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Plateau’s problem

Problem
Find the surface of least area spanning a given “contour” (in a
Euclidean space or more generally in a Riemannian manifold Σ).
Originally for 2d surfaces in R3: here in general dimension and
codimension.

Some notation:
I m will be the dimension of the surfaces (m − 1 that of the

“contour”)
I n the codimension.

There are several approaches but we will focus on the Federer and
Fleming theory of integer rectifiable currents (which generalizes De
Giorgi’s theory of sets with finite perimeter to n > 1).
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What is a current?

Following De Rham an m-dimensional current T is a linear map on the
space of smooth (compactly supported) m-forms ω:

ω 7→ T (ω) ∈ R .

I We recover classical C1 oriented surfaces Γ via integration

ω 7→
∫

Γ
ω .

I We define boundaries “forcing” Stokes theorem:

∂T (ν) := T (dν) .

I We generalize the concept of volume by an appropriate duality

M(T ) := sup
‖ω‖≤1

T (ω) .
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From classical linear functional analysis

Theorem
Given a smooth oriented closed m − 1-dimensional surface Γ ⊂ Rm+n

there is an m-dimensional current T which minimizes the mass M
among those with ∂T = Σ.

Problem: our generalized solution might have real multiplicity. In fact
there are much more severe problems: a foliation {Σt} by smooth
surfaces defines naturally a current:

T (ω) =

∫ (∫
Σt

ω

)
dt .
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Integer rectifiable currents

Federer and Fleming ’60: restrict the class of generalized surfaces. An
integer rectifiable current consists of a (countable) collection of

I Γi C1 oriented surfaces
I Ki ⊂ Γi pairwise disjoint compact subsets
I ki positive integers

with ∑
i

kiVoln(Ki) <∞ (1)

The action on forms is given by

ω 7→ T (ω) :=
∑

i

ki

∫
Ki

ω

(the series converges by (1) and moreover
∑

i kiVoln(Ki) = M(T ))
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The FF theory in a nutshell

A “hard” compactness theorem (no linear structure anymore!):

Corollary
Given a smooth oriented closed m − 1-dimensional surface Γ ⊂ Rm+n

there is an m-dimensional i.r. current T which minimizes the mass
among all those with ∂T = Σ.

A suitable approximation algorithm with classical piecewise smooth
surfaces (the so-called “deformation lemma”)

Corollary
If there is a minimizer in the class of piecewise smooth surfaces, this is
a minimum among integer rectifiable currents.

Last but not least: the FF theory is homological, which makes it a very
flexible tool to study geometric and sometimes also topological
questions.
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Regularity

Minimizers might be singular.

Theorem (De Giorgi + Federer + Fleming + Almgren + Simons,
60 to 70)
In codimension 1 a minimizer is a regular submanifold except for a
closed set of dimension at most m − 7. And rectifiable: Simon.

Theorem (Almgren 80)
In higher codimension a minimizer is a regular submanifold except for
a closed set of dimension at most m − 2.

The codimension 1 result has a large amount of applications to
geometric problems and was the starting point of powerful
generalizations (regularity theory for stable surfaces, etc.).
The codimension > 1 result was originally a manuscript of 1700
typewritten pages, finally reduced to a very bulky book thanks to TeX.
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Regularity II

Theorem (Chang 88)
The singular set of 2-dimensional area minimizing currents is discrete.

Chang’s proof starts from assuming the existence of a “branched
center manifold”.

A couple of pages in the appendix of Chang’s paper: the existence of
the branched center manifold needs a stronger version of the most
complicated step in Almgren’s proof (the existence of a “nonbranched
center manifold”).
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Optimality

Both dimension bounds are optimal:

I The celebrated Simons’ cone in R8

x2
1 + x2

2 + x2
3 + x2

4 = x2
5 + x2

6 + x2
7 + x2

8 .

is a minimizer (Bombieri-De Giorgi-Giusti 70).

I A generalization of a classical identity by Wirtinger, due to
Federer, shows that
Any holomorphic submanifold of a Kähler manifold is a minimizer.
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Two bad guys

I A bad guy: {
(z,w) ∈ C2 = R4 : z2 = w3

}
I A veeery bad guy:{

(z,w) ∈ C2 = R4 : (z − w2)2 = w2015
}
.
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A “new proof”

After a few years of effort, in five joint works with Emanuele Spadaro
we have written a shorter (and, we hope, much more readable) proof
of Almgren’s theorem.

I Same program of Almgren (see four main steps below).
I Some core ideas and in particular the main hard estimate

(frequency function, see in a while)
I Several new techniques of which we take advantage;
I Some new ideas;
I A few new hard estimates.
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Branched center manifold

Theorem (De Lellis - Spadaro - Spolaor, 2015)
Chang’s center manifold exists.

The theorem completes Chang’s proof.
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Beyond Almgren and Chang

Theorem (De Lellis -Spadaro - Spolaor, 2015)
Chang’s result is valid for two suitable classes of almost minimizing
currents (semicalibrated currents and spherical cross sections of
3-dimensional area minimizing cones).

Answer to a question of Rivière and Tian, particular cases covered
previously by Rivière - Bellettini and Bellettini.

Theorem (Spolaor, 2015)
Almgren’s theorem is valid for semicalibrated currents.

(Hopefully) soon: boundary regularity (open question: last remark of
Almgren’s book!) .
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Step 0: tangent planes

Rescale homothetically a smooth surface keeping fixed a point x0: the
corresponding rescalings converge to a plane (the tangent to the
surface at that point).

For a “general” integer rectifiable currents such rescalings converge to
a plane at almost every point (a sort of “approximate continuity” of
tangents).
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Step 0: tangent planes I

For an area-minimizing current of dimension m there is at least one
subsequence of rescalings converging to a plane (in a suitable weak
sense) except when x0 belongs to an exceptional set of dimension at
most m − 2.

It is a corollary of a powerful generalization (Almgren’s stratification,
due to Almgren!) of the so-called Federer reduction argument. Well
absorbed in the literature and very short proof, used by a few authors
in different contexts (see e.g. Simon, White, Wickramasekera).

Beware: the limiting plane might “pick” multiplicity. E.g. the bad guy

Σε :=
{

(z,w) ∈ C2 : (εz)2 = (εw)3
}

converges to a double copy of the plane {z = 0}.
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Codimension 1: De Giorgi ε-regularity theory

Theorem (De Giorgi, codimension 1)
Once an area-minimizing current is sufficiently close to a plane in a
ball, it must be a regular surface in half that ball.

Almgren, sixties: In general codimension De Giorgi’s theorem is true
provided the plane has multiplicity 1 (and the bad guy is a
counterexample as soon as the multiplicity is 2).

Almgren’s statement generalized by a powerful theorem of Allard to
stationary varifolds in the seventies.
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De Giorgi’s idea

Consider a graph (in any codimension) {(x , f (x)) : x ∈ Ω}. The volume
of the graph is∫

Ω

√
1 + |Df |2 + squares of minors =

∫
Ω

(
1 +
|Df |2

2
+ O(|Df |4)

)
.

Thus a minimal graph is close to the graph of an harmonic function
when |Df | << 1.

Harmonic functions have very strong decay of integral norms: if you
can approximate efficiently an area minimizing current with an
harmonic graph you can show that its distance to the best
approximating flat plane decays at smaller scales.

This is usually called excess decay, where the “excess” is a suitable
(integral) quantity measuring the flatness of the current.
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De Giorgi’s idea fails in higher codimension and higher
multiplicity

The bad guy
{(z,w) ∈ C2 : z2 = w3}

is rather flat in small neighborhoods of (0,0) but cannot be
approximated with the graph of a (single-valued!) function.

Worse new: choose ε extremely small and consider

Γ = {(z,w) ∈ C2 : z2 = εw} .

At scale 1 this is very close to two copies of the plane {z = 0}.
But between the scales 1 and ε the surface Γ becomes less flat: the
“decay” starts at scale ε.

Camillo De Lellis (UZH) Regularity for minimizing currents Prague, December 2015 18 / 48



De Giorgi’s idea fails in higher codimension and higher
multiplicity

The bad guy
{(z,w) ∈ C2 : z2 = w3}

is rather flat in small neighborhoods of (0,0) but cannot be
approximated with the graph of a (single-valued!) function.

Worse new: choose ε extremely small and consider

Γ = {(z,w) ∈ C2 : z2 = εw} .

At scale 1 this is very close to two copies of the plane {z = 0}.
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Almgren’s Step 1

The starting point of his program: build a theory of functions taking
multiple values (a fixed number, say, Q: the multiplicity of the best
planar approximation) and minimizing an appropriate generalized
Dirichlet energy.
Main achievements:

Theorem
There is a suitable Sobolev space W 1,2 of Q-valued maps and an
existence theory for minimizers of the Dirichlet energy subject to
Dirichlet boundary conditions.
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Almgren’s Step 1 II

Theorem
Every minimizer is Hölder in the interior and, except for a set of
codimension 2 in the domain, in a suitable neighborhood of any other
point it consists of Q harmonic sheets. Moreover any pair of these
sheets are either disjoint or they coincide.

Forbidden Allowed
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What’s new?

We simplify and extend several steps of Almgren’s theory.

We take advantage of new techniques in metric geometry and metric
analysis to avoid some hard combinatorial arguments. This becomes
very important in the later steps, where we merge a “metric” point of
view for W 1,2 Q-valued maps with recent developments in the metric
theory of currents (due to Jerrard-Soner, Ambrosio-Kirchheim and
White).

We can prove new regularity results not stated in Almgren’s book: for
instance we prove higher integrability of the gradient (plays a very
important role in Step 2, see below) and Hirsch extends the continuity
up to the boundary.
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What triggers the sheeting theorem?

Almgren’s famous discovery: the monotonicity of the frequency
function

I(r) :=
r
∫

Br
|Du|2∫

∂Br
|u|2

.

A very robust computation gives that r 7→ I(r) is increasing. For
classical harmonic functions

I(0) = lim
r↓0

I(r)

is (up to a dimensional constant) the degree of the first nontrivial
homogeneous harmonic polynomial in the Taylor expansion of u.
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What triggers the sheeting theorem? II

Two consequences of the mononicity of I:
I I(0) <∞ is finite⇒ there is a first nontrivial expansion of u, a sort

of “tangent function”.

I The tangent function is homogeneous.

Two-dimensional homogeneous minimizers can be classified: if 0 is a
singular point there is a “separation” of sheets in the punctured disk.

Thus for a planar 2-valued harmonic function all singular points (which
must have multiplicity 2) are isolated.
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What’s new?

The frequency function is a limiting case of a family of “smooth”
frequency functions, which are also monotone:

Iϕ(r) =

∫
|Du(x)|2ϕ

(
|x |
r

)
dx∫

− |u(x)|2
|x | ϕ′

(
|x |
r

)
dx

.

The regularity theorem could be derived from any of these alternative
frequency functions. They are however much easier to handle if the
function u is “almost minimizing” and this plays a vital role in Step 4
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A first plan

We can conceive a first “blow-up” plan for the big theorem which starts
as a contradiction argument, assuming the existence of an area
minimizing integer rectifiable current with too many singular points.

To fix ideas let us assume that the multiplicity of a certain
area-minimizing current T is (a.e.) either 1 or 2.

I By Step 0 we can try to prove regularity for most of the points
where we have one “weak tangent plane”;

I Fix such a point p and such a plane π: if π has multiplicity 1, then
p is a regular point;

I Assume therefore the plane has multiplicity 2. If all points in a
neighborhood of p has multiplicity 2, we can “divide” by 2 the
current and reduce it to the case of multiplicity 1.

I We conclude that our current T must have many singular points p
with a “weak tangent plane” of multiplicity 2, but always
surrounded by at least some points of lower multiplicity (i.e. 1).
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A first plan II

I A lot of these special points must accumulate around some p0
where there is a weak tangent plane of multiplicity 2 (problem: the
convergence to a plane of the rescalings might happen along a
subsequence and the clustering of singularities along a different
subsequence;).

p0
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A first plan III

I Part 1 of the plan is then to approximate the current at small
scales with Lipschitz Q-valued maps which will almost minimize
the Dirichlet energy.

I The second part of the plan is to rescale these approximations,
prove their convergence to a (nontrivial!) harmonic limit and show
that the latter “inherits” the large singular set of the current,
contradicting the regularity theory for harmonic Q-valued maps.

I To carry on the plan we need a suitable Lipschitz approximation
theorem with a (Lipschitz) Q-valued map: this is Step 2. (The
latter map will be close to a minimizer of the Dirichlet energy by
the theory of Step 1).
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What’s new?

An approximation algorithm which combines the metric theory of
currents of Ambrosio-Kirchheim (most notably a BV estimate by
Jerrard and Soner) with the metric approach to W 1,2 Q-valued maps.

Practically in the correct abstract framework this approximation
algorithm is a classical maximal function truncation argument to
approximate Sobolev maps with Lipschitz ones.

The proof is very straightforward but, more importantly, the method
gives better estimates on the accuracy of the approximation.
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The plan fails

Unfortunately the plan fails miserably on the very bad guy:

branched double cover of Σ
{(z − w2)2 = w2015}

Scale ε

Σ = {z = w2}

In a neighborhood of (0,0) any reasonable approximation of the
current with an harmonic 2-valued map would approach the harmonic
function z 7→ z2 counted with multiplicity 2: the singular point 0 is not
inherited by the harmonic 2-valued function.
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The plan fails II

Unfortunately the singular behavior is a very high order perturbation.

It is not a minor technical point: in Almgren’s version at this stage we
would not even be at 1/4 of the proof. The remaining 3/4 are needed
to get around this point.

In our proof we would be essentially at 1/2 of the way.
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Center manifold: Step 3

In the linear case, i.e. for harmonic Q-valued maps, we can simply
subtract the regular “core” which is the average of the Q sheets (i.e. a
a classical harmonic function).

This does not work in the nonlinear setting of area-minimizing currents.
However, we can hope to at least approximate the average with
sufficient accuracy with a smooth surface: this, following Almgren, will
be called center manifold.

We cannot however “subtract” the center manifold (this will not give a
harmonic approximation): rather we must approximate again the
area-minimizing current with a (Q-valued) map taking values in the
normal bundle of the center manifold.
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Taylor expansion again

M⊂ Rm+n (m-dimensional) smooth manifold.

N :M→ Rm+n a (classical) map with the property that

x + N(x) ⊥ TxM ∀x

Σ = {x + N(x) : x ∈M}

M

Σ

x

x + N(x)

normal toM at x
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Taylor expansion again II

Then,

Voln(M) = Voln(Σ) +

∫
M

H · N +
1
2

∫
M
|DN|2 +

∫
M

A(N,N) + H.O.T .

where
I H is the mean curvature;
I A is a quadratic form depending on the second fundamental form.
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Taylor expansion again III

The second fundamental form might be assumed very small: M is the
“average” of the sheets of the current, which is assumed quite flat.

In our case N takes more than one value and the linear term must be
substituted by

Q
∫
M

H · Av (N)

where Av (N)(x) is the average of the values taken by N at x : this is
also small.
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Key properties ofM

Observe: M must be at least C2 to carry on the computations above.

In fact we will need to take first variations in some arguments and this
will require at least C3 regularity.

The center manifold must be very close to the “average of the sheets”.
Assume for instance that in fact the current were a smooth manifold
with multiplicity Q: in this case the center manifold must coincide with
the current itself.

Corollary: whatever algorithm is used to produceM, as a side effect it
should give direct C3 regularity in the “easy” assumption under which
De Giorgi-Allard gives C1,α, without using Schauder theory

It is indeed possible to prove directly C3,α with a ”short elementary”
proof (cf. a separate paper with Emanuele Spadaro).
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It is indeed possible to prove directly C3,α with a ”short elementary”
proof (cf. a separate paper with Emanuele Spadaro).
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Back to Step 2

Step 3 now requires a much higher accuracy in the estimates of the
approximation of Step 2.

These improved estimates are much stronger than the ones used in
the other arguments in the literature (i.e. in Allard’s and De Giorgi’s
theorems).
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What’s new?

We derive these better estimates as a consequence of the higher
integrability of the gradient of harmonic Q-valued maps u mentioned a
few slides ago. Namely there is an estimate of type∫

Br/2

|Du|p ≤
(∫

Br

|Du|2
)2/p

(2)

We can derive a suitable counterpart of (2) even in the nonlinear
setting of area-minimizing currents. We still need to combine this latter
estimate with a rather hard lemma of Almgren to derive the final
approximation theorem, but (2) allows us to cut the most complicated
part of Almgren’s proof for Step 2.
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Note that (2) cannot be improved to an L∞ bound: in fact it can be
shown that p depends on both Q and m (for Q →∞, p → 2).
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The center manifold

Returning to Step 3, the center manifold is constructed with the
following idea.

I Recall that we assume that the current is very close to a plane at
a certain given scale, say 1, around a given point, say 0.

I Fix any point x and let r be the first scale around x at which the
current is not anymore too close to a plane.

I At that scale we approximate the current with a (Lipschitz)
Q-valued graph (over the best approximating plane!), using Step
2.

I Take the average of the sheets of this map and smooth it (for
instance by convolution).

I Patch these local approximations together... somehow... into a
single center manifoldM.

I Last but not least “approximate” again the current with a Q-valued
map on the normal bundle ofM.
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What’s new?

Hard to say, because Almgren’s proof is over 500 pages long and even
the statements are extremely intricate. This is however where our
proof is much shorter (almost a factor 10).

The last approximation step is surely rather different since Almgren
seem to start a new approximation procedure ex-novo. Our approach
is instead to take locally the Lipschitz approximating maps of the
“construction algorithm” and “reparameterize them” from the center
manifold.
This requires a rather subtle change of coordinates theorem for
Q-valued maps (the subtlety being in the estimate of certain integral
quantities). However the theorem can be proved in a very effective way
with the techniques we mentioned in Step 1 and from it the final
approximation follows rather easily.
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Changing coordinates is subtle!

M
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What’s new? II

In the construction algorithm we take advantage of the “splitting before
tilting phenomenon”. The terminology is borrowed from an important
paper of Rivière, where he notices the following:

An area-minimizing 2-dimensional current which is close at a certain
scale to a (multiple of a) plane can become less flat at a smaller scale
only if the sheets “separate”.
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What’s new? III

Scale 1: flat
and close

Scale δ: flat but
separated

Scale δ << ε: not
flat
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What’s new? IV

Rivière and Tian use this property in a subsequent work on the
regularity of J-holomorphic curves. The proof of Rivière is based on a
suitable differentiable inequality, which in turn is implied by a suitable
modification of an epiperimetric inequality of Brian White.

We state, prove and use several versions of the “splitting-before-tilting”
principle in any dimension.

Our proofs are however always based on a perturbation of De Giorgi’s
“excess decay”.
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Final blow-up

We can now implement the idea of the plan that failed: assuming the
current has too many singularities, show that these singularities are
inherited by a suitable (nontrivial) limit of the approximation over the
normal bundle of the center manifold, which hopefully is an harmonic
Q-valued map.

Singular points are now points where the map essentially collapse on
the manifold, which is the “average” of the sheets. So, if the singular
points were not inherited in the limit, we would conclude that the order
of contact between the current and the center manifold is infinite
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Step 4

Recall that the frequency function measures the order of vanishing of
an harmonic map.

If we could show that the frequency function of the approximating map
is “almost monotone” (and thus bounded), the order of contact with the
center manifold would be finite.

In Step 4 we consider the area-functional as a perturbation of the
Dirichlet energy to show that the frequency function of the
approximating map is almost monotone.

Very important issue: A priori the current is not flat at all scales, i.e. the
center manifold might not “go through all scales” up to the singular
blow-up point. The frequency function would then not be defined on an
interval ]0, r [, but rather on a sequence of intervals going to 0.
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What’s new?

Even harder to say than with the center manifold.

However, with respect to Almgren we surely take advantage of the
monotonicity of the “smoothed” version of the frequency function.

Finally the main reason why the final “blow-up” map inherits the
singularities of the current is that we are assuming the latter to be at
least m − 2-dimensional, whereas the converge is of W 1,2 type
(Capacity!).
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Thank you

for your attention!
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