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A remark on polyconvex functions with symmetry
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Abstract For a given polyconvex function W , among all associated convex functions g of

minors there exists the largest one; this function inherits all symmetry properties of W Ø For a

given associated (not necessarily the largest) function gÙ one can still find an associated (possibly

not the largest) function with the symmetry of W . This function is constructed by averaging of

symmetry conjugated functions over the symmetry group ofW using Haar’s measure. It follows

that if a symmetric polyconvex function W has class k ¨ 0Ù Ü Ù ð associated function, then the

averaging produces a symmetric associated function that is class k as well.
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1 Introduction

Let Lin be the set of all linear transformations F from R
n to R

n or the corresponding

matrices, n ¨ 2Ù 3Ø Let Lin + be the set of all F X Lin with det F ± 0Ø The function

W Ú Lin + r ÏR is said to be polyconvex if there exists a convex function g such that

if n ¨ 2:















g Ú Lin � �0Ù ð� r ÏR and

W �F� ¨ g�F Ù det F� for every F X Lin + Ù

if n ¨ 3:















g Ú Lin � Lin � �0Ù ð� r ÏR and

W �F� ¨ g�F Ù cof F Ù det F� for every F X Lin + Û























































(1.1)

here cof F ¨ �det F�F −T if F X Lin + Ø
The notion is due to Morrey [5; Theorem 4.4.10], but the terminology is due to

Ball [1], who applied the polyconvexity to prove the existence theorems in nonlinear

elasticity under realistic assumptions. In particular, he showed that polyconvexity is

consistent with the principle of objectivity, the optional isotropy of the body, and the

injectivity requirement, i.e., respectively,
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W �QF� ¨ W �F�Ù F X Lin + Ù Q X SO�n�Ù

W �FRT� ¨ W �F�Ù F X Lin + Ù R X SO�n�Ù

W �F� r ð if det F r 0Ø































(1.2)

For a givenW , the convex function g occurring in (1.1), which is called the associated

convex function in this note, is highly nonunique.

The purpose of this note is to show that if the material satisfies any of the two

symmetry requirements (1.2)
1Ù 2 then the associated convex function g can be chosen

to satisfy, respectively,

if n ¨ 2:











































g�QF Ù δ� ¨ g�F Ù δ�
or, optionally, for an isotropic body,

g�FQÙ δ� ¨ g�F Ù δ�
for every �F Ù δ� X Lin � �0Ù ð�Ù Q X SO�2�Ù

if n ¨ 3:











































g�QF ÙQGÙ δ� ¨ g�F ÙHÙ δ�
or, optionally, for an isotropic body,

g�FQÙGQÙ δ� ¨ g�F ÙHÙ δ�
for every �F ÙGÙ δ� X Lin � Lin � �0Ù ð�Ù Q X SO�3�Ø















































































































(1.3)

In fact, in the treatment below, we replace SO�n� by arbitrary subgroups Gleft and

Gright of Lin + Ù defined by

Gleft ¨ !L X Lin + Ú W �LF� ¨ W �F� for all F X Lin + )Ù

Gright ¨ !M X Lin + Ú W �FM − 1� ¨ W �F� for all F X Lin + )Ø

To verify that Gleft and Gright are groups, one uses the multiplicativity of cofÙ i.e.,

cof�AB� ¨ cof A cof BÙ cof�A − 1� ¨ �cof A� − 1 ¨Ú cof A − 1 (1.4)

AÙ B X Lin + Ù formulas to be frequently employed below.

It will be shown that the associated convex functions g can be chosen to satisfy the

symmetry requirements governed by Gleft and Gright Ø Two elementary constructions

of g will be given. The first one is based on the existence of the largest associated

convex function, a consequence of the fact that the pointwise supremum of any

family of convex functions is convex. The second construction holds only if Gleft

and Gright are compact, and uses the averaging of symmetry conjugated associated

convex functions with respect to Haar’s measures on Gleft and/or GrightÙ a procedure

frequently used in the group theory to construct invariant objects.

2 Dimensions 2 and 3

Throughout this section, let n ¨ 2 or n ¨ 3Ø The following fact, although elementary,

forms the crux of the polyconvexity notion.
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Remark 2.1 ([1; Section 4] and [2; Theorem 5.6, Part 2]). For a given polyconvex

function W Ú Lin + r ÏR the set of all associated convex functions h contains the

largest one, gÙ such that g ³ h over Lin � �0Ù ð� or Lin � Lin � �0Ù ð�Ø This

function is given by

g�F Ù δ� ¨ sup !h�F Ù δ� Ú h an associated convex function)Ù

g�F ÙGÙ δ� ¨ sup !h�F ÙGÙ δ� Ú h an associated convex function)

throughout their domains. Alternatively, g is constructed as the convexification of the

function g
0

given by

if n ¨ 2: g
0
�F Ù δ� ¨







W �F� if δ ¨ det F Ù
ð else,

if n ¨ 3: g
0
�F ÙGÙ δ� ¨







W �F� if �GÙ δ� ¨ �cof F Ù det F�
ð else.

The convexification is defined by

g ¨ sup !h Ú h ² g
0
Ù h convex)Ø (2.1)

To avoid cumbersome formulas, let for each associated convex function g and

each L X GleftÙ M X GrightÙ the function gLÙ M be defined by

for n ¨ 2: gLÙ M�F Ù δ� Ú¨ g�LFM
− 1Ù det L detM − 1δ�Ù

for n ¨ 3: gLØM�F ÙGÙ δ� ¨ g�LFM
− 1Ù �cof L�G cofM − 1Ù detL detM − 1δ�











(2.2)

for every �F Ù δ� or every �F ÙGÙ δ� from the corresponding domains. IfGleft ¨ Gright ¨
SO�n� and QÙR X SO�n� then

if n ¨ 2: gQÙ R�F Ù δ� Ú¨ g�QFR
TÙ δ�Ù

if n ¨ 3: gQÙ R�F ÙGÙ δ� ¨ g�QFR
TÙQGRTÙ δ�Ù

thus recovering the particular case from the introduction.

Remark 2.2. Assume thatW satisfies the injectivity requirement (1.2)
3
. Then

Gleft ⊂ SL�n�Ù Gright ⊂ SL�n�

where SL�n� Ú¨ !L X Lin + Ú det L ¨ 1)Ø Equations (2.2) simplify accordingly.

Proof Suppose that Gleft contains an element L with det L © 1Û by passing from L

to L − 1 if necessary, we can assume detL ° 1Ø Picking any F X Lin + and iterating

W �LF� ¨ W �F� we obtain

W �LpF� ¨ W �F� ¨ const (2.3)

for any positive integer pÙ but det�LpF� r 0 and thus (2.3) contradicts (1.2)
3
. è

Recall that for each compact group G there exists a unique nonnegative regular

Borel measure m on G, called Haar’s measure, such that m�G� ¨ 1 and m is left and

right invariant, i.e.,

�
G

f �LM − 1� dm�L� ¨ �
G

f �ML� dm�L� ¨ �
G

f �L� dm�L�

for every m integrable function f Ú Gr R and everyM X G, [6; Theorem 5.14].
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Proposition 2.3.

(i) The largest convex function g associated with a polyconvex functionW is invari-

ant, i.e.,

gLÙ M ¨ g (2.4)

for every L X GleftÙ M X Gright throughout the domain of gØ
(ii) IfGleft andGright are compact with Haar’s measuresmleft andmrightÙ respectively,

if h is any convex function associated with W and if g is defined by (cf. [7])

for n ¨ 2: g�F Ù δ� ¨ �
Gleft �Gright

hLÙ M�F Ù δ� dmleft�L�dmright�M�

for n ¨ 3: g�F ÙGÙ δ� ¨ �
Gleft �Gright

hLÙ M�F ÙGÙ δ� dmleft�L�dmright�M�



































(2.5)

throughout the domain of gÙ then g is an associated convex function that satisfies

(2.4). If h is of class k ¨ 0ÙÜ Ùð then g is of class k also.

We assume that the integrand in (2.5) is measurable in LÙ M with respect to mleft �
mright for every fixed �F Ù δ� or �F ÙGÙ δ� (for example, let h be finite valued and hence

continuous).

Proof Only the case n ¨ 3 will be proved; n ¨ 2 is similar.

(i): Clearly, for any L X Gleft Ù M X Gright and any associated convex function

(not necessarily the largest one), also gLÙ M is an associated convex function. Thus if

g is the largest associated convex function, we have gLÙ M ² g, i.e.,

g�LFM − 1Ù �cof L�G cofM − 1Ù det L detM − 1δ� ² g�F ÙGÙ δ�

for all arguments occurring there. Replacing L r L − 1Ù M − 1 r MÙ F r LFM − 1Ù
Gr �cof L�G cofM − 1Ù δr detL detM − 1δÙwe obtain the opposite inequality and

hence (2.4).

(ii): Clearly, gÙ being essentially a convex combination of convex functions hLÙ M,

is convex. Further, the invariant character of mleft and mright implies that g satisfies

(2.4). Finally, if F X Lin + then

hLÙ M�F Ù cof F Ù det F� ¨ h�LFM − 1Ù cof�LFM − 1�Ù det�LFM − 1��

¨ W �LFM − 1� ¨ W �F�

and thus integrating over Gleft � GrightÙ we obtain

g�F Ù cof F Ù det F� ¨ W �F�Ø

Hence g is an associated convex function. The differentiability follows from the

theorem on the differentiation under the integral sign. è

Remarks 2.4.

(i) One can replace Gleft and Gright by arbitrary subgroups of Gleft and Gright .

(ii) Let Ω ⊂ R
n be the reference region of the body and suppose that W

depends parametrically on x X ΩØ Fixing xÙ we can apply Proposition 3 to each

W �xÙ ċ� to obtain g�xÙ ċ� on Lin � �0Ù ð� or Lin � Lin � �0Ù ð�Ø However, the

measurability/continuity character ofW apparently does not reproduce. Suppose, for

example, thatW is a Carathéodory function [3; Section IV.1.2], i.e., for almost every
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x X ΩÙ W �xÙ ċ� is continuous and for every F X LinÙ W �ċÙ F� is measurable. There

seems to be no guarantee the largest associated convex function g is a Carathéodory

function, since the supremum in (2.1) generally does not preserve continuity and

measurability. On the positive side, [4; Proposition 6.43] shows that g is a normal

integrand, a property weaker than the Carathéodory property of the integrand, but

still with many virtues.

(iii) The following fact was pointed to the autor by S. J. Spector [8]: if the

hypotheses of Item (ii) of Proposition 3 are satisfied and h is a Carathéodory integrand

(respectively, a normal integrand that is bounded from below) then gÙ given by (2.5),

is an integrand of the same type. This follows by a straightforward application of

Lebesgue’s dominated convergence theorem and Fatou’s lemma, respectively. The

details are left to the reader.

3 The general case

This section considers the general case, i.e., a functionW of an argument F that is a

rectangular matrix of arbitrary dimension, defined on a domain EØ
Thus let mÙ n be positive integers and let Lin�nÙm� denote the set of all linear

transformations from R
n to R

m or the corresponding matrices. Let Lin + �nÙ n� be

the set of all elements of Lin�nÙ n� of positive determinant. Let I
n
r be the set of all

multiindices of order rÙ 0 ² r ² nÙ consisting of all r-tuples I ¨ �i
1
ÙÜ Ù ir� with

1 ² i
1
° i
2
°Ü° ir ² nØ If 1 ² r ² q Ú¨ min mÙ n(Ù let Lin�Inr Ù I

m
r � be the set of all

I
m
r � I

n
r matrices, i.e., collections ξ ¨ �ξI J�IX Imr Ù J X Inr

of real numbers ξI JØ For each

F X Lin�nÙm�Ù let F �r� X Lin�Inr Ù I
m
r � be the I

m
r � I

n
r matrix of minors of F of order

rØ Thus if I ¨ �i
1
ÙÜ Ù ir� X I

m
r Ù J ¨ �j
1
ÙÜ Ù jr� X I

n
r are two multiindices then

�F �r��I J Ú¨ det�Fiα jβ�1² αÙ β² rÙ

where Fi j are the matrix elements of F Ø The matrices F �r� can be interpreted as

exterior powers of F and the notation has been chosen to emphasize this fact. The

multiplicativity (1.4) of cof now generalizes as follows: If A X Lin + �mÙm�Ù F X
Lin�nÙm� and B X Lin + �nÙ n� then

�AFB� �r� ¨ A �r�F �r�B�r�Ù �A − 1� �r� ¨ �A �r�� − 1 ¨Ú A �r� − 1Ø

Let

M�nÙm� ¨
q

�
r ¨ 1
Lin�Inr Ù I

m
r �Û

the elements η ofM�nÙm� are q-tuples

η ¨ �η
1
ÙÜ Ù ηq� where ηr X Lin�I

n
r Ù I
m
r �Ù 1 ² r ² qØ

Let E ⊂ Lin�nÙm�Ø A function W Ú E r ÏR can be extended to Lin�nÙm� by

setting W ¨ ð on Lin�nÙm� ∼ EØ In this way it suffices to consider only functions

W Ú Lin�nÙm� r ÏRØ Such a function W is said to be polyconvex if there exists a

convex function g ÚM�nÙm� r ÏR such that

W �F� ¨ g�F �1�ÙÜ Ù F �q��Ù



References 6

F X Lin�nÙm�Ø We put

Gleft ¨ !L X Lin + Ú W �LF� ¨ W �F� for all F X Lin + �mÙm�)Ù

Gright ¨ !M X Lin + Ú W �FM − 1� ¨ W �F� for all F X Lin + �nÙ n�)Ø

We have the following general version of Proposition 3, with identical proof.

Proposition 3.1.

(i) The largest convex function g associated with a polyconvex functionW is invari-

ant, i.e.,

g�L �1�η
1
M �1� − 1ÙL �q�ηqM

�q� − 1� ¨ g�η
1
ÙÜ Ù ηq� (3.1)

for every �η
1
ÙÜ Ù ηq� XM�nÙm� and L X GleftÙM X GrightØ

(ii) IfGleft andGright are compact with Haar’s measuresmleft andmrightÙ respectively,

if h is any convex function associated withW and if g ÚM�nÙm� r ÏR is defined

by

g�η
1
ÙÜ Ù ηq� ¨ �

G
left

�G
right

h�L �1�η
1
M �1� − 1ÙL �q�ηqM

�q� − 1� dmleft�L�dmright�M�

�η
1
ÙÜ Ù ηq� XM�nÙm�Ù then g is an associated convex function that satisfies (3.1).

We again assume that the integrand is measurable inLÙMwith respect tomleft � mright

for every fixed �η
1
ÙÜ Ù ηq�Ø
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