Fluids in motion

Eduard Feireisl

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha

CMSE 2015 in honour of 70-th anniversary of Z.Dostál, 25-27 May 2016

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078

イロト イポト イラト イラト

San

Do we need mathematics?

However beautiful the strategy, you should occasionally look at the results... Sir Winston Churchill [1874-1965]

イロト 不得下 不足下 不足下

= nac

Some naive questions concerning the model

Well posedness

- Does the problem admit a solution for given data?
- In which sense the solution is understood?
- Is solution determined uniquely by the data?
- Are solutions stable under data perturbation?

Typical answers

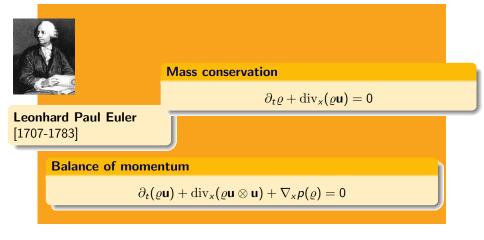
We don't know yet. But in certain cases we do know...

Sac

Fluids in motion

Euler system (compressible inviscid)

٩	$\mathbf{u}=\mathbf{u}(t,x)$	fluid velocity
٠	$\varrho = \varrho(t, x)$	density



イロト イロト イヨト

Sac

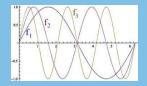
Oscillations vs. nonlinearity

Oscillatory solutions - velocity

 $U(x) \approx \sin(nx), \ U \rightarrow 0$ in the sense of avarages (weakly)

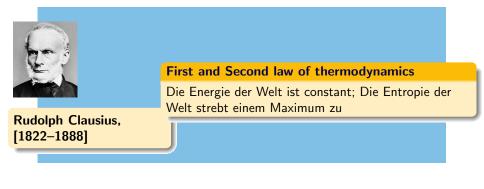
Oscillatory solutions - kinetic energy

$$\frac{1}{2}|U|^2(x) \approx \frac{1}{2}\sin^2(nx) \rightarrow \frac{1}{4} \neq \frac{1}{2}0^2$$
 in the sense of avarages (weakly)



Sac

Do some solutions lose/produce energy?



Mechanical energy balance for compressible fluid

classical:
$$\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{1}{2} \varrho |\mathbf{u}|^2 + P(\varrho) \, \mathrm{d}x = 0, \ P(\varrho) = \varrho \int_1^\varrho \frac{p(z)}{z^2} \, \mathrm{d}z$$

weak:
$$\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{1}{2} \varrho |\mathbf{u}|^2 + P(\varrho) \, \mathrm{d}x \leq 0$$

4 million

1 JE 1

Existence

Global-in-time solutions (in general) do not exist. Weak solutions may exist but may not be uniquely determined by the initial data.

Mechanical energy

$$E = \frac{1}{2}\varrho|\mathbf{u}|^2 + P(\varrho)$$

Admissibility criteria - mechanical energy dissipation

$$\partial_t E + \operatorname{div}_x (E\mathbf{u} + p(\varrho)\mathbf{u}) \leq \mathbf{0}$$

Bad or good news for compressible Euler?

Camillo DeLellis [*1976]

Existence

Good news: There exists a global-in-time weak solution of compressible Euler system for "any" initial data **Bad news:** There are infinitely many...

Admissible solutions?

Good news: Most of these "wild" solutions produce energy.

Bad news: There is a vast class of data for which there exist infinitely many admissible solutions

László Székelyhidi [*1977]

・ロト ・四ト ・ヨト ・ヨト

Known facts about compressible Euler...

Many admissible solutions [E.Chiodaroli, EF]

For any (or a large class) of initial densities, there exists an initial bounded velocity field such that the compressible Euler system admits infinitely many *physically admissible* solutions

Many admissible solutions [E.Chiodaroli, C.DeLellis, O.Kreml]

There exists Lipschitz (regular) initial data for which the compressible Euler system admits infinitely many admissible solutions

Many admissible solutions [E.Chiodaroli, O.Kreml]

There exist initial data for the Riemann problem (in 2D) and a weak solution of the compressible Euler system that dissipates "globally" more energy than the Riemann solution

Do we compute the right object?

Young measures

$$U(t,x)\approx\nu_{t,x}[U]$$

 $u(B), B \subset R^3$ probability that ${f U}$ belongs to the set B

Laurence Chisholm Young [1905-2000]

< □ > < □ > < □ > < □ > < □ > < □ >

590

Siddhartha Mishra

Numerical results

Certain numerical solutions of "inviscid" problems exhibit scheme independent oscillatory behavior

The way out?

Possible solutions...

- Forget Euler and similar (inviscid) systems
- Take into account only viscosity solutions to Euler but what kind?
- Formulate a local condition of maximality of energy dissipation

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ = □

590

• Add more equations...