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Abstract The paper deals with membrane reinforced bodies with the membrane
treated as a two dimensional surface with concentrated material properties. The
membrane response is linearized so that it depends linearly on the surface strain
tensor. The response of the matrix is treated separately in three cases: (a) as a non-
linear material, (b) as a linear material and finally (c) as a notension material. For
the general nonlinear material, the principle of minimum energy and complemen-
tary energy are proved. For the linearly elastic matrix the surface Korn inequality
is used to prove the existence of equilibrium state under general loads. Finally,
for the notension material a theorem stating that the total energy of the system
is bounded from below on the space of admissible displacements if and only if the
loads are equilibrated by a statically admissible stress that is negative semidefinite.
An example presenting an admissible stress solution is given for a rectangular panel
with membrane occupying the main diagonal plane.
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1. INTRODUCTION

The present paper outlines an approach to membrane-reinforced bodies
in which the membrane is treated as an ideal two dimensional surface with
concentrated material properties. We refer to [12] and [13] for details.

We consider static situations. The system of forces is described by the
bulk stress tensor describing the situation in the matrix and of the surface
stress tensor describing the situation on the membranes. The interaction of
the matrix with the membranes is implicitly contained in the virtual power
principle which postulates effectively the equilibrium. A localization pro-
cedure leads to the strong form of the equilibrium equations which contain
some new forms, see Equation (3) (below).



The constitutive theory starts with large deformation approach. However,
within the present approach, which is ultimately oriented on masonry (no—
tension) materials, we soon move to the small strain for both the bulk and
membrane response. Thus for the bulk we use the familiar small strain
tensor but the response is assumed linear only in Section 4, where we treat
membrane in a linearly elastic matrix. The rest deals with a nonlinear
response of the matrix. As for the membrane, we linearize the response in
the reference configuration to deal with the linearly elastic membrane; the
surface strain tensor plays essential role.

In Section 3 we deal with a nonlinear matrix reinforced by linearly elastic
membrane. We introduce the equilibrium states and state, for a material
with the convex energy function, the principle of minimum potential energy
at equilibrium. Under appropriate invertibility condition on the stress strain
relation we prove the principle of minimum complementary energy.

In Section 4 we deal with the linearly elastic matrix with the linearly elas-
tic reinforcement. The main goal is to prove the existence of the equilibrium
solution for arbitrary loads. For this we need an appropriate version of the
surface Korn inequality which we take from Ciarlet [2, Theorem 2.7-1]. The
form of the inequality motivates the definition of the space of admissible dis-
placements which is essentially W12 for the bulk and W2 for the tangential
part of the displacement of M and which is L? for the normal component
of the displacement. The existence of the equilibrium displacement is then
proved in [13] by an application of the Lax Milgram lemma.

Section 5 deals with the matrix made of no—tension material. The exis-
tence theory is beyond the scope of the present paper. Instead, we treat
simpler topics like the principle of minimum complementary energy which
does not follow from the aforementioned proof as the stress strain relation
is not invertible. The main result is the necessary and sufficient condition
for the boundedness of the total energy from below: this occurs if and only
if the loads can be balanced by a square integrable stressfield consisting of
the negative semidefinite bulk stress and square integrable surface stress in
the membrane. In [10] it is argued that the collapse of the masonry body
occurs exactly at the point of the loading process at which the total energy
ceases to be bounded from below. Here a simple considerations show that
the reinforcement always improves (or at least does not worsen) the situ-
ation, the collapse of the body with the reinforcement occurs later in the
loading process.

Throughout we use the conventions for vectors and second order tensors
identical with those in [5]. Thus Lin denotes the set of all second order
tensors on R?, i.e., linear transformations from R? into itself, Sym is the
subspace of symmetric tensors, Skw is the subspace of skew (antisymmetric)
tensors, Sym the set of all positive semidefinite elements of Sym; addition-
ally, Sym_ is the set of all negative semidefinite elements of Sym . The scalar
product of A,B € Lin is defined by A - B = tr(ABT) and | - | denotes the
associated euclidean norm on Lin. We denote by 1 € Lin the unit tensor. If
A,B € Sym, we write A <Bif B— A € Sym, .



2. EQUILIBRIUM OF FORCES

To describe the forces in the reinforced body, we consider the stress sys-
tem which consists of the bulk stress in the matrix and the surface stress
in the membrane. The equilibrium is postulated in the form of the virtual
power principle which allows us to effectively introduce the force interactions
between the matrix and the membrane. Next we postulate the constitutive
equations of the given system. Here the main measures of deformation are
the bulk and surface deformation gradients. We treat the basic properties
of the constitutive equations like the principle of objectivity and the sym-
metry group. Then in the last section we introduce the linearization of the
membrane response whose results will be used throughout the paper. The
correct form of the linearization has been given in the paper by Gurtin &

Murdoch [6].

2.1. The system of forces. We identify the body with its reference con-
figuration © which is a bounded open subset of R? with sufficiently smooth
boundary 0€2. We assume that within the bulk body € there is a collection
of nonintersecting surfaces whose union we denote by M, which represents
the membranes in the body with different material properties. We denote
by 0M the collection of boundaries of the membranes and consider the gen-
eral situation when part of OM is contained in 9€) and part in 2 itself. We
denote the general material point in €2 by x and below we postulate differ-
ent properties for x € Q \ M and for x € M. We assume that M is a 2
dimensional manifold so that the tangent cone reduces to a 2 dimensional
tangent space Tan(M, x) for every point x € M. We call a relative normal
to OM at a € M the normal to M which lies in the tangent space to M
at a. We use the same terminology for relative normals to the boundary of
a subregion of M.

A system of forces for the body with membranes consists of the bulk stress
tensor T, the bulk body force b, the surface stress tensor T on membranes,
and the surface body force b. Here T and b are defined on €2 with values in
the set Sym of symmetric second order tensors, and R3, respectively. For
every x € M, T(x) is an element of Sym which is superficial in that Tm = 0
where m is the unit normal to M and finally b is defined on M with values
in R3.

The system of forces is in internal equilibrium and in equilibrium with
the environment if the principle of virtual power holds:

/T-Vv—b-vd£3+/ ‘T-Vv—[b-vdHl—/s-vdH2+/ svdH' (1)
Q M S oMNS

for every virtual velocity field v on cl €2 such that v =0 on D.
To state the strong form of the balance of forces, we introduce the follow-
ing notation:

(1] () 1= Dy, (TG + () () — T — () m()
for each x € M and

(T) o (a) := lim p T(a+ pe)edH'(e) (2)

p—0 /{eENorm(@M,a):e-{t(a)>0,|e:1}
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for each a € OM N . The existence of the limits is an assumption. The
integration range in (2) is the unit hemicircle normal to OM at a and the
integration variable is e. We obtain the following system of equilibrium equa-
tions:

divT+b=0 L3 a.e.on

divT + [T]mn+b=0 H? a.e. on M

Tt—(T),, =0 H! a.e. on OM NN (3)
Tn=s H? a.e.on S

Tt=s H a.e.on OMNS |

where t is the relative normal to O9M and n is the normal to 9€2.

2.2. Constitutive equations. The bulk response is determined by the re-
sponse functions
f:Ling - R, T:Lin; — Lin (4)

giving the referential volume density of stored energy and stress in terms
of the deformation gradient F where Liny is the set of second order tensors
with positive determinant. The surface response is determined by giving,
for every x € S, the response functions

f, Lin} — R, Ty Lin} — Lin*, (5)
delivering the referential surface density of stored energy and the surface
stress in terms of the surface deformation gradient. Here Lin* is the set of
all A € Lin such that AP(x) = A where P(x) is the projection from R? onto
the tangent space of M at x € M. We have attached the subscript x to
the response functions since the domain of f , T is different for every x € S;
however, for reasons of notational simplicity we often omit the subscript and
write f and T in place of £, and Tx. The stress relations read (are postulated
here)

T=Df, Ty=Df

where D denotes the differentiation of a function with respect to its argu-
ment, which is the deformation gradient and the surface deformation gradi-
ent, respectively, keeping x fixed. The constitutive equations then say that
the stress corresponding to the deformation y : Q — R3 is given by

T(x) = T(F(x), x€Q\S,
Tx) = Tx(Fx), xe8.
Here F and [ are the bulk and surface deformation gradients, given by
F = Vy, on Q\ M,
F = Vy on M,
where y is the restriction of y to M and V is the surface gradient on M, in
the specific form defined in [15, Appendix A and B]. The definition makes
the surface gradient at x € M of a function h defined on M and with values
in a finite dimensional vectorspace V a linear transformation from R3 to V
and not just the linear transformation from the tangent space Tan(M, x) at
x to V. This differs from the definition employed in [6], which is just the
restriction of the present VA to Tan(M,x). Thus in particular F(x) is an
element of Lin, in fact of Lin*, for any x € M.

(6)
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We define the bulk and surface energy f and f corresponding to the
deformation y : Q — R3 by

fx) = fR®X), x€Q\S, }
fx) = H(Fx), xe&.

2.3. Linearization of the membrane response. Since we deal with small
deformations here, we use the bulk and surface small strain tensors to be
introduced here.

Define the displacement u corresponding to the deformation process y by
u(x) = y(x) —x for x € Q, and let w be the restriction of u to M. Define the
bulk and surface small strain tensors by
E = (Vu+ Vu?) in Q\ M, )

Ex = 3P(Vu+ Vuh)P on M,
We have
E=1F+F'-21), E=1PF+F" -2PP,

E = PEP.

Proposition 2.1. Consider the response specified by the response functions
f.f as in (4); and (5); with the stress response given by (4), and (5),;
assume that the response is objective and that the reference configuration is
stress free, i.e.,

T(1)=0 and T,(P(x))=0 for every x € M.
Define the bulk and surface elasticity tensors C and € by
C=DT(1) = D? (1),

¢, =DTx(P(x) = D*£,(P(x)), xe& M.
Let x € M be fized and write € = €. Then
(i)  C and € have major symmetry;
(i) C and € map Lin into Sym and Skw into {0};
(iii) &€ is superficial in the sense that €[A] = C[PAP] = PE[A]P for each
A €Lin.
Hence
CH] = C[E], C[H]= ¢€[E]
for each H,H € Lin where

E=1{H+H"), E=1iPH+H"P.

We denoted the value of the linear transformations C and €4 on their re-
spective arguments by C[E] and €«[E] to emphasize that they are fourth
order tensors. However, we often simplify the notation and write CE and
C¢,E. We also often omit the subscript x and write € for €, for notational
convenience.

Let Sym* = Sym N Lin*. Assume that we are given for every x € M a
fourth order tensor € such that Assertions (i)—(iii) of Proposition 2.1 hold.
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If u: Q x R — R? is a displacement field, we define the superficial stress in
the linear response by

T(x) = €&E(x) xeM (8)

in place of (6),, where E is given by (7). In the same situation, we define
the linearized free energy f by

f(x) = 1E(x) - €kE(x), x€ M. 9)
If the membrane is isotropic then (8) read
T =(trE)P + 2mE;

with [ and m the Lamé coefficients.

About the bulk response we assume generally that the free energy is
expressed as a function of the small strain tensor E, by a possibly nonlinear
function, i.e.,

N

fx) = f(BRx), xeQ\M, (10)
where f is a given response function and
E(u) = L(Vu+ vuT)
with
u(x) = y(x) — x

the displacement. In section 3 we asume that f is a general nonliner (convex)
function of quadratic growth. In section 4 we shall assume that f is quadratic
in E, (linear elastic material), and in section 5 (below) we shall deal with f
the response function of a no—tension material, in which case f is genuinely
nonlinear, but does not satisfy all the hypotheses of section 3. The stress
relation gives the symmetric stress T as the derivative of f ,

T=D].
This gives the constitutive equation

T = T(E(u)). (11)

3. ADMISSIBLE DISPLACEMENTS. ENERGY

In this section we assume that the symmetric bulk stress is a generally
nonlinear function of the small strain tensor with a convex store energy func-
tion of quadratic growth while the membrane response is linear as outline in
Subsection 2.3. We define the space of admissible displacements in (12) be-
low which is based on the Sobolev spaces of square integrable displacements
with the square integrable gradients both in the bulk and on the membrane.
We consider the total energy and under the invertibility assumption on the
stress strain relation also the complementary energy. The minima of these
corresponding to the equilibrium states are proved.
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3.1. Basic hypotheses. Admissible displacements. Throughout the
section V is a finite dimensional real vectorspace. Let M be a surface of
dimension 2 in R3. Throughout this section we assume that M is of class
> 1. We denote by W12(M, V) the set of all u: M — V such that both |u]
and its derivative are square integrable on M. Thus each u € WH2(M, V)
has a well defined weak surface derivative Vu € L?(M,Lin(R3,V)). We
define a norm | - |yy1.2(pq,y on WH2(M, V) by

2 2 2
ali2 vy = 2y T 1Y U2 Lingrs )
for every u € W12(M, V). It is easy to see that W12(M, V) is a reflexive
Banach space.

We assume that we are given the objects f, f,D,S, b, b, s, and s as in
the preceding sections. About these objects, and about the objects derived
thereof we stipulate the following hypotheses:

H1 The function f is continuously differentiable and convex and the func-
tion T satisfies the growth condition

IT(E)| < e(1 + [E])
for each E € Sym and some c.
H2 For H? a.e. x € M the tensor €y satisfies
CLE = &(P(x)EP(x))
for every E € Sym,
Ei - &Ex = &E; - By
for every By, By € Sym such that
E, = Px)EP(x), =12,
and
d|E]* > E- €,E > ¢[E)?
for each E € Sym such that
E = P(x)EP(x),

where ¢ > 0, and d are constants independent of x and E.

H3 The map x — €, is H? measurable on M.

H4 We have b € L*(Q,R3),b € L?>(M,R3),s € L?(S,R3),s € L*(S N
OM,R3). Moreover, P(x)s(x) = s(x) for H! a.e. x € SN IM.

H5 H*(D) > 0.

H6 M is an oriented admissible surface with Lipschitz boundary; more-
over, M is a union of finitely many connected components whose
closures are pairwise disjoint.

The last condition in H6 is a mild condition guaranteeing that every u &

WH2(Q,R3) has a well defined trace 7u on M which is an element of

L*(M,R3). We often write u for 7u when there is no danger of confusion.

We put

H:={ucW"2QR? u:=ru u :=PucWH?M,R?} (12)
and
lulg = [ulyr2qrs) + IPUlw2ars)-
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It is easy to see that under |- |g, the space H is a Hilbert space. We
furthermore put
U={ue H:u=0onD}.

We call the elements u € U the kinematically admissible displacements.

3.2. Energy and complementary energy. We define the total energy of
the displacement u € U by

F(u) = E(u) — W(u), (13)
where E is the internal energy, given by
E(u) := / fac? +/ f dH? (14)
Q M

where f and f are given by the constitutive equations (10) and (9). Fur-
thermore, the potential energy W of the loads is

W(u) ::/b~ud£3+/ [b~undH2+/s-udH2+/ s-pu' dH' (15)
Q M S SNOM

where it will be recalled that w! = Pu and where we denote by Sul the trace
of ul on OM, see [12, Appendix C]. We here note that ul is an element of
WhH2(M,R3), whereas u is generally not in W12(M,R3). This is reflected
in the definitions of the spaces H and U.

For the given objects as above the equilibrium boundary value problem
seeks a displacement u € U which satisfies the constitutive equations (11)
and (8) and the equilibrium equations (3) in the weak form (1).

Proposition 3.1. Assume HI1-H6. The displacement u € U solves the
equilibrium problem (1) if and only if the first variation of the total energy F
vanishes. Moreover, any solution u of the equilibrium problem is also a min-
imizer of the total energy among all kinematically admissible displacements,
1.€.,
F(v) = F(u)

for all v satisfying v.=0 on D.
This is standard in the absence of the inner membrane. The case with the
membrane is treated in a way similar to [6, Proof of Theorem 9.4].

Assume further the following.
H7  The equation

T(E)=T
has exactly one solution E for every T € Sym.

We let E : Sym — Sym denote the inverse of T, i.e., E satisfies
T(E(T)) =T

for every T € Sym. Define the density of the complementary energy f as
the Legendre transformation of f, i.e., by

f(T) = E(T)- T - f(E(T))
for any T € Sym. Then under H1 the energy f is a convex function of T

and }
E=Df.
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Assuming H2, we denote, for every x € M, by € L. Sym — Sym the psu-
doinverse of €y, i.e., a linear transformation such that (a) €[H] = PE[PH]
for every H € Sym and (b)

¢ [E[E]=E

X

for all E € Sym such that P(x)EP(x) = E.

Let (T, T) be a pair of functions with T € L?(2, Sym) and T € L?*(M, Sym)
such that Tm = 0 everywhere on M. We say that (T, T) is a statically ad-
missible stressfield if it satisfies (1) for every virtual velocity field v € U.

For every statically admissible stressfield (T, T), define the complementary
energy G(T,T) by

G(T,T) = /Qf(T) acr +;/M CIT - TdH™

Note that if u is the solution of the equilibrium equations then the pair (T, T)
of functions given by T = T(E(u)) and T = €E(u) is a statically admissible
stressfield. We have the following principle of minimum complementary
energy:

Proposition 3.2. Under H1-H7, the stressfield (T, T) corresponding to an
equilibrium solution gives the minimum complementary energy among all
statically admissible stresses, i.e.,

G(T,T) <G(8,S)
for all statically admissible stressfields (S, S).

4. LINEARLY ELASTIC MATRIX

In this section we consider the linear response both in the matrix and in
the membrane. Under the positive definiteness of the bulk and membrane
tensor of elasticities we prove the existence of the equilibrium state of mini-
mum energy. The proof of the positive definite character of the total energy,
which is the main step to the proof of existence of the equilibrium state,
requires the bulk and membrane Korn’s inequalities; of these the membrane
Korn inequality is less known.

4.1. Linearization of the bulk response. In this section it is assumed
that not only the surface response, but also the bulk response, is linear.

Assume that we are given a fourth order tensor C such that Assertions
(i)—(iii) of Proposition 2.1 hold. If u: 2 x R — R" is a displacement field,
we define the bulk stresses in the linear response by

T(x) = CE(x), x€Q\M,

in place of (6);, where E is given by (7);. In the same situation, we define
the linearized free energy f by

f(x) = 3E(z) - CE(x).

4.2. Korns inequality for membranes. The proof of the existence of
the solution to the equilibrium problem requires the coercivity of the total
energy. The Korn inequalities for the membrane and for the matrix are
required. These reads as follows.
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Theorem 4.1. If M is an admissible surface then there exists a ¢ > 0
such that

c|Vu'| 2 rs) < \E(M)|L2(M,Lm) + w0l 2 (M, R3)
for each w € S.

This is essentially the second inequality of Korn’s type “without bound-
ary conditions” on a general surface, [2, Theorem 2.7-1] according to the
terminology of [2].

Recall also the classical Korn inequality for the bulk strain tensor.

Theorem 4.2. Let Q be a bounded open subset of R with Lipschitz bound-
ary and let D C 9Q be a H? measurable set with H?(D) > 0. Then there
exists a constant ¢ > 0 such that

|V 2 Lin) < [E(W)|12(0.5ym)
for all u € WH2(Q,R3) such that u = 0 on D in the sense of trace, where
E(u) = $(Vu+ Vu?h)
s the small strain tensor.

4.3. Existence of solutions for membranes in a linearly elastic ma-
trix. Assume that we are given a bulk elasticity tensor C € Lin(Sym, Sym)
and for each x € M the surface elasticity tensor € € Lin(Sym, Sym), and
the associated objects, with f(E) = %E - CE for each E € Sym . The proof of
the existence of the solution to the equilibrium problem is based on appro-
priate conditions of the positivity of the tensors of elastic constants. When
combined with the Korn inequalities, it leads to the coercivity of the total
energy mentioned above. We recall the positivity of the membrane elasticity
tensor embodied in Hypothesis H2. For the bulk elasticity tensor we assume
the following.

H8  The tensor C satisfies
E, - CE; =CE; - Eo
for all E1, Es € Sym and there exist constant ¢ > 0 such that
E-CE > ¢|E?
for each E € Sym .

It is immediate that H8 implies H1 and H7.
Recall the definition
U={ue H:u=0onD}. (16)
We define the potential energy F of the displacement u € U by (13). Here

the internal energy E is given by (14) where w = 7u is the trace of u on M
and f,f are given by

fx) =

B(w)(2) CB)(x),  xeQ\M, } (a7)
f(x) =

E(u)(x) - €xE(u)(x), x € M.

NI— NI

Theorem 4.3. Assume that Hypotheses H8 and H2-H6 hold. Then F has
a unique minimum relative to U at some point u € U.
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5. MATRIX MADE OF NO—TENSION MATERIAL

In this section we assume that the matrix response is that of a no—tension
material, i.e., an elastic material with the stress constrained to be negative
semidefinite for all values of strain. Constitutive equations of the no—tension
material are introduced. Then the principle of minimum complementary
energy is stated: this version of the principle is different from that stated
in Proposition 3.2 as the invertibility hypothesis H7 is not satisfied by the
no—tension material. The existence theory for the no tension matrix is out
of the scope of the present paper. We recall that without the reinforcement
the proof requires the introduction of the space of displacements of bounded
deformation [1], [4]. We prove a simpler result saying that the total energy
is bounded from below if and only if the loads can be equilibrated by a
stressfield that is square integrable and negative semidefinite in its bulk
part.

5.1. Constitutive equations of no--tension materials. In this section
we assume that the bulk body is made of a no—tension material to be in-
troduced below while we continue to assume that the membrane response
is linear in the sense of Subsection 2.3. The purpose of the present section
is to introduce the response functions of no—tension materials. The stress T
depends on the small deformation tensor E = E(u),

T =T(E),

where T is given by the constitutive equation of a masonry material defined
n (18) (below).

Proposition 5.1. Assume HS. If E € Sym, there exists a unique triplet
(T,E®, EY) of elements of Sym such that
E = E° + Ef,
T = CE,
TcSym_, EfeSym,,
T -Ef =0.

We refer to [1], [4] and [3] for various forms of the above statement and the
proof.

We define the elastic stress T : Sym — Sym and stored energy f : Sym —
R of a masonry material by

T(E)=T, f(E)=Li(E)-E (18)

for any E € Sym where (T,E®, Ef) is the triplet associated with E as in
Proposition 5.1; E® and Ef are called the elastic and fracture parts of the
deformation E. The explicit form of the response function T and its further
analysis have been given in [7], [8], [9] in dimensions 2 and 3, respectively,
in case C is isotropic.

5.2. Equilibrium displacements. We assume the partition of 0f2 into the
two complementary sets D and S and assume that we are given the forces b,
b, s, s as in Subsection 2.1. We assume that M is of class 1 and well placed
in Q. This allows us to define the space U as in (16), and the total energy
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F:U — R by (13). Here, for the given displacement u € U, the internal
energy E(u) is given by (14) where u = 7u is the trace of u on M and where
f is given by the constitutive equation

f(x) = f(E(x))

with E the small strain tensor of u and f the energy function of a no—tension
material, and f is given by (17),. We note that f satisfies H1 but not H7.
The potential energy W of the loads is given by (15) where it will be recalled
that w! = Pu and where we denote by Sul the trace of w! on OM.

The notion of the equilibrium state is that defined in section 3 and Propo-
sition 3.1 about the variation of energy and minimum energy holds true
for no—tension body, i.e., u is an equilibrium state if and only if the fields
T = T o E(u) and T = €[E(u)] satisfy

/Tﬁumﬁ+/ﬁraﬂwﬂ=wm
Q M

for every v € U where U is given by (16) and W is given by (15).

Let (T, T) be a pair of functions with T € L?(2, Sym) and T € L*(M, Sym)
such that we have Tm = 0 over M. We say that the pair (T, T) is doubly
admissible if it is statically admissible in the sense of definition is section 3
and moreover T < 0 for almost every point of 2. For each stressfield (T, T)
which is doubly admissible we define the complementary energy G(T,T) by

G(T’T):%/C_lT'Tdﬁn—Q—;/ T Tanr—
@ M

where € ! is the pseudoinverse of € defined in Subsection 2.3. We have the
following principle of minimum complementary energy:

Proposition 5.2. Let H2-H6 and HS8 hold. Let u be an equilibrium state
of the system and define the pair (T,T) by

T = T(E(u)), T = CE(u).

Then the pair (T, T) has the minimum complementary energy among all
doubly admissible stressfields equilibrating the loads, i.e.,

G(T,T) <G(S,8)
for any doubly admissible equilibrating stressfield (S, S).

This is identical in form with Proposition 3.2; however, that proposition
does not apply as Hypothesis H7 is not satisfied. We refer to [1] and [4] for
the proof for a no—tension body without the reinforcement.

We note that the existence theory of the equilibrium states based on the
minimization of the total energy in U does not work as the total energy
functions is not generally coercive. Even to obtain the weaker property
than the coercivity, one has to require that the loads be compatible in the
sense of Subsection 5.3 (below). The existence theory in the absence of
the membrane has to be build in the space BD(R?) of the displacements
of bounded deformation [1] and [4], but even in this case the loads have to
be safe in the sense that they can be equilibrated by an uniformly negative
stressfield. In the presence of the membrane, the condition easily generalizes
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but unfortunately it does not lead to the coercivity of energy as the trace
on M of displacements from BD(R?) is not a continuous map.

5.3. Lower bound on energy. According to the limit analysis proposed
in [10] the collapse occurs for the given loads if and only if the total energy
is not bounded from below. Furthermore [10] shows that the total energy is
bounded from below if and only if the loads are compatible in the sense of
the existence of an admissible equilibrating stressfield. We here extend this
equivalence to the case of the presence of membranes.

Assume that the partition D and S of 92 is in Subsection 2.1 is given
and let b,s,b,s be the loads as in that section. We say that the loads are
compatible if there exists a doubly admissible stressfield equilibrating them.

Proposition 5.3. Assume that H2-H6 and HS8 hold. Then the total energy
functional F is bounded from below if and only if the loads are compatible.

5.4. Fiber reinforced panel. In this subsection we demonstrate the con-
struction of the admissible stressfield equilibrating the loads considered in
Subsection 5.3.

Let us consider the square panel 0 =(0,1)x(0,1) with the origin of the
coordinate system o in the upper right corner of the panel, the x axis pointing
to the left and the y axis pointing downwards. Let us denote by i and j the
unit vectors corresponding to the x and y axis, respectively. The panel, made
of masonry-like material, is fixed at its base (0,1) x {1} and, in absence of
gravity, undergoes a vertical load p > 0 and a tangential load ¢ < 0 that are
uniformly distributed on its top (0,1) x {0}. The panel is reinforced by an
elastic fiber that is applied on the diagonal {r = (z,y) € Q : z = y} and it
is fixed at the point (1,1). The fiber divides the panel into the triangular
regions

Qp={r=(r,y) €eQ:z>y} and Q_={r=(r,y)€Q:x <y}

We want to construct a negative semidefinite and equilibrated stress field T
that is defined in 24 U _. Note that in the absence of the fibre there is no
such a stressfield. For {2, we take
_ —¢/piei-gioj+joi)-pjej if rel, 19)
"o if req,\ QL

where Q! = {r € Q4 : © < 1+ qy/p} is the triangular region delimited by
the top of the panel, the fiber and the isostatic line of equation y = p(z—1)/q
that starts at the upper left corner of the panel q = (1,0) and meets the
fiber at the point ro = (p/(p — q),p/(p — q)). For Q_ we are looking for a
negative semidefinite stress field

(20)

_ okli®itor(i®j+joi)+oj®j if reQl,
“]lo if reQ_\Q!,

with o < 0. Here & is the cotangent of the angle between the active isostatic
lines and the z axis and Q' C Q_ is a region that is delimited by the fiber
for 0 < z < p/(p — q) and will be specified below.
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Let us denote by s = s(z) the normal force in the fiber and by
0i®@i+01(i@j+j®1) +020j®]

the jump of the stress field [T] = T, —T_ across the fiber. From [11, p. 518],
as in this case w(z) = 2 and J = v/2, s has to satisfy the jump conditions

s'/\/2 = =11 + 612,
s'/\/2 = 829 — 612,

where s’ is the derivative of s with respect to z. Let us denote by o the
value of o in (20), for x = y. In view of (19) and (20) we have

(21)

511 = —¢*/p — ook,
012 = —¢ — Ok, (22)
022 = —p—00
for 0 <z <p/(p—q) and
011 =012 =022 =0

for p/(p—q) < = < 1. By subtracting (21), from (21), we obtain 611 + d22 —
2012 = 0, which, in view of (22), implies

(»—a)?
SN A ? 2
2T T )2 2
Then, from (21)2 and (23) we obtain
' /V2=—p+q—oo(l-r) (24)

for 0 <z <p/(p—gq)and s =0, for p/(p — ¢) < < 1. From (24) we
deduce that in order to have s’ > 0 we need ¢/p < k < 1.

For region 2_ we will construct two different kinds of stress fields. Firstly,
we consider a stress field that is constant in Q' . In this case Q! is the region
that is delimited by the fiber, the base of the panel and the two isostatic
lines

y:1<a:— P )—i— P and y=uz/k
K p—4q pP—aq

starting from ry and the origin o, respectively (Fig. 1). If we denote by
m and n the points where these isostatic lines meet the base of the panel,
Q! is the quadrilateral region mnorg. Moreover, in order to avoid that the
isostatic lines meet the right hand side of the panel we require 0 < k < 1.
Thus, we find

—/pi®i-qi®j+jei) -pjej if el
_ 2
o _H(Hzi@@wn(i@jﬂ@i)ﬂ@j) if reQl, (25
0 otherwise.

From (23) and (24) we deduce that the normal force in the fiber is

sy = | e i o< <p/-0), o)
Lea) if p/p—q)<z<1
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and then the reaction at the fixed end of the fiber is
(kp—4q),. .
The other stress field that we consider for region 2_ is different from zero
in the wedge

QO ={r=(z,y) €Q_:p(y—1)/g <z <0}

having its apex at the lower right corner of the panel a = (0, 1) and delimited
by the isostatic curve joining the points a and rg, the right lateral side of the
panel and the fiber (Fig. 2). We suppose that in the wedge Q! all isostatic
curves intersect at a, so that their equation is y — 1 = x/k and then

x

K= 27
1 0
with p/q < kK < 0. Moreover, from (23) and (27) we deduce
2

p
We assume that in QL the stress field T_ has the same form as in (20),.
Then, in view of (27) o has to satisfy the equilibrium equation [14]
T 1
ﬁg,m + Oy = —ﬁa (28)
with the condition o = o for = y. The linear PDE (28) can be explicitly
solved to obtain

g = — .
p  (r—y+1)3

Finally we have

T _{Uﬁ2i®i+0/i(i®j+j®i)+aj®j if TeO,

0 if reQ_\QL, (30)
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with k and o given by (27) and (29), respectively. It is an easy matter
to verify that in this case T_ is an integrable but not a square integrable
function. For the fiber, from (21)s we deduce

2
s'\/izq—eru 31
/ p(1— k) (B
for 0 <x <p/(p—q) and s =0 for p/(p —q) < x < 1. In order to have

s’ > 0 we need —¢ > p by (31) and then stress field (30) can be used only
when this condition is satisfied. In this case from (31) we deduce

_ —_g)2 .
S(x):{ _\/iq;p Q)x_ V2(p—q) 22 if 0<z<p/(p—2q),

2p
—V2(3p +q) if p/lp—q)<z<l,
The density of the complementary energy in regions 24 and €)_ is given
by
1 1

ee=—To - To+ ——

a8 N

where A and p are the Lamé constants of the masonry. The density of the
complementary energy of the fiber is

1
ecf = 552 (33)

tr(T)? (32)

where « is the extensional rigidity of the fiber. For the stress field defined
in (25) we want to study the behavior of the complementary energy as a
function of k, and because the density in the region Q}F is a constant, we
limit ourselves to considering the complementary energies of region Q' and
the fiber. For region Q! we have

_ (p—9)?
tr(T) = —m(l + /QZ)a
N2
TO:_H(;(ﬁ—1)i®i+n(i®j+j®i)+%(I—RQ)J'@U')
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by (30) and then, from (32) we obtain

_2ut A (p-a)t L+ %)
Su(p+2A)  p*  (1—r)t’
Because the area of region Q! is p(1 —x)(p —2¢)/2(p — q¢)?, A\ =vE/(1+

v)(1 —2v) and p = E/2(1 + v), where E and v are the Young modulus

and the Poisson ratio of the masonry, respectively, from (34) we obtain the
complementary energy of region {2_,

_ 1= (p-9)*(p — 29) (1 +K°)?

 4FE P (1—k)3"

Moreover, from (33) and (26) we deduce the complementary energy of the
fiber

L e (B — =) ¢ (V-9
1= %, < p(l— k) ) Ml

1 (p—3q) </€p—q>2'

3a 11—k

(34)

Cc

Ee(2-)

3a (p—q)
As for 0 < K < 1 the derivatives with respect to x of both &.(Q_)
and &y are positive functions we conclude that the minimum of the to-
tal complementary energy &£.(€2) + ¢ is attained for x = 0. Moreover,
we note that do/dx = 2(p — q)%/ p(1 — k)® > 0, by (23) and ds'/dxk =
V2(p —q)?/p(1 — k)? > 0 by (24). Then, for x = 0 we have the minimum
compressive stress in {2_ and the minimum value of the net shear stress act-
ing on the fiber. Finally, we note that the complementary energy of region
Q_ corresponding to the stress field defined in (30) is equal to 400, because
in this case T_ is not a square integrable function.
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