipulate the equality dim Nor + �K Ù y� ¨ r in (1.2) and note that a
more standard definition of a singular point of order k requires dim Nor + �K Ù y� ³ rÙ
i.e., dim Nor + �K Ù y� ³ k + 1Ø

It is well known that the set of all singular points of K (i.e., those with k ³ 2) is
small; see Anderson & Klee, Jr. [5], Zajı́ček [26] and Alberti [1] and the references
therein. Alberti [1] proves the following result:

1.2 Theorem. Let r be an integer such that 0 ² r ² nØ Then Tr is �Hn − rÙ n − r�
rectifiable subset of Rn of class 2Ø

Here for any integer s such that 0 ² s ² nÙ the symbol H s denotes the s–dimensional
Hausdorff measure in Rn and a Borel subset A of Rn is said to be �H sÙ s� rectifiable
subset of Rn of class 2 if there exist s dimensional submanifoldsMi ⊂ R

n, i ¨ 1ÙÜ Ù
of class 2 such that

H
s�A∼

ð
U
i ¨ 1
Mi� ¨ 0Ø
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Alberti [1] also shows that the regularity of TrÙ described in Theorem 1.2 cannot
be improved. We note that the regularity of Tr is 2Ù not 1 as in many cases in the
geometric measure theory [7, 4].

We shall not employ Theorem 1.2 in this paper. However, we use it to motivate
our main assumption, in which r is an integer with 0 ² r ² nØ

1.3 Assumption Ar. The set Tr is (a possibly empty) n − r dimensional manifold of
class p ³ 2.

This will be combined with the following technical continuity assumption. Denote
by ri Nor + �K Ù y� is the relative interior of Nor + �K Ù y� in span Nor + �K Ù y� and by
Nor�TrÙ y� the normal space to TrÙ i.e., the orthogonal complement in Rn of the
tangent space Tan�TrÙ y� to Tr at yØ

1.4 Assumption Br. If y X Tr and z X ri Nor + �K Ù y� then there exists an ε ± 0 such
that  z ′ X Nor�TrÙ y

′� Ú ‖z ′ − z‖ ° ε( ⊂ Nor + �K Ù y ′� for all y ′ X Tr sufficiently
close to yØ

Both these assumptions are satisfied by Examples 1.1(i)–(iv) with p ¨ ðÛ in Examples
1.1(iii), (iv) only certain dimensions are effective, i.e., Tr © ó only for certain values
of r (see below).

The author does not know if Assumption Ar and the convexity of K does not
imply BrØ For r ¨ 1, the situation is very simple.

1.5 Remark. If A1 holds then also B1 holds.

Proof For each y X T1 we have

Nor + �K Ù y� ¨  tm�y� Ú t ³ 0( (1.3)

where m Ú T1 r Rn is the unit normal of class 1. Then if z X ri Nor + �K Ù y� ¨
 tm�y� Ú t ± 0( and ε ¨ ‖z‖/2Ù the assertion holds by the continuity of mØ è

Under Ar and Br, the small sets Tr are the images, under the projection PÙ of
large sets, i.e., sets with nonempty interior in Rn. Namely, we put

Vr ¨ U y + Nor + �K Ù y� Ú x X Tr( (1.4)

and defineWr as the interior of VrØ The following result will be proved:

1.6 Theorem. Let Ar and Br hold for all r with 0 ² r ² nØ Then P is of class p − 1
on the open set Unr ¨ 0Wr whose complement E has null n dimensional Lebesgue

measure.

Moreover, a formula is given for the derivative of P on each Wr (see (2.3.6), below)
which relates D P to the second fundamental form of riemannian geometry of the
manifold Tr (see, e.g., [15; Section VII.3] and the definition in Section 2.2, below).
For r ¨ 1 (regular points of the boundary) the general formula for D P reduces to that
derived in [12].

The general results are illustrated in two matrix cases. The first case is the
differentiability of the metric projection P from the space Sym of symmetricm � m
matrices onto the convex cone Sym + of positive semidefinite symmetric matrices
and on a formula for the derivative. These problems have been definitively treated
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in the paper by Malick and Sendov [17], where it was proved that P is of class ð
on the set InvSym of invertible symmetric matrices and a formula was given for the
derivative at points x X InvSymØ The proof in [17] is based on the formula for the
second derivative of a function of the eigenvalues of the matrix argument. The proof
in the present note is based on the decomposition of the boundary of Sym + into
sets Sym +

ρ Ù ρ ¨ 0ÙÜ ÙmÙ of matrices of rank ρ. Each of these sets forms a class ð
manifold of dimension ρ�2m − ρ + 1�/2 (see Proposition 4.2.1, below), which gives
singularities of order k ¨ �m�m + 1� − ρ�2m − ρ + 1��/2 − 1Ø

The second example is the metric projection onto the unit ball Sym1 under the
operator norm. The structure of singularities of the boundary of Sym1 is somewhat
more complicated but explicitly tractable. The manifolds forming the faces, edges,
vertices, etc., are parameterized by two parameters σ and τ giving the multiplicity of
the occurrence of the eigenvalues 1 and −1 of the boundary matrix and the formula
for the derivative reflects this. Each of these sets forms a manifold of dimension
�m�m + 1� − σ�σ + 1� − τ�τ + 1��/2Ø

The main step in the proofs of these examples is the evaluation of the second
fundamental forms of the manifolds on the boundary of the specific convex sets. The
application of the general result then follows easily.



Chapter 2

The general theory

This chapter is devoted to the differentiability of the metric projection onto a closed
convex set if a finite dimensional euclidean space.

2.1 Properties of metric projections

We here summarize the main properties of metric projections. For every set M let 1M
denote the identity transformation onM Ø

2.1.1 Proposition. The following assertions hold:

(i) for every y X K Ù Nor + �K Ù y� is a closed convex cone in Rn with vertex at the

origin [22; Proposition 6.5];
(ii) putting Nor + �K Ù x� ¨ ó if x X Rn ∼ K then Nor + �K Ù ċ�, interpreted as a

multivalued map form Rn to Rn [22; Chapter 5], is maximal monotone, i.e.,

�a − b� ċ �x − y� ³ 0 (2.1.1)

for every xÙ y X Rn and every a X Nor + �K Ù x�, b X Nor + �K Ù y� and Nor + �K Ù ċ�
cannot be genuinely extended to a multivalued map satisfying (2.1.1) [22; Chapter
12];

(iii) the inverses of the indicated multivalued maps satisfy

Nor + �K Ù ċ� ¨ P − 1 − 1
Rn Ù P ¨ �1
Rn + Nor + �K Ù ċ�� − 1Ù (2.1.2)

where 1
Rn is the identity map on RnÙ [22; Proposition 6.17].

It follows from (2.1.2) that the collection of closed convex sets

 y + Nor + �K Ù y� Ú y X K(

is pairwise disjoint and the union is the whole of RnÛ hence the sets Vr from Section
1 satisfy
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n

U
r ¨ 0
Vr ¨ R

n (2.1.3)

with the union disjoint.
We say that a map F Ú Rn r ZÙ where Z is a finite dimensional normed space, is

differentiable at x X Rn if there exists a linear transformation L from Rn into Z such
that

lim
zrx

‖F�z� − F�x� − L�z − x�‖/‖z − x‖ ¨ 0Ø

We call L the derivative of F at x and write D F�x��h� ¨ Lh for each h X RnØ

2.1.2 Proposition. The following assertions hold:

(i) the map P is nonexpansive and monotone, i.e.

‖P�x� − P�y�‖ ² ‖x − y‖ Ù �P�x� − P�y�� ċ �x − y� ³ 0

for any xÙ y X Rn [22; Corollary 12.20];
(ii) if the derivative D P�x� of P at x X Rn exists, then it is positive semidefinite,

i.e., b ċ D P�x��b� ³ 0 for any b X Rn [22; Proposition 12.3] and symmetric, i.e.,

b ċ D P�x��a� ¨ a ċ D P�x��b� for any aÙ b X Rn [8; Proposition 2.2].

2.1.3 Proposition. Let y X K and x X ri Nor + �K Ù y�. If P is differentiable at x and

if R and Q denote the orthogonal projections onto the span of Nor + �K Ù y� and onto

the orthogonal complement of Nor + �K Ù y� then

D P�x�Q ¨ QD P�x� ¨ D P�x� (2.1.4)

and

D P�x�R ¨ 0Ø (2.1.5)

Proof Equation (2.1.5): If h X span Nor + �K Ù y� then x + th X Nor + �K Ù y� for all
t X R with |t| sufficiently small. For all such t then P�x + th� ¨ P�x� and thus
D P�x��h� ¨ 0Ù which proves (2.1.5). Combining that relation with Q ¨ 1

Rn
− P we

obtain D P�x�Q ¨ D P�x� and taking the transpose using the symmetry of D P�x� we
obtain QD P�x� ¨ D P�x�Ø Thus we have (2.1.4). è

2.2 Second fundamental form

The second fundamental form of a manifoldM imbedded in an ambient riemannian
manifold M ′ measures the discrepancy between the covariant derivative relative to
M ′ and M, respectively. In the present case, the ambient manifold is an euclidean
space.

2.2.1 Definitions.

(i) For any manifoldM of class 1 in R ν [7; Subsection 3.1.19] (where ν is a positive
integer) and for any y X M, we define the tangent space Tan�MÙ y� as the set of
all b X R ν such that there exists a class 1 map a satisfying

a Ú �−εÙ ε� r MÙ a�0� ¨ yÙ =�0� ¨ bØ (2.2.1)
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(ii) We define the normal space Nor�MÙ y� to M at z as the orthogonal complement
of Tan�MÙ y� in R ν.

(iii) If F Ú M r V is a map from M to a finite dimensional vectorspace V and y X M
andM is of class σ, we say that F is of class s ² σ onM if f�ξ is of class s on an
open subset of R dimM for any class σ local parameterization ξ of M Ø

(iv) If F is of class 1 on M then for every y X M there exists a linear transformation
D F�y��ċ� from Tan�MÙ y� into V satisfying

D F�y��b� ¨
d

dt
F�a�t��

∣

∣

t ¨ 0

for any class 1map a as in (2.2.1). We call D F�y� the derivative of F at yØ We do
not indicate the fact that D F�y��ċ� is a surface derivative relative toM as this is
uniquely given by the domain of F Ø

(v) We denote by Q Ú M r M
ν � ν the map which associates with each y X M the

orthogonal projection Q�y� fromR ν onto Tan�MÙ y�Ø Here M
ν � ν is the set of all

linear transformations from R ν into itself.
(vi) A vectorfield β Ú M r Rn is said to be tangential (toM) if Qβ ¨ βØ

2.2.2 Proposition (See [15; Section VII.3]). Let M ⊂ R ν be a class p ³ 2 manifold.

There exists a class p − 2 map B onM, which associates with any y X M a symmetric

bilinear form B�y� Ú Tan�MÙ y� � Tan�MÙ y� r Nor�MÙ y� such that for every two

class 1 tangential vectorfields βÙ γ Ú M r R ν we have

B�y��β�y�Ù γ�y�� ¨ D γ�y��β�y�� − Q�y�D γ�y��β�y��Ø

One has

B�y��bÙ c� ¨ DQ�y��b� c

for any y X M and bÙ c X Tan�MÙ y�Ø

2.2.3 Definition. The form B from the above proposition is called the second funda-
mental form of M (more precisely of the imbedding of M in R ν).

2.2.4 Proposition. Let M be a class p ³ 2 manifold with M ⊂ ãK where K ⊂ Rn is

a closed convex set. Then for any y X M, any z X Nor + �K Ù y� and b X Tan�MÙ y� we

have z ċ �B�y��bÙ b�� ² 0Ø

Proof Let a be a class 2 map as in (2.2.1). We have

z ċ �a�t� − a�0�� ² 0

for all t with the equality at t ¨ 0 and hence

z ċ Ìa�0� ² 0Ø (2.2.2)

By differentiating Ëa�t� ¨ Q�a�t�� Ëa�t� we obtain

Ìa�0� ¨ B�y��bÙ b� + Q�y�Ìa�0�Û

inserting into (2.2.2) we obtain the result. è
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2.3 The derivative of P

In this section we prove that under Assumption Ar the map P is of class p − 1 on
the interior Wr of the set Vr in (1.4) and establish a formula for D P�x� for x X WrØ
The situation Wr ¨ ó is not excluded and only in the following section we invoke
Assumption Br to show that Wr © ó if Tr © ó and that the union Unr ¨ 0Wr has the
complement of null Lebesgue measure.

2.3.1 Definitions. Let r be an integer, 0 ² r ² nØ
(i) We denote by Mr the set

Mr ¨  �yÙ z� X Rn � Rn Ú y X TrÙ z X Nor�TrÙ y�(

and by Nr its subset

Nr ¨  �yÙ z� X Rn � Rn Ú y X TrÙ z X Nor + �K Ù y�(Ø

(ii) Define a map Φr Ú Mr r R
n by

Φr�yÙ z� ¨ y + z

for every �yÙ z� X MrØ

2.3.2 Proposition. Φr maps Nr homeomorphically onto Vr with the inverse

�Φr|Nr�
− 1�x� ¨ �P�x�Ù x − P�x�� (2.3.1)

for every x X Vr when Nr and Vr are endowed with the relative topologies.

Proof That Φr maps Nr bijectively onto Vr and Formula (2.3.1) holds is a direct
verification; clearly Φr|Nr is continuous and the continuity of P and (2.3.1) imply
that �Φr|Nr�

− 1 is continuous. è

Let r be a fixed integer with 0 ² r ² n and Assume that Ar holds. For each
y X Tr we denote by Tan�TrÙ y� ⊂ Rn and Nor�TrÙ y� ⊂ Rn the tangent and
normal spaces to Tr at yÙ and by Qr�y� and Rr�y� the orthogonal projections onto
Tan�TrÙ y� and Nor�TrÙ y�, respectively. The maps Qr and Rr on Tr are of class p − 1
with values in the space of linear transformations on RnØ Further, for every y X Tr
let Br�y� Ú Tan�TrÙ y� � Tan�TrÙ y� r Nor�TrÙ y� denote the second fundamental
form of Tr. Let furthermore for any z X Rn the symbol Cr�yÙ z� denote a linear
transformation from Tan�TrÙ y� into itself defined by

c ċ Cr�yÙ z�b ¨ z ċ Br�y��bÙ c� (2.3.2)

for every bÙ c X Tan�TrÙ y�Ø Note that Proposition 2.2.4 implies that for any y X Tr
and z X Nor + �K Ù y� the linear transformation Cr�yÙ z� is symmetric and negative
semidefinite on Tan�TrÙ y�Ø

2.3.3 Lemma. Let r be a fixed integer with 0 ² r ² n and Assume thatAr holds. Then

(i) Mr ⊂ R
n � Rn is an n dimensional manifold of class p − 1 and the map Φr is

of class p − 1Û
(ii) for every �yÙ z� X Mr the derivative D Φr is given by

D Φr�yÙ z��ξÙ α� ¨ ξ − Cr�yÙ z�ξ + Rr�y�α
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for every �ξÙ α� X Tan�MrÙ �yÙ z��Û
(iii) for every �yÙ z� X Nr the derivative D Φr�yÙ z� maps Tan�MrÙ �yÙ z�� bijectively

onto Rn and we have

D Φr�yÙ z�
− 1λ ¨ �ξÙ α�

for any λ X Rn where

ξ ¨
[

1
Tan�Tr Ù y� − Cr�yÙ z�

] − 1
Qr�y�λÙ (2.3.3)

α ¨ λ −
[

1
Tan�Tr Ù y� − Cr�yÙ z�

] − 1
Qr�y�λÛ (2.3.4)

the existence of the inverse follows from the negative semidefinite character of

Cr�yÙ z�Ø

Proof We note that (i) is immediate.
(ii): Let �yÙ z� X Mr and �ξÙ α� X Tan�MrÙ �yÙ z��Ø There exists a class 1 map

γ ¨ �aÙ c� Ú �−εÙ ε� r Mr such that γ�0� ¨ �yÙ z� and Ëγ�0� ¨ �ξÙ α�Ø We have
c�t� ¨ Rr�a�t��c�t� for every t X �−εÙ ε�. Differentiating with respect to t at t ¨ 0,
using Br ¨ DQr ¨ −DRr and invoking (2.3.2) we obtain

α ¨ −Cr�yÙ z�ξ + Rr�y�αÛ (2.3.5)

differentiating

Φr�a�t�Ù c�t�� ¨ a�t� + c�t�

and using (2.3.5), we obtain

D Φr�yÙ z��ξÙ α� ¨ ξ + α ¨ ξ − Cr�yÙ z�ξ + Rr�y�αØ

(iii): Let us prove that for every �yÙ z� X Nr the derivative D Φr�yÙ z�
maps Tan�MrÙ �yÙ z�� bijectively onto RnØ Indeed, let �yÙ z� X Nr and �ξÙ α� X
Tan�MrÙ �yÙ z�� and assume that

D Φr�yÙ z��ξÙ α� ¨ ξ − Cr�yÙ z�ξ + Rr�y�α ¨ 0Ø

Multiplying by Qr�y�, we obtain

ξ − Cr�yÙ z�ξ ¨ 0Ù

and since ξ X Tan�TrÙ y� and since Cr�yÙ z� is negative semidefinite, we see that the
last equation gives ξ ¨ 0Ø The proof of (i) provides D Φr�yÙ z��ξÙ α� ¨ ξ + α and as
this must vanish, we have α ¨ 0Ø Thus D Φr�yÙ z� maps Tan�MrÙ �yÙ z�� injectively
into Rn and as the dimensions of these two spaces coincide, we see that D Φr�yÙ z�
is a bijection. Finally, solve the equation

D Φr�yÙ z��ξÙ α� ¨ ξ − Cr�yÙ z�ξ + Rr�y�α ¨ λ

where λ X RnØ Multiplying by Qr�y�, we obtain

ξ − Cr�yÙ z�ξ ¨ Qr�y�λÙ

and hence (2.3.3). Equation (2.3.4) then follows from ξ + α ¨ λØ è



12 2. The general theory

2.3.4 Theorem. Let r be an integer with 0 ² r ² n and assume that Ar holds. Then

we have the following assertions:

(i) for every y X Tr and x X y+Nor + �TrÙ y� the transformationCr�yÙ x−y� is negative

semidefinite in the sense that b ċ Cr�yÙ x − y�b ² 0 for every b X Tan�TrÙ y�Û
(ii) the map P is of class p − 1 onWrÙ and we have, for every x X WrÙ

D P�x� ¨
[

1
Tan�Tr Ù y� − Cr�yÙ x − y��

− 1Qr�y� (2.3.6)

where y ¨ P�x�Û the existence of the inverse is guaranteed by (i).

Proof (i): Follows from Proposition 2.2.4.
(ii): On Nr the map Φr is injective by Proposition 2.3.2 and of class p − 1 on the

relative interior of Nr by (2.3.1). By Lemma 2.3.3 the derivative of Φr is injective
at any point of NrØ The inverse of Φr on Nr is given by (2.3.1); differentiating this
relation, we obtain

D�Φr|Nr�
− 1�x� ¨ �D P�x�Ù 1

Tan�Tr Ù y� − D P�x��Ø

Combining with the value of the inverse of D Φr calculated in Lemma 2.3.3(iii), we
obtain the formula for D P�x� in (2.3.6). è

2.3.5 Corollary. Let ãK be an n − 1 dimensional surface of class p ³ 2Ø Then P is of

class p − 1 on Rn ∼ K and we have

D P�x� ¨
[

1
Tan�ãKÙ y� + ‖x − y‖L�y�

] − 1
Q�y� (2.3.7)

for every x X Rn ∼ K with y ¨ P�x�, where Q�y� is the orthogonal projection onto

Tan�ãK Ù y�, and L�y� ¨ Dm�y� is the surface derivative of the outer normal m to K

at y. If f Ú Rn r R is a class 2 convex function such that f ¨ 1 and D f © 0 on ãK
with f ² 1 on K then

D P�x� ¨
[

1
Tan�ãKÙ y� + ‖x − y‖Q�y�D2 f �y�/‖ D f �y�‖

] − 1
Q�y�Ø (2.3.8)

We here interpret D2 f �y� as a symmetric linear transformationRn r Rn associated
to the equally denoted quadratic form. In particular, if f is the Minkowski functional
of K relative to any fixed interior point x� of K Ù i.e.,

f �y� ¨ inf  t ± 0 Ú y X t�K − x�� + x�(Ù y X RnÙ

then f �y� ¨ 1 on ãK ; hence (2.3.8) is then the formula [12; Equation (3.3) and Lemma
4], here restricted to the finite dimensional case.

Proof Under the hypothesis,

Nor�ãK Ù y� ¨  tm�y�Û t X R(

for each y X ãK wherem is the outer normal to ãK in the sense of differential geometry.
Formula (1.3) then follows and thus A1 holds. From the riemannian geometry we
then have

B�y��bÙ c� ¨ −m�y��L�y�b ċ c�
for any bÙ c X Tan�ãK Ù y�Ø Formula (2.3.6) reduces to (2.3.7). If f is as in the statement
of the corollary, then

m�y� ¨ sgn D f �y�

for each y X ãK where sgn b ¨ b/|b| for any nonzero b X RnØ Consequently

D sgn�D f � ¨ �‖ D f ‖ 2D2 f − D f � D2 f D f �/‖ D f ‖ 3 ª QrD2 f /‖ D f ‖

and (2.3.8) follows. è
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2.4 Exceptional points

In Theorem 2.3.4 we proved the differentiability of P on each open setWrÙ 0 ² r ² nÙ
under Ar. The differentiability is not guaranteed on the closed exceptional set

E ¨ Rn ∼
n

U
r ¨ 0
WrØ

We shall now invoke Assumption Br to prove that E is small in the sense that it is a
closed Lebesgue null set (and hence in particular, Unr ¨ 0Wr is an open dense set).

2.4.1 Lemma. For each integer r with 0 ² r ² n such that Br holds we have

Wr ¨ U y + ri Nor + �K Ù y� Ú y X Tr( (2.4.1)

and

Vr ⊂ clWrØ

Proof If x X Vr is a point of Wr then the ball B of center x and sufficiently small
radius belongs toWr which implies that BP�P�x� +Nor + �K Ù P�x��	 is a relatively
open subset of P�x�+Nor + �K Ù P�x�� and hence x X P�x�+ ri Nor + �K Ù P�x��Ø This
shows that we have the inclusion “⊂” in (2.4.1). Conversely, Assumption Br implies
that if z X ri Nor + �K Ù y� then �yÙ z� is an interior point of the set Nr. Since Φr is a
homeomorphism, we see that y+z is an interior point of VrØ This proves “]” in (2.4.1)
and hence (2.4.1) holds. Furthermore, if b X Vr ∼ U y + ri Nor + �K Ù y� Ú y X Tr(
then b X y + Nor + �K Ù y� ∼ �y + ri Nor + �K Ù y�� for some y X Tr and hence there
exists a sequence ciÙ i ¨ 1ÙÜ Ù in ri Nor + �K Ù y� such that y + ci r bØ We have
y + ci X U y + ri Nor + �K Ù y� Ú y X Tr(Ø è

For each convex set C we denote by rbdC the relative boundary of C, i.e.,
rbdC ¨ cl C∼ riCØ As we have (2.1.3), it follows from Lemma 2.4.1 that if Br holds
then

E ¨
n

U
r ¨0
Er (2.4.2)

where
Er ¨ U y + rbd Nor + �K Ù y� Ú y X Tr(Ø

We now invoke the coarea and area formulas of the geometric measure theory to
show that Er is Lebesgue negligible.

2.4.2 Lemma. Let r be an integer with 0 ² r ² n and assume that Ar holds. Then

(i) the set

®r Ú¨ �Φr|Nr�
− 1�Er� ⊂ Mr ⊂ R

n � Rn (2.4.3)

has the H
n measure 0 (here H

n is the n dimensional Hausdorff measure in

R2n ª Rn � Rn);
(ii) the set Er has null Lebesgue measure in RnØ

Proof (i): By ArÙ the set Tr is �Hn − rÙ n − r� rectifiable and if f Ú Mr r Tr is a map
defined by f �xÙ z� ¨ x for every �xÙ z� X Mr then f is class p − 1 ³ 1. The general
coarea formula (see [19; Theorem 2.4]) gives

H
n�®r� ª �

®r

dHn ¨ �
Tr

H
r�®r P f

− 1 y(� dHn − r�y�
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where we note that the jacobian of f is 1Ø For each y X Tr we have

®r P f
− 1 y( ¨ rbd Nor + �K Ù y� �  y(

and the convex subset rbd Nor + �K Ù y� of the r dimensional linear space Nor�TrÙ y�
has vanishing r dimensional measure H

r. Indeed, on Nor�TrÙ y� the Hausdorff
measure H r coincides with the r dimensional Lebesgue measure on Nor�TrÙ y� and
the relative boundary of any convex set in an r dimensional space has vanishing
Lebesgue measure as a general assertion (this follows, e.g., as a very special case of
Theorem 1.2).

(ii): Since by (2.4.3)1 the map �Φr|Nr�
− 1 maps Er bijectively onto ®rÙ and its

derivative is injective everywhere, by the area formula [7; Theorem 3.2.3(1)] we have

�
Er

J dLn ¨ H
n�®r� ¨ 0

by (i), where J is the everywhere positive jacobian of the diffeomorphism �Φr|Nr�
− 1.

Thus Ln�Er� ¨ 0Ø è

2.4.3 Proof of Theorem 1.6. In view of Theorem 2.3.4, only L
n�E� ¨ 0 remains

to be proved. But this follows from Lemma 2.4.2 and (2.4.2). è



Chapter 3

The space of symmetric matrices and the

generalized inverse

In Chapters 4 and 5, below, the results of Chapter 2 will be used to determine the
derivative of the projection from the space Sym of symmetric m � m matrices onto
the convex cone Sym + of positive semidefinite matrices and of the projection from
Sym onto the unit ball Sym1 under the operator norm. Here m is a positive integer.
The preceding theory applies with n ¨ m�m + 1�/2Ø

We denote by Lin the space of linear maps from Rm to itself endowed with
the euclidean scalar product a ċ b ¨ tr�abT�Ù aÙ b X Lin; we denote by ‖ ċ ‖ the
associated euclidean norm. As mentioned above, Sym + is the convex cone of positive
semidefinite matrices; we further denote by Sym − the convex cone of negative
semidefinite matrices. For each y X Sym we denote by q�y� and r�y� the (linear)
orthogonal projectors onto ran y and ker yÙ respectively, q�y� + r�y� ¨ 1

Rm .
Let N0 denote the set of all nonnegative integers.
We shall use the following notation:

3.1 Proposition. For each x X Sym there exists a unique x − 1 X Sym such that

x − 1x ¨ x x − 1 ¨ q�x�Ø

We call x − 1 the generalized inverse of x in the present paper. Note that if x ¨
diag�x1ÙÜ Ù xm� then x − 1 ¨ diag�ξ1ÙÜ Ù ξm� where

ξi ¨















1/xi if xi © 0Ù

0 if xi ¨ 0Ø
(3.4)

Proof This follows from (3.4) and the spectral theorem for symmetric matrices. è



Chapter 4

Projection onto the set of positive semidefinite matrices

As mentioned in the introduction, the metric projection P onto the closed convex
cone Sym + is closely related to the no–tension masonry materials of continuum
mechanics. We here calculate the derivative of P and detail the singularities of the
boundary of Sym + Ø

4.1 The formula for P; orthogonal invariance

Throughout the chapter, let ρ be an integer with 0 ² ρ ² m. We denote by Symρ and
Sym

+
ρ the set of all elements y of Sym and Sym + Ù respectively, with rank y ¨ ρØ We

put
~�ρ� ¨ �m�m + 1� − ρ�2m − ρ + 1��/2Ø

Let P Ú Sym r Sym + be the metric projection onto the closed convex cone Sym +

relative to the metric ‖ ċ ‖ Ø

4.1.1 Remarks.

(i) We have

P�uxuT� ¨ uP�x�uT

for each x X Sym and each orthogonal transformation u X Lin.
(ii) If x ¨ diag�x1ÙÜ Ù xm�where xi ± 0 for i ¨ 1ÙÜ Ù ρ and x

a
² 0 for a ¨ ρ+1ÙÜ Ùm

then

P�x� ¨ diag�x1ÙÜ Ù xρÙ 0ÙÜ Ù 0�Ø

(iii) If P is differentiable at x X Sym then it is also differentiable at uxuT for any

orthogonal transformation u and the derivatives satisfy

D P�uxuT��uhuT� ¨ uD P�x��h�uT
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for each h X SymØ Because of that, it suffices to calculate the derivative of P at

diagonal matrices only.

Proof All this follows from the relation uSym + uT ¨ Sym + for each orthogonal
transformation u X LinØ The details are left to the reader. è

4.2 Second fundamental form of Sym+
ρ

In this section we view Sym +
ρ as a riemannian manifold imbedded in the euclidean

space SymØ The riemannian structure of Sym +
ρ has been recently explored in [25]

but the second fundamental form of the imbedding, the main goal of this section, is
not treated there.

We denote by qρ and rρ the restrictions of q and r to Sym +
ρ Ø

4.2.1 Proposition.

(i) The set Sym +
ρ is a connected manifold of dimension ρ�2m− ρ+ 1�/2 of class ðÛ

(ii) if y X Sym +
ρ then the tangent and normal spaces to Sym +

ρ at y are given,

respectively, by

Tan�Sym +
ρ Ù y� ¨  b X Sym Ú rρ�y�brρ�y� ¨ 0(Ù (4.2.1)

Nor�Sym +
ρ Ù y� ¨  z X Sym Ú rρ�y�zrρ�y� ¨ z(Ù (4.2.2)

with

dim Nor�Sym +
ρ Ù y� ¨ ~�ρ�Û

(iii) the orthogonal projections Q~�ρ��y� and R~�ρ��y�Ù onto Tan�Sym +
ρ Ù y� and

Nor�Sym +
ρ Ù y� respectively, are given by

R~�ρ��y�c ¨ rρ�y�crρ�y�Ù Q~�ρ��y�c ¨ c − rρ�y�crρ�y� (4.2.3)

for any y X Sym +
ρ and c X SymØ

If for y X Sym +
ρ we denote by H ⊂ Rm the range of y with dimH ¨ ρ so that

corresponding to the decomposition Rm ¨ H � H þ the matrix y has the block form

y ¨

[

y0 0

0 0

]

Ù

where y0 is a symmetric ρ � ρ matrix. Then each b X Tan�Sym +
ρ Ù y� has the form

b ¨

[

b0 b1

bT1 0

]

Ù

while each z X Nor�Sym + Ù y� has the form

z ¨

[

0 0

0 z0

]

Ø

Here b0 is a symmetric ρ � ρmatrix, b1 is a ρ � �m− ρ�matrix and z0 is a symmetric
�m − ρ� � �m − ρ� matrix.
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We set the indexes of the projections and of the second fundamental form (below)
equal to ~�ρ� to comply with the notation of the general theory in Chapter 2, since
we shall see in the next section that T~�ρ� ¨ Sym

+
ρ Û more precisely we have (4.3.3)

(below).

Proof (i): This follows from [10; Proposition 1.1, Section 5.1]. (ii): The same
proposition asserts that

Tan�Sym +
ρ Ù y� ¨  cy + ycT Ú c X Lin(Ø

Thus if z X Nor�Sym +
ρ Ù y�Ù we have, for any c X LinÙ

cy ċ z + ycT ċ z ¨ 2c ċ zy ¨ 0

which implies zy ¨ 0 and as y is positive semidefinite, this further implies zqρ�y� ¨ 0Û
hence zrρ�y� ¨ z and consequently rρ�y�zrρ�y� ¨ zØ This proves (4.2.2). To prove
(4.2.1), we note that if c X Sym then rρ�y�crρ�y� X Nor�Sym +

ρ Ù y� by (4.2.2) and
hence if b X Tan�Sym +

ρ Ù y�Ù we have b ċ rρ�y�crρ�y� ¨ rρ�y�brρ�y� ċ c ¨ 0. Hence
rρ�y�brρ�y� ¨ 0Ù which proves (4.2.1). (iii): immediate. è

4.2.2 Proposition. The second fundamental form B~�ρ� of Sym +
ρ is given by

B~�ρ��y��bÙ c� ¨ rρ�y��by
− 1c + cy − 1b�rρ�y�

for any y X Sym +
ρ and bÙ c X Tan�Sym +

ρ Ù y�Ø

Proof Note first that the map qρ is of class ð on Sym +
ρ . Differentiating the relation

qρ�y�y ¨ y for each y X Sym +
ρ in the direction b X Tan�Sym +

ρ Ù y� we obtain

D qρ�y��b�y + qρ�y�b ¨ bÛ

multiplying by y − 1 we then obtain

D qρ�y��b�qρ�y� ¨ rρ�y�by
− 1 (4.2.4)

for any y X Sym +
ρ Ø

Differentiating (4.2.3)1 we obtain

DR~�ρ��y��b�c ¨ D rρ�y��b�crρ�y� + rρ�y�cD rρ�y��b�

¨ −D qρ�y��b�crρ�y� − rρ�y�cD qρ�y��b�Ø

In particular if c X Tan�Sym +
ρ Ù y� then from (4.2.1) we find crρ�y� ¨ qρ�y�crρ�y� and

thus the last line and (4.2.4) provide

DR~�ρ��y��b�c ¨ −D qρ�y��b�qρ�y�crρ�y� − rρ�y�cqρ�y�D qρ�y��b�

¨ −rρ�y��by
− 1c + cy − 1b�rρ�y�Ø

Consequently
DQ~�ρ��y��b�c ¨ rρ�y��by

− 1c + cy − 1b�rρ�y�Ø

The definition of B~�ρ� then gives the result. è

4.3 The normal cone to Sym+

We here determine the sets Nor + �Sym + Ù y�Ù y X Sym + and verify that the convex
cone K ¨ Sym + satisfies Assumptions Ar and Br for all r ¨ 0ÙÜ Ùm�m + 1�/2Ø
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4.3.1 Proposition. If y X Sym +
ρ then

Nor + �Sym + Ù y� ¨  z X Sym − Ú rρ�y�zrρ�y� ¨ z(Ù (4.3.1)

ri Nor + �Sym + Ù y� ¨  z X Sym − Ú rρ�y�zrρ�y� ¨ zÙ rank z ¨ m − ρ(Ø (4.3.2)

Proof Equation (4.3.1): It follows from the fact that Sym + is a convex cone that
Nor + �Sym + Ù y� is the set of all elements of the dual cone that are perpendicular to
y (see [22; Example 11.4(b)]). The dual cone is Sym − and thus

Nor + �Sym + Ù y� ¨  z X Sym − Ú z ċ y ¨ 0(Û

however, since z X Sym − and y X Sym + Ù the relation z ċ y ¨ 0 implies zy ¨ 0Û this in
turn implies that zqρ�y� ¨ 0. We finally conclude that rρ�y�zrρ�y� ¨ zØ

Equation (4.3.2): It follows from (4.3.1) that all elements z of Nor + �Sym + Ù y�
have all nonpositive eigenvalues and satisfy rank z ² m − ρØ Since the ordered m
tuple of eigenvalues is a lipschitzian function of the matrix, one sees that the set on
the right hand side of (4.3.2) is open in Nor�Sym +

ρ Ù y� ª span Nor + �Sym + Ù y�Ø
On the other hand, if rank z ° m − ρ then each neighborhood of z contains a matrix
Ïz X Nor�Sym +

ρ Ù y� which is not negative semidefinite. Thus each such a z is on the
boundary of Nor + �Sym + Ù y�Ø è

4.3.2 Corollary.

(i) For each r ¨ 0ÙÜ Ùm�m + 1�/2 the set Tr from (1.2) is

Tr ¨











Sym
+
ρ if r ¨ ~�ρ� where ρ ¨ 0ÙÜ ÙmÙ

ó else.
(4.3.3)

(ii) Assumption Ar is satisfied for all r ¨ 0ÙÜ Ùm�m + 1�/2 with p ¨ ðØ

Proof (i): Comparing (4.3.1) with (4.2.2), we see that dim Nor + �Sym + Ù y� ¨
dim Nor�Sym + Ù y� ¨ ~�ρ� for each y X Sym +

ρ Ù which gives the result.
(ii): Follows from (i) and Proposition 4.2.1(i). è

We denote by InvSym the set of all injective transformations from SymØ

4.3.3 Corollary.

(i) For each r ¨ 0ÙÜ Ùm�m + 1�/2 the set Vr from (1.4) is

Vr ¨































 x X Sym Ú rank P�x� ¨ ρ( if r ¨ ~�ρ�

where ρ ¨ 0ÙÜ ÙmÙ

ó else,

(4.3.4)

and its interior Wr is

Wr ¨































 x X InvSym Ú rank P�x� ¨ ρ( if r ¨ ~�ρ�

where ρ ¨ 0ÙÜ ÙmÙ

ó else.

(4.3.5)

(ii) Assumption Br is satisfied for all r ¨ 0ÙÜ Ùm�m + 1�/2Ø

Proof (i): Equation (4.3.4) follows directly from the definition and from Corollary
4.3.2(i). Equation (4.3.5): The set on the right hand side of (4.3.5) is open since
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if x belongs to this set then ρ eigenvalues of x are positive and m − ρ eigenvalues
negative. Since the ordered m tuple of eigenvalues is a lipschitzian function of xÙ
the assertion about positive and negative eigenvalues is stable under the perturbation
of xØ This proves that we have “]” sign in (4.3.5). Conversely, if x is such that
rank P�x� ¨ ρÙ rank�x−P�x�� ° m− ρ then at least one eigenvalue of x vanishes and
thus any neighborhood of x contains an element Ïx with rank Ïx ¨ ρ + 1Ø This element
does not belong to V~�ρ� which proves that x is a boundary point of V~�ρ�Ø Thus we
have “⊂” in (4.3.5).

(ii): Follows from (4.3.2) and the fact each perturbation Ïz X Nor�Sym −
ρ Ù Ïy� of a

matrix z X Sym − with rank z ¨ n − ρ is a matrix with rank Ïz ¨ n − ρØ è

4.4 The derivative of P

We can finally determine D PØ

4.4.1 Remark. For any y X Sym +
ρ and z X Nor + �Sym + Ù y�Ù the map Cr�yÙ z� [see

(2.3.2)] is defined only if r ¨ ~�ρ� for some ρ ¨ 0ÙÜ Ùm and then

C~�ρ��yÙ z�b ¨ y
− 1bz + zby − 1 (4.4.1)

for every b X Tan�Sym +
ρ Ù y�Ø

Proof This follows from Proposition 4.2.2. è

4.4.2 Theorem. The map P is infinitely differentiable on InvSymÛ if x X InvSym and

c X Sym then D P�x��c� ¨ b where b X Sym is the unique solution of the equation

b − y − 1b�x − y� − �x − y�by − 1 ¨ c − r�y�cr�y� (4.4.2)

where y ¨ P�x�Ø Equation (4.4.2) splits into

q�y�bq�y� ¨ q�y�cq�y�Ù

r�y�bq�y� − �x − y�by − 1 ¨ r�y�cq�y�Ù

r�y�br�y� ¨ 0Ø































(4.4.3)

If x ¨ diag�x1ÙÜ Ù xm� where xi ± 0 for i ¨ 1ÙÜ Ù ρ and x
a
° 0 for a ¨ ρ + 1ÙÜ Ùm

then

P�x��c� ¨

[

α β

βT 0

]

where α and β are ρ � ρ and ρ � �m − ρ� matrices given by

αi j ¨ ci jÙ 0 ² iÙ j ² ρÙ (4.4.4)

βia ¨ �1 − x
a
/xi�

− 1ciaÙ 1 ² i ² ρÙ ρ + 1 ² a ² mØ (4.4.5)

Formulas (4.4.4) and (4.4.5) show the coincidence with the result [17; Theorem 2.7].

Proof Denoting D P�x��c� ¨ b we have from (2.3.6)
[

1
Tan�Sym +ρ Ù y� − C~�ρ��yÙ x − y�

]

b ¨ Q~�ρ��y�c
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which by (4.4.1) and Q~�ρ��y�c ¨ c − r~�ρ��y�cr~�ρ��y� reads as (4.4.2). Multiplying
(4.4.2) by q�y� from the left and right we obtain (4.4.3)1; multiplying (4.4.2) by r�y�
from the left and q�y� from the right we obtain (4.4.3)2; multiplying (4.4.2) by r�y�
from the left and from the right we obtain (4.4.3)3. Finally, if x ¨ diag�x1ÙÜ Ù xm�
where xi ± 0 for i ¨ 1ÙÜ Ù ρ and x

a
° 0 for a ¨ ρ + 1ÙÜ Ùm then y ¨ P�x� ¨

diag�x1ÙÜ Ù xρÙ 0ÙÜ Ù 0� and x − y ¨ diag�0ÙÜ Ù 0Ù xρ + 1ÙÜ Ù xm�Ø Then with the
notation

b ¨

[

α β

βT γ

]

we see that (4.4.3)1 reduces to (4.4.4), the transpose of (4.4.3)2 reads in the component
form

�1 − x
a
/xi�βi a ¨ ci aÙ 1 ² i ² ρÙ ρ + 1 ² a ² nÙ

which gives (4.4.5), and (4.4.3)3 provides γ ¨ 0Ø This also shows the uniqueness of
the solution of (4.4.2). è



Chapter 5

Projection onto the unit ball under the operator norm

In comparison with Sym + Ù the structure of the boundary of the unit ball Sym1 under
the operator norm is more complicated in that the manifolds forming the boundary of
Sym
1 must be parameterized by two parameters σ and τ determining the multiplicity

of the occurrence of the numbers 1 and −1 in the spectrum of the boundary point.
(In particular, it will be clear that the unit matrix 1
Rm is at the corner of Sym1Ø)

The formula for the derivative of the projection onto Sym1 is accordingly more
complicated also.

5.1 The formula for P; orthogonal invariance

For each a X Sym we denote bym + �a� the orthogonal projection onto the span of all
eigenvectors corresponding to eigenvalues bigger than or equal to 1 and bym − �a� the
orthogonal projection onto the span of all eigenvectors corresponding to eigenvalues
lower than or equal to −1. We also write

m��a� ¨ 1Rm −m + �a� −m − �a�Ø

Let ν Ú Symr �0Ù ð� denote the operator norm on SymÙ defined in (1.1) and let

Sym
1 ¨  y X Sym Ú ν�y� ² 1(

be the unit ball under νØ Throughout the chapter, let P be the metric projection onto
Sym1Ø

For each σÙ τ X N0 such that σ + τ ² m and σ ² τ let

~�σÙ τ� ¨ �σ�σ + 1� + τ�τ + 1��/2Ø

If ~�σÙ τ� is mentioned in the subsequent treatment, it is always assumed that σÙ
τ X N0, σ + τ ² m and σ ² τ.
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5.1.1 Remark. The projection P satisfies Items (i) and (iii) of Remarks 4.1.1.

5.1.2 Proposition. For each x X SymÙ

P�x� ¨ m + �x� −m − �x� + m��x�xm��x�Ø (5.1.1)

If x ¨ diag�x1ÙÜ Ù xm� with

x1 ³ x2 ³Ü³ xσ ³ 1 ± xσ + 1 ³Ü³ xm − τ ± 1 ³ xm − τ + 1 ³Ü³ xmØ (5.1.2)

then

P�x� ¨ diag�1ÙÜ Ù 1Ù xσ + 1ÙÜ Ù xm − τÙ −1ÙÜ Ù −1� (5.1.3)

with the number 1 occurring σ times and the number −1 occurring τ times.

Proof In view of the spectral theorem and Remarks 5.1.1, it suffices to prove the
diagonal case. Thus let x ¨ diag�x1ÙÜ Ù xm� satisfy (5.1.2) and let y be given by the
right hand side of (5.1.3). Then

‖x − y‖ 2 ¨ �x1 − 1�
2+Ü+�xσ − 1�
2 + �xm − τ + 1 + 1�
2+Ü+�xm + 1�
2Ø

Let now w X Sym1 have the eigenvalues 1 ³ w1 ³Ü³ wm ³ −1Ø By [13; exercise, p.
370] we have

m

�
i ¨ 1

�xi − wi�
2 ² ‖x − w‖ 2

and since

�x1 − 1�
2+Ü+�xσ − 1�
2 + �xm − τ + 1 + 1�
2+Ü+�xm + 1�
2 ²

m

�
i ¨ 1

�xi − wi�
2Ù

we have ‖x − y‖ ² ‖x − w‖ Ø This proves (5.1.3). Formula (5.1.1) then easily follows
in the diagonal case and the general case is established via Remark 5.1.1. è

5.2 Second fundamental form of Sym�σÙ τ�

For any σÙ τ X N0 such that σ+ τ ² m and σ ² τ let Sym �σÙ τ� be the set of all y X Sym
whose ordered m-tuple of eigenvalues satisfies

1 ¨ λ1 ¨Ü¨ λσ ± λσ + 1 ³Ü³ λm − τ ± λm − τ + 1 ¨Ü¨ λm ¨ −1 (5.2.1)

or
1 ¨ λ1 ¨Ü¨ λτ ± λτ + 1 ³Ü³ λm − σ ± λm − σ + 1 ¨Ü¨ λm ¨ −1Ø (5.2.2)

5.2.1 Proposition. For any σÙ τ X N0 such that σ + τ ² m and σ ² τ we have the

following:

(i) the set Sym �σÙ τ� is a class ð manifold and

dim Sym �σÙ τ� ¨ m�m + 1�/2 − ~�σÙ τ�Û

(ii) for any y X Sym�σÙ τ�,

Tan�Sym �σÙ τ�Ù y� ¨  b X Sym Ú m + �y�bm + �y� ¨ m − �y�bm − �y� ¨ 0(Ù
(5.2.3)

Nor�Sym �σÙ τ�Ù y� ¨  z X Sym Ú m + �y�zm + �y� +m − �y�zm − �y� ¨ z( (5.2.4)
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for any y X Sym1Û
(iii) the orthogonal projectors onto the tangent and normal spaces to Sym �σÙ τ� at

y X Sym�σÙ τ� are

Q~�σÙ τ��y�c ¨ c −m + �y�cm + �y� −m − �y�cm − �y�Ù (5.2.5)

R~�σÙ τ��y�c ¨ m + �y�cm + �y� +m − �y�cm − �y� (5.2.6)

for any c X SymØ

Corresponding to the decomposition

Rm ¨ m + �y�R
m � m��y�R

m �m − �y�R
m

the elements b X Tan�Sym �σÙ τ�Ù y� have the block form

b ¨







0 b � + Ù �� b � + Ù − �

�b � + Ù ���T b ��Ù �� �b � − Ù ���T

�b � + Ù − ��T b � − Ù �� 0







while the elements z X Nor�Sym �σÙ τ�Ù y� the block form

z ¨







z � + Ù + � 0 0

0 0 0

0 0 z � − Ù − �






Ø

Proof Consider the part of Sym�σÙ τ� defined by (5.2.1); the case (5.2.2) is entirely
analogous. To prove that the indicated part of Sym �σÙ τ� is a manifold of the indicated
dimension, we take y X Sym �σÙ τ�, and write

y ¨ µ + + w − µ − (5.2.7)

where µ± ¨ m±�y�. Let  f1ÙÜ Ù fm( be an orthonormal basis in Rm such that

µ + is the projection on the span of  f1ÙÜ Ù fσ(,

µ − is the projection on the span of  fσ + 1ÙÜ Ù fm − τ(











(5.2.8)

and let ζ ¨ �ζij�
m − τ − σ
iÙ j ¨ 1 be the matrix of w in the basis  fσ + 1ÙÜ Ù fm − τ(Ù more

precisely let

w ¨
m − σ − τ

�
iÙ i ¨ 1

ζijfσ + i � fσ + jØ (5.2.9)

The array
α ¨ � f1ÙÜ Ù fm(Ù ζ� (5.2.10)

completely determines the transformation y uniquely by the requirements (5.2.7),
(5.2.8), and (5.2.9). To obtain a one–to–one relationship, we must introduce an
equivalence relation identifying arrays α that are related by orthogonal matrices. To
this end, for any positive integer ωÙ let O�ω� be the Lie group of orthogonal ω � ω
matrices and for any q X O�ω� and any orthonormal system  o1ÙÜ Ù oω( in Rm let
q o1ÙÜ Ù oω( be the orthogonal system resulting from  o1ÙÜ Ù oω( by the action of
the tranformation qØ Let O be the set of all orthonormal bases inRm and Z the system



5.2. Second fundamental form of Sym�σÙ τ� 25

of all �m− σ− τ� � �m− σ− τ� symmetric matrices, and consider the set ÎM ¨ O � Z

of all arrays α as in (5.2.10). Then the arrays α and

Ïα ¨ � Ïf1ÙÜ Ù Ïfm(Ù Ïζ�

from ÎM lead via (5.2.7), (5.2.8), and (5.2.9) to the same matrix if and only if there
exist q X O�σ�Ù r X O�m − σ − τ� and s X O�t� such that

 Ïf1ÙÜ Ù Ïfσ( ¨ q f1ÙÜ Ù fσ(Ù

 Ïfσ + 1ÙÜ Ù Ïfm − τ( ¨ r fσ + 1ÙÜ Ù fm − τ(Ù

 Ïfm − τ + 1ÙÜ Ù Ïfτ( ¨ s fm − τ + 1ÙÜ Ù fτ(Ù

Ïζ ¨ rζrTØ























































(5.2.11)

Relations (5.2.11) introduce an equivalence ≈ on ÎM and we denote by M
′ the

quotient space M
′ ¨ ÎM/ ≈ modulo this equivalence. For a given equivalence class

α ′ X M
′ the value y determined by (5.2.7), (5.2.8), and (5.2.9) is independent of the

choice of α X α ′ and these relations establish a one–to–one correspondepnce between
Sym �σÙ τ� and M

′Ø To complete the proof of (i), it now suffices to prove that M ′ is a
class ð manifold with

dimM
′ ¨ m�m + 1�/2 − ~�σÙ τ� (5.2.12)

and that the above correspondence is of class ðØ To prove that M ′ is a class ð
manifold, one notes that ÎM ¨ O � Z is a class ð manifold since O is isomorphic
with O�m� since each  f1ÙÜ Ù fm( X O can be written uniquely as

 f1ÙÜ Ù fm( ¨ u e1ÙÜ Ù em(

with u X O�m� and  e1ÙÜ Ù em( is the canonical basis in RmØ Hence

dimO ¨ m�m − 1�/2Ø

Similarly Z is a class ð manifold and

dimZ ¨ �m − σ − τ��m − σ − τ + 1�/2Û

consequently

dim ÎM ¨ �m�m − 1� + �m − σ − τ��m − σ − τ + 1��/2Ø

That the quotient space M
′ is a class ð manifold follows from [14; Proposition 4.3,

p. 44] by noting that the action of the product groupO�σ� � Q~�σÙ τ��m− σ− τ� � O�t�
defined by (5.2.11) is properly discontinuous. The correspondence is of class ð since
so are the involved relations. Finally, the dimension is calculated by noting that

dim�O�σ� � Q~�σÙ τ��m − σ − τ� � O�t�� ¨ �σ�σ − 1�

+ �m − σ − τ��m − σ − τ + 1� + τ�τ − 1��/2

and thus

dimM
′ ¨ dim ÎM − dim�O�σ� � Q~�σÙ τ��m − σ − τ� � O�t��

which gives (5.2.12).
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(ii): Let us prove the formula for the tangent space. Let a be a class 1 curve in
Sym

�σÙ τ� satisfying (2.2.1). Write

µ±�t� ¨ m±�a�t��Ø (5.2.13)

From µ±�t� ¨ ±a�t�µ±�t� we obtain the following relations for the values of the
derivatives at τ ¨ 0 Ú

Ëµ± ¨ ±bµ± ± y Ëµ± (5.2.14)

Multiplying from the left by µ± we obtain

µ± Ëµ± ¨ ±µ±bµ± ± µ±y Ëµ± ¨ ±µ±bµ± + µ± Ëµ±
and hence

µ±bµ± ¨ 0Ø

This prove that we have the inclusion sign “⊂” in (5.2.3). However, since the dimen-
sion of the linear space on the right hand side of (5.2.3) is m�m+ 1�/2 − ~�σÙ τ�� and
the dimension of the manifold Sym �σÙ τ� is the same, we have actually the equality
sign in (5.2.3).

Equation (5.2.4) is a direct consequence of (5.2.3).
(iii): Equations (5.2.5) and (5.2.6) define the symmetric idempotent transforma-

tions with the required ranges. è

5.2.2 Proposition. For any σÙ τ X N0 such that σ + τ ² m and σ ² τ, the second

fundamental form of Sym �σÙ τ� at y X Sym �σÙ τ� is given by

B~�σÙ τ��y��bÙ c� ¨ −m + �y��b�1Rm − y�
− 1c + c�1
Rm − y�

− 1b	m + �y�

+ m − �y��b�1Rm + y�
− 1c + c�1
Rm + y�

− 1b	m − �y�
(5.2.15)

for any bÙ c X Tan�Sym �σÙ τ�Ù y�Ø

Proof Let y, b and c be as in the statement and let a be a class 1 function satisfying
(2.2.1) and define µ± by (5.2.13). Equation (5.2.14) can be rearranged as

�1 ∓ y� Ëµ± ¨ ±bµ±Ø

Noting that the projector on the range of 1 ∓ y is 1 − µ± we obtain

�1 − µ±� Ëµ± ¨ ±�1 ∓ y� − 1bµ±Ø (5.2.16)

Differentiating tw Q~�σÙ τ��a�t��c at τ ¨ 0 by using (5.2.5) we obtain

Q~�σÙ τ��y��b�c ¨ − Ëµ + cµ + − µ + c Ëµ + − Ëµ − cµ − − µ − c Ëµ − Ø

Since c X Tan�Sym �σÙ τ�Ù y�Ù we have µ±c ¨ 0 and thus

Q~�σÙ τ��y��b�c ¨ − Ëµ + �1 − µ + �cµ + − µ + c�1 − µ + � Ëµ +
− Ëµ − �1 − µ − �cµ − − µ − c�1 − µ − � Ëµ −

and combining with (5.2.16) we obtain (5.2.15). è

5.3 The normal cone to Sym1

We here determine the normal cone at the points of the ball and verify Assumptions
Ar and BrØ
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5.3.1 Proposition. If σÙ τ X N0 satisfy σ + τ ² m and σ ² τ and y X Sym �σÙ τ� then

Nor + �Sym1Ù y� is the set of all z X Sym such that

m + �y�zm + �y� +m − �y�zm − �y� ¨ zÙ (5.3.1)

m±�y�zm±�y� X Sym
± (5.3.2)

with

dim Nor + �Sym1Ù y� ¨ ~�σÙ τ� (5.3.3)

and ri Nor + �Sym1Ù y� is the set of all z from Nor + �Sym1Ù y� such that exactly σ + τ
eigenvalues of z are different from 0Ø

Proof Equation (5.3.1) follows from the characterization of the normal space in
Proposition 5.2.1(ii). To prove (5.3.2), we note that any z X Nor�Sym �σÙ τ�Ù y� is of
the form

z ¨ z + + z −

where
m±�y�z±m±�y� ¨ z±

Then for any b X Sym1 we have

0 ³ z + ċ �b − y� ¨ z + ċ �m + �y�bm + �y� −m + �y��

This is satisfied by all b X Sym1 if and only if z + X Sym + Ø Similarly, the inequality

0 ³ z − ċ �b − y� ¨ z − ċ �m − �y�bm − �y� + m − �y��

leads to z − X Sym − Ø The assertion about the relative interior is a consequence. è

5.3.2 Corollary.

(i) For each integer r with 0 ² r ² m�m + 1�/2 we have

Tr ¨











Sym
�σÙ τ� if r ¨ ~�σÙ τ� for some σÙ τÙ

ó else.

(ii) Assumption Ar is satisfied for all r ¨ 0ÙÜ Ùm�m + 1�/2Ø

Proof (i) follows from (5.3.3) and the fact that the value r ¨ ~�σÙ τ� determines σ
and τ uniquely up to a permutation. (ii) follows from (i) and Proposition 5.2.1(i). è

5.3.3 Corollary.

(i) For each integer r with 0 ² r ² m�m + 1�/2 we have Vr © ó if an only if

r ¨ ~�σÙ τ� for some σÙ τ. If this is the case, Vr is the set of all x X Sym such

that exactly σ eigenvalues are ³ 1 and exactly τ eigenvalues are ² −1 or exactly

τ eigenvalues are ³ 1 and exactly σ eigenvalues are ² −1.
(ii) The interior Wr of Vr is the set of all x X Vr such that exactly σ + τ eigenvalues

of x have absolute value ± 1Ø
(iii) Assumption Br is satisfied for all r ¨ 0ÙÜ Ùm�m + 1�/2Ø

Proof (i): This follows from the definition of Vr and (5.3.2) of Proposition 5.3.1. (ii):
This follows from (i) and the lipschitzian continuity of the eigenvalues. (iii) follows
from (i) and (ii). è
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5.4 The derivative of P

We can finally determine D PØ

5.4.1 Remark. For any y X Sym1Ù z X Nor + �Sym �σÙ τ�Ù y�, the map Cr�yÙ z� is

defined only if r ¨ ~�σÙ τ� for some σÙ τ and then

Cr�yÙ z�b ¨ − �1
Rm − y�

− 1bz + − z + b�1Rm − y�
− 1

+ �1
Rm

+ y� − 1bz − + z − b�1Rm + y�
− 1

(5.4.1)

b X Tan�Sym �σÙ τ�Ù y� where

z± ¨ m±�y�zm±�y�Ø (5.4.2)

Proof This follows from Proposition 5.2.2. è

5.4.2 Theorem. The map P is infinitely differentiable on the set Sym# of all x X Sym
such that ν�x� © 1Ø If x X Sym# then x X Wr where r ¨ ~�σÙ τ� for some σÙ τ. For any

d X Sym one has D P�x��d� ¨ b where b X Tan�Sym �σÙ τ�Ù y� is the unique solution

of the equation

�1
Tan�Sym�σÙ τ� Ù y� − Cr�yÙ x − y��b ¨ c (5.4.3)

where y ¨ P�x�Ù c ¨ Q~�σÙ τ��y�d. If we write b and c in the block form

b ¨







0 b � + Ù �� b � + Ù − �

�b � + Ù ���T b ��Ù �� �b � − Ù ���T

�b � + Ù − ��T b � − Ù �� 0







Ù c ¨







0 c � + Ù �� c � + Ù − �

�c � + Ù ���T c ��Ù �� �c � − Ù ���T

�c � + Ù − ��T c � − Ù �� 0







corresponding to the decomposition

Rm ¨ m + �y�R
m � m��y�R

m �m − �y�R
m

then the block components satisfy the following system of decoupled equations

b � + Ù �� + z + b
� + Ù ���1
Rm

− y� − 1 ¨ c � + Ù ��Ù

b � − Ù �� − z − b
� − Ù ���1
Rm

+ y� − 1 ¨ c � − Ù ��Ù

b � + Ù − � + 1
2
z + b

� + Ù − � − 1
2
b � + Ù − �z − ¨ c � + Ù − �Ù

b ��Ù �� ¨ c ��Ù ��Ù















































(5.4.4)

where we use the notation (5.4.2). If x ¨ diag�x1ÙÜ Ù xm�where the diagonal elements

satisfy (5.1.2) then

b � + Ù ��
ai ¨ 1 − xi

xa − xi
c � + Ù ��

ai for 1 ² a ² σÙ σ + 1 ² i ² m − τÙ

b � − Ù ��
bi ¨ 1 + xi

xi − xb

c � − Ù ��
bi for σ + 1 ² i ² m − τÙ m − τ + 1 ² b ² mÙ

b � + Ù − �
ab

¨ 2
xa − xb

c � + Ù − �
ab

for 1 ² a ² σÙ m − τ + 1 ² b ² mÙ

b
��Ù ��
ij ¨ c

��Ù ��
ij for σ + 1 ² iÙ j ² m − τØ



















































(5.4.5)
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Proof Theorem 2.3.4 asserts the infinite differentiability of P on the union of all sets
Wr, 0 ² r ² m�m+ 1�/2Ø The characterization ofWr in Corollary 5.3.3 shows that this
union is exactly Sym#Ø This proves the assertion about the infinite differentiability of
PØ The assertion that x X Sym# must belong to some Wr for r ¨ ~�σÙ τ� for some σÙ
τ then follows that for all other values of r the set Wr is empty. The formula (2.3.6)
gives (5.4.3), including its unique solvability.

Let us now prove the system (5.4.4). We combine (5.4.3) with the value of
Cr calculated in (5.4.1). Multiplying (5.4.3) by m + �y� from the left and using
m + �y��1Rm + y�

− 1 ¨ 1
2
m + �y�, we obtain

m + �y�b + z + b�1Rm − y�
− 1 − 1
2
m + �y�bz − ¨ m + �y�cØ

Multiplying by m��y� and m − �y� from the right, noting that

b � + Ù �� ¨ m + �y�bm��y�Ù b � + Ù − � ¨ m + �y�bm − �y�Ù

c � + Ù �� ¨ m + �y�cm��y�Ù c � + Ù − � ¨ m + �y�cm − �y�Ù

and using the mutual commutativity of all encountered matrices except for bÙ we
obtain (5.4.4)1Ù 3Ø Similarly, multiplying (5.4.3) by m − �y� from the left and using
m − �y��1Rm − y�

− 1 ¨ 1
2
m − �y� provides

m − �y�b +
1

2
m − �y�bz + − z − b�1Rm + y�

− 1 ¨ m − �y�c

and a multiplication by m��y� from the right yields (5.4.4)2Ø Finally, (5.4.4)4 is
obtained by noting thatm��y�Cr�yÙ x− y�m��y� ¨ 0Ø The proof of (5.4.4) is complete.

The system (5.4.5) is obtained from the system (5.4.4) by a direct substitution
using that y ¨ diag�y1ÙÜ Ù ym� where

y
a
¨ 1 for 1 ² a ² σÙ yi ¨ xi for σ+1 ² i ² m−τÙ y

b
¨ −1 for m−τ+1 ² b ² mÙ

and

z + ¨ diag�x1 − 1ÙÜ Ù xσ − 1Ù 0ÙÜ Ù 0�Ù z − ¨ diag�0ÙÜ Ù 0Ù xm − τ + 1 + 1ÙÜ Ù xm + 1�Ø

è
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