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Abstract. The paper studies the Dirichlet problem for the Stokes resolvent
system for bounded boundary data on bounded and unbounded domains with

compact Ljapunov boundary. (The boundary might be disconnected.) For

a bounded domain we prove the existence of a unique solution (u, p) of the
problem such that the velocity part u is bounded. For an unbounded domain

we prove the existence of a such solution. But this solution is not unique. We

characterize all solutions of the problem. Then we study bounded solutions of
the nonlinear Dirichlet problem −∆u(x)+λu(x)+∇p(x) = F (x,u(x)), ∇·u =

0 in Ω, u(x) = G(x,u(x)) on ∂Ω, where F is bounded. As a consequence we

study bounded solutions of the Dirichlet problem for the Darcy-Forchheimer-
Brinkman system −∆u + λu + β|u|u + ∇p = f , ∇ · u = 0. At last we prove

a generalized maximum modulus principle for a solution (u, p) of the Stokes
resolvent system such that the velocity part u is bounded.

1. Introduction

This paper studies the Dirichlet problem for the Stokes resolvent system

(1.1) −∆u + λu +∇p = 0, ∇ · u = 0 in Ω

with

(1.2) λ ∈ C \ {z ≤ 0}.
This system is important in two situations. If λ is a positive constant then the
system (1.1) (so called Brinkman system) is a model of a porous medium (see [26]).
The system (1.1) for λ = iτ with τ > 0 is utilized for a study of boundary value
problems for the nonsteady Stokes system (see [3], [47]).

R. Farwig and H. Sohr studied the Dirichlet problem for the Stokes resolvent sys-
tem (1.1) in homogeneous Sobolev spaces D1,q(Ω) and in weighted Sobolev spaces
W 1,q(Ω, ρ) on domains with compact boundary of class C1,1 (see [9], [10]). This
problem was studied on bounded domains also by K. Schumacher in [42]. M. Geis-
sert, M. Hess, C. Schwarz and K. Stavrakidis and also P. Deuring studied in [13], [5]
the Dirichlet problem for the Stokes resolvent system (1.1) in homogeneous Sobolev
spaces D2,q(Ω) on domains with smooth compact boundary. M. Kohr, M. Lanza
de Cristoforis and W. L. Wendland studied the Dirichlet problem for the Brinkman
system and also for a nonlinear Brinkman system in Hs(Ω, Rm) × Hs−1(Ω) for
s ∈ (1/2, 3/2) in bounded domains Ω ⊂ Rm with connected Lipschitz boundary
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2 DAGMAR MEDKOVÁ

(see [24]). A classical solution of the Dirichlet problem for the Brinkman system
was studied on domains with compact connected boundary of class C2 by W. Varn-
horn ([47], [48]). He proved the unique solvability of the classical Dirichlet problem
on bounded domains for a continuous boundary condition g satisfying the compat-
ibility condition

(1.3)
∫

∂Ω

g · nΩ dσ = 0.

For an unbounded domain Ω ⊂ Rm he proved the unique solvability of a classical
solution (u, p) under the assumption |u(x)| |∇u(x)|+ |u(x)| |p(x)| = o(|x|1−m) as
|x| → ∞. M. Kohr proved in [21] the existence of a classical solution for open sets
with compact boundary of class C1,α (without assumption that ∂Ω is connected).
The behaviour of solutions at infinity is the same like in the papers of W. Varnhorn.

We study the problem whether for a given boundary condition g ∈ L∞(∂Ω, Cm)
there exists a solution (u, p) of (1.1) such that u is bounded in Ω and u = g on
∂Ω in some sense. This problem is motivated by the same problem for the Laplace
equation. For the Laplace equation a generalised solution of the Dirichlet problem
is constructed as the infimum of the class of supersolutions of this problem - so
called PWB-solution (see for example [2]). The value of a solution at a fixed point
is given by the integral of the boundary condition with respect to the harmonic
measure. Since the harmonic measure is a probabilistic measure, we obtain that
the solution is bounded. The Dirichlet problem for the Laplace equation with
boundary condition f ∈ Lq(∂Ω) was studied by the integral equation method on
domains with compact Lipschitz boundary ([16], [17], [19], [50]). It was studied so
called Lq-solution of the Dirichlet problem, i.e. ∆u = 0 in Ω, the nontangential
maximal function of u is in Lq(∂Ω) and the boundary condition is fulfilled in the
sense of a nontangential limit at almost all points of the boundary. For Ω bounded
it was shown that Lq-solution is also a PWB-solution (see [4]). So, the Lq-solution
of the Dirichlet problem corresponding to a boundary condition f ∈ L∞(Ω) is
bounded. R. Hunt and R. L. Wheeden proved that each bounded solution of the
Laplace equation in a bounded domain with Lipschitz boundary has nontangential
limit at almost all points of the boundary, i.e. it is an L∞-solution of a Dirichlet
problem for the Laplace equation (see [15]).

In hydrodynamics (u, p) is an Lq-solution of the Dirichlet problem if (u, p) is a
solution of the corresponding system (Stokes system or Stokes resolvent system),
the nontangential maximal function of u is in Lq on the boundary, and the bound-
ary condition is fulfilled at almost all points of the boundary in the sense of a
nontangential limit. L2-solutions of the Dirichlet problem for the Stokes system on
domains with compact Lipschitz boundary were studied by E. B. Fabes, C. E. Kenig
and G. C. Verchota (see [8]). Lq-solutions of the Dirichlet problem for the Stokes
system for q close to 2 on domains with compact Lipschitz boundary were studied
by J. Kilty, M. Mitrea, Z. Shen and M. Wright ([20], [40], [43]). Lq-solutions of the
Dirichlet problem for the Stokes system for 2 ≤ q < ∞ on domains with compact
Lipschitz boundary in R2 or R3 were studied by M. Mitrea and M. Wright ([40]).
L2-solutions of the Dirichlet problem for the Stokes resolvent system on bounded
domains Ω ⊂ R3 with connected Lipschitz boundary has been studied by H. J.
Choe and H. Kozono in [3]. The same problem for a general Euclidean space was
studied by Z. Shen in [44].
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We study an L∞-solution of the Dirichlet problem for the Stokes resolvent system
on bounded domains with boundary of class C1,α (and general geometry). For a
boundary condition g ∈ L∞(∂Ω, Cm) satisfying the compatibility condition (1.3)
we show the existence of an L∞-solution (u, p). A velocity u is unique, a pressure p
is unique up to an additive constant. We show moreover that u is bounded. For Ω
unbounded we show that there exist infinitely many L∞-solutions of the Dirichlet
problem for the Stokes resolvent system for all g ∈ L∞(∂Ω, Cm). We describe all
these solutions. We prove that if (u, p) is an L∞-solution of the Dirichlet problem for
the Stokes resolvent system then u is bounded. To be able to describe all solutions
of the Dirichlet problem on unbounded domains, we study the behaviour at infinity
of solutions (u, p) of the Stokes resolvent system with u bounded. Moreover we show
that if (u, p) is a solution of the Stokes resolvent system such that u is bounded,
then there exists a nontangential limit of u at almost all points of the boundary, i.e.
(u, p) is an L∞-solution of the Dirichlet problem for the Stokes resolvent system.
Then we study an L∞-solutions of the nonlinear Dirichlet problem for the Stokes
resolvent system

−∆u(x) + λu(x) +∇p(x) = F (x,u(x)), ∇ · u = 0 in Ω,

u(x) = G(x,u(x)) on ∂Ω.

Here F is bounded for Ω bounded and F = 0 for Ω unbounded. For Ω bounded
we study also L∞-solutions of the Dirichlet problem for the Darcy-Forchheimer-
Brinkman system

−∆u + λu + β|u|u +∇p = f , ∇ · u = 0 in Ω.

M. Kohr, M. Lanza de Cristoforis and W. L. Wendland studied the Robin prob-
lem for the Darcy-Forchheimer-Brinkman system in Hs(Ω, Rm) × Hs−1(Ω), the
mixed Dirichlet-Robin problem for the Darcy-Forchheimer-Brinkman system in
H3/2(Ω, Rm) × H1/2(Ω) and the Navier problem in H1(Ω, Rm) × L2(Ω) for the
Darcy-Forchheimer-Brinkman system on a bounded domain with connected Lip-
schitz boundary ([23]). We prove a similar result for L∞-solutions of the Dirichlet
problem for the Darcy-Forchheimer-Brinkman system.

As a consequence of these results we prove the generalized maximum modulus
principle. If u is a solution of the Laplace equation on a bounded domain Ω and
u ∈ C(Ω) then the classical maximum modulus principle holds:

max
x∈Ω

|u(x)| = max
x∈∂Ω

|u(x)|.

(See [2].) A similar result holds for elliptic partial differential equations of the
second order (see [14]). It is well known that this result does not hold for hy-
drodynamical partial differential systems (see [49]). But a generalized maximum
modulus principle has been studied. Maremonti and Russo proved in [33] a gener-
alized maximum modulus principle for the Stokes system in the plane: Let Ω ⊂ R2

be a bounded domain with boundary of class C2. Then there exists a constant C
such that if (u, p) is a solution of the Stokes system

∆u = ∇p, ∇ · u = 0 in Ω

with u ∈ C(Ω, R2), then

(1.4) max
x∈Ω

|u(x)| ≤ C max
x∈∂Ω

|u(x)|.
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Then Kratz investigated the best constant in the generalized maximum modulus
estimate (1.4) for the Stokes system in balls (see [28], [29], [30]).) Maremonti ([32])
proved the generalized maximum modulus principle (1.4) for the Stokes system for
bounded domains with boundary of class C2 in Rm. We show a similar (and more
general) results for the Stokes resolvent system.

2. Definition of an Lq-solution of the Dirichlet problem

We now define an Lq-solution of the Dirichlet problem for the Stokes resolvent
system.

Let Ω ⊂ Rm be an open set with compact Lipschitz boundary. If x ∈ ∂Ω, a > 0,
denote the non-tangential approach region of opening a at the point x by

ΓΩ
a (x) := {y ∈ Ω; |x− y| < (1 + a) dist(y, ∂Ω)}.

If now v is a vector function defined in Ω we denote the non-tangential maximal
function of v on ∂Ω by

v∗Ω(x) := sup{|v(y)|; y ∈ ΓΩ
a (x)}.

If x ∈ ∂Ω, Γ(x) = ΓΩ
a (x) then

v(x) = lim
Γ(x)3y→x

v(y)

is the non-tangential limit of v with respect to Ω at x.
Let Ω ⊂ Rm be an open set with compact Lipschitz boundary, λ ∈ C \ {z < 0},

1 < q ≤ ∞, g ∈ Lq(∂Ω, Cm). We say that (u, p) is an Lq-solution of the Dirichlet
problem for the Stokes resolvent system

(2.1) −∆u + λu +∇p = 0, ∇ · u = 0 in Ω, u = g on ∂Ω,

if (u, p) is a classical solution of the Stokes resolvent system (1.1) in Ω, u∗Ω ∈
Lq(∂Ω), there exists the nontangential limit of u at almost all points of ∂Ω, and
the Dirichlet boundary condition u = g on ∂Ω is fulfilled in the sense of the non-
tangential limit at almost all points of ∂Ω.

3. Auxiliary lemmas

We shall look for an L∞-solution of the Dirichlet problem for the Stokes re-
solvent system using the integral equation method. We shall study properties of
corresponding boundary layer potentials. For these reasons we need the following
technical auxiliary lemmas.

Lemma 3.1. Let A, D be Borel subsets of Rm, µ be a nonnegative Radon measure
on D, K be a Borel-measurable function on A×D, and α, β > 0. Fix x ∈ A. Let
|K(x, y)| ≤ C1|x − y|−α for y ∈ D. Denote B(x; r) = {y ∈ Rm; |x − y| < r}. If
β > α and µ(B(x; r)) ≤ C2r

β for 0 < r < ρ, then∣∣∣∣ ∫
B(x;ρ)

K(x, y) dµ(y)
∣∣∣∣ ≤ C1C2β

β − α
ρβ−α.

If β < α and µ(B(x; r)) ≤ C2r
β for ρ < r, then∣∣∣∣ ∫

D\B(x;ρ)

K(x, y) dµ(y)
∣∣∣∣ ≤ C1C2α

|β − α|
ρβ−α.
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Proof.

α

t∫
s

r−α−1µ(B(x; r) \B(x; s))dr = α

t∫
s

r−α−1

∫
B(x;r)\B(x;s)

dµ(y)dr

= α

∫
B(x;t)\B(x;s)

t∫
|x−y|

r−α−1dr dµ(y)

= −t−αµ(B(x; t) \B(x; s)) +
∫

B(x;t)\B(x;s)

|x− y|−α dµ(y).

Thus ∣∣∣∣∣∣∣
∫

B(x;t)\B(x;s)

K(x, y) dµ(y)

∣∣∣∣∣∣∣ ≤
∫

B(x;t)\B(x;s)

C1|x− y|−α dµ(y)

= C1α

t∫
s

r−α−1µ(B(x; r) \B(x; s))dr + C1t
−αµ(B(x; t) \B(x; s)).

If µ(B(x; r)) ≤ C2r
β for 0 < r < ρ, β − α > 0, then for s = 0 and t = ρ∣∣∣∣ ∫

B(x;ρ)

K(x, y) dµ(y)
∣∣∣∣ ≤ C1C2α

ρ∫
0

rβ−α−1 dr + C1C2ρ
β−α =

C1C2β

β − α
ρβ−α.

If µ(B(x; r)) ≤ C2r
β for ρ < r, β − α < 0, then for s = ρ and t →∞∣∣∣∣ ∫

D\B(x;ρ)

K(x, y) dµ(y)
∣∣∣∣ ≤ C1C2α

∞∫
ρ

rβ−α−1 dr =
C1C2α

|β − α|
ρβ−α.

�

Lemma 3.2. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary. Let
K(x, y) be a function defined on {[x, y] ∈ Rm × ∂Ω; x 6= y} such that K(x, ·) is
Borel-measurable for each x ∈ Rm. For f ∈ L∞(∂Ω) define

(3.1) Kf(x) =
∫

∂Ω

K(x, y)f(y) dσ(y).

Suppose that there exist positive constants ρ, C1 and α ∈ (0, 1) such that |K(x, y)| ≤
C1 for y ∈ ∂Ω, dist(x, ∂Ω) ≥ ρ, and |K(x, y)| ≤ C1|x − y|α+1−m for y ∈ ∂Ω,
dist(x, ∂Ω) < ρ. Then there exists a constant C such that

(3.2) |Kf | ≤ C‖f‖L∞(∂Ω) on Rm, ∀f ∈ L∞(∂Ω).

Proof. Clearly, we can suppose that ρ ≥ diam(∂Ω). Let |f | ≤ c. If dist(x, ∂Ω) ≥ ρ
then

|Kf(x)| ≤ C1c

∫
∂Ω

1 dσ.
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Since ∂Ω is Lipschitz, there exists a constant C2 such that σ(B(x; r)∩∂Ω) ≤ C2r
m−1

for any x ∈ Rm and r > 0. If dist(x, ∂Ω) < ρ then

|Kf(x)| ≤ cC1C2

α
(2ρ)α

by Lemma 3.1. �

Lemma 3.3. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary. Let
K(x, y) be a function defined on {[x, y] ∈ Rm×∂Ω; x 6= y} such that K(x, ·) is Borel-
measurable for each x ∈ Rm. For f ∈ L∞(∂Ω) define Kf(x) by (3.1). Suppose
that there exist positive constants ρ and C1 such that |K(x, y)| ≤ C1 for y ∈ ∂Ω
and |x| ≥ ρ. Suppose that there exists a constant C2 such that

|K(x, y)−K(z, y)| ≤ C2
|x− z|
|z − y|m

for all x, z ∈ B(0; ρ) and y ∈ ∂Ω with |z − y| > 2|x − z|. Suppose that there
exist constants C3 ∈ (0,∞) and α ∈ (0, 1) such that |K(z, y)| ≤ C3|z − y|α+1−m

for each z, y ∈ ∂Ω. Suppose that there exists a constant C4 such that |K(x, y)| ≤
C4|x− y|1−m for all x ∈ B(0; ρ) and y ∈ ∂Ω. Then there exists a constant C such
that (3.2) holds.

Proof. We can suppose that ∂Ω ⊂ B(0; ρ). Let |f | ≤ c. According to Lemma 3.2
there exists a constant C5 such that |Kf(x)| ≤ C5c for x ∈ ∂Ω ∪ (Rm \B(0; ρ)).

Let now x ∈ B(0; ρ) \ ∂Ω. Since ∂Ω is Lipschitz, there exists a constant C6 such
that σ(B(x; r) ∩ ∂Ω) ≤ C6r

m−1 for any x ∈ Rm and r > 0. Put r = dist(x, ∂Ω).
Choose z ∈ ∂Ω such that |z − x| = r. Then

|Kf(x)| ≤ c

[ ∫
∂Ω∩B(z;2r)

|K(x, y)| dσ(y) +
∫

∂Ω\B(z;2r)

|K(x, y)−K(z, y)| dσ(y)

+
∫

∂Ω\B(z;2r)

|K(z, y)| dσ(y)

]
≤ c

[ ∫
∂Ω∩B(z;2r)

C4r
1−m dσ(y)

+
∫

∂Ω\B(z;2r)

C2
|x− z|
|z − y|m

dσ(y) +
∫

∂Ω

C3|z − y|α+1−m dσ(y)

]
.

By virtue of Lemma 3.1

|Kf(x)| ≤ c

(
C6C42m−1 + C6C2rm(2r)−1 + C6C3

m− 1
α

(2ρ)α

)

≤ cC62mm

(
C4 + C2 + C3

ρα

α

)
.

�

4. Boundary layer potentials

We shall look for an L∞-solution of the Dirichlet problem in the form of a Stokes
resolvent double layer potential with density from L∞(∂Ω, Cm). For this reason we
need to know properties of boundary layer potentials.
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Let λ ∈ C\{z < 0}. Then there exists a unique fundamental solution Eλ = (Eλ
ij),

Qλ = (Qλ
j ) of the system (1.1) such that Eλ(x) = o(|x|), Qλ(x) = o(|x|) as |x| → ∞.

Remember that for i, j ∈ {1, . . . ,m} we have

(4.1) −∆Eλ
ij + λEλ

ij + ∂iQ
λ
j = δijδ0, ∂1E

λ
1j + . . . ∂mEλ

mj = 0,

(4.2) −∆Eλ
i,m+1 + λEλ

i,m+1 + ∂iQ
λ
m+1 = 0, ∂1E

λ
1,m+1 + . . . ∂mEλ

m,m+1 = δ0.

If j ∈ {1, . . . ,m} then

Qλ
j (x) = Eλ

j,m+1(x) =
1

ωn

xj

|x|m
,

Qλ
m+1 =

{
δ0(x) + (λ/ωm) ln |x|−1, m = 2,
δ0(x) + (λ/ωm)(m− 2)−1|x|2−m, m > 2,

where ωm is the area of the unit sphere in Rm. (See [47, p. 60]. The expressions of
Eλ can be found in the book [47, Chapter 2]. We omit them for the sake of brevity.

For λ = 0 we obtain the fundamental solution of the Stokes system. If i, j ∈
{1, . . . ,m}, the components of E0 are given by

(4.3) E0
ij(x) =

1
2ωm

{
δij

(m− 2)|x|m−2
+

xixj

|x|m

}
, m ≥ 3

(4.4) E0
ij(x) =

1
4π

{
δij ln

1
|x|

+
xjxk

|x|2

}
, m = 2,

(see, e.g., [47, p. 16]).
If i, j ≤ m then

(4.5) |Eλ
ij(x)− E0

ij(x)| = O(1) as |x| → 0.

(See [47], p. 66.)
If λ 6= 0 and i, j ≤ m then

(4.6) Eλ
ij(x) = O(|x|−m), ∇Eλ

ij(x) = O(|x|−m) as |x| → ∞
by [47, Chapter 2].

We denote Q(x) = (Q0
1(x), . . . , Q0

m(x)) = (Qλ
1 (x), . . . , Qλ

m(x)). By Ẽλ we denote
the matrix of the type m×m, where Ẽλ

ij(x) = Eλ
ij(x) for i, j ≤ m.

Let now Ω ⊂ Rm be an open set with compact Lipschitz boundary. If 1 < q < ∞
and g ∈ Lq(∂Ω, Cm) then the single-layer potential for the Stokes resolvent system
Eλ

Ωg and its associated pressure potential QΩg are given by

Eλ
Ωg(x) :=

∫
∂Ω

Ẽλ(x− y)g(y) dσ(y),

QΩg(x) :=
∫

∂Ω

Q(x− y)g(y) dσ(y).

Remark that (Eλ
Ωg, QΩg) is a solution of the Stokes resolvent system (1.1) in the

set Rm \ ∂Ω.
We summarize boundary behaviour of single layer potentials. If g ∈ L2(∂Ω, Cm)

then Eλ
Ωg(x) is the nontangential limit of Eλ

Ωg at x with respect to Ω+ = Ω and
with respect to Ω− = R\Ω at almost all x ∈ ∂Ω (see [18, Lemma 2.1.4], [22,
Lemma 3.1]). If λ 6= 0 then (Eλ

Ωg)∗, (∇Eλ
Ωg)∗ ∈ L2(∂Ω) (see [18, Lemma 2.1.4]),

and
|Eλ

Ωg(x)|+ |∇Eλ
Ωg(x)| = O(|x|−m) as |x| → ∞.
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Denote
Kλ

Ω(y, x) = −Tx(Ẽλ(x− y), Q(x− y))nΩ(x),
where

T (u, p) = 2∇̂u− pI, ∇̂u =
1
2
[∇u + (∇u)T ]

is the stress tensor corresponding to a velocity u and a pressure p. For Ψ ∈
L2(∂Ω, Cm) define

K ′
Ω,λΨ(x) = lim

ε↘0

∫
∂Ω\B(x;ε)

Kλ
Ω(y, x)Ψ(y) dσ(y),

where B(x; ε) = {y; |x − y| < ε}. Then K ′
Ω,λ is a bounded linear operator on

L2(∂Ω, Rm). If Ψ ∈ L2(∂Ω, Cm), there are the non-tangential limits [∇Eλ
ΩΨ(x)]±,

[Qλ
ΩΨ)(x)]± of ∇Eλ

ΩΨ, Qλ
ΩΨ with respect to Ω± at almost all x ∈ ∂Ω, and

(4.7) [T (Eλ
ΩΨ, QΩΨ)]±nΩ = ±1

2
Ψ−K ′

Ω,λΨ.

(For λ = 0 see [40, Corollary 4.3.2], for λ 6= 0 see for example [23, Lemma 3.1]. See
also [39, Theorem 3.1].)

Now we define a double layer potential. For Ψ ∈ L2(∂Ω, Cm) define in Rm \ ∂Ω

(4.8) (Dλ
ΩΨ)(x) =

∫
∂Ω

Kλ
Ω(x, y)Ψ(y) dσ(y),

and the corresponding pressure by

(4.9) (Πλ
ΩΨ)(x) =

∫
∂Ω

Πλ
Ω(x, y)Ψ(y) dσ(y).

If m > 2 then

Πλ
Ω(x, y) =

1
ωm

{
−(y − x)

2m(y − x) · nΩ(y)
|y − x|m+2

+
2nΩ(y)
|y − x|m

− λ
|x− y|2−m

m− 2
nΩ(y)

}
.

If m = 2 then

Πλ
Ω(x, y) =

1
2π

{
−(y − x)

4(y − x) · nΩ(y)
|y − x|4

+
2nΩ(y)
|y − x|m

− λ

(
ln

1
|x− y|

)
nΩ(y)

}
.

Remark that Dλ
ΩΨ ∈ C∞(Rm \ ∂Ω, Rm), Πλ

ΩΨ ∈ C∞(Rm \ ∂Ω, R1) and ∇Πλ
ΩΨ −

∆Dλ
ΩΨ + λDλ

ΩΨ = 0, ∇ ·Dλ
ΩΨ = 0 in Rm \ ∂Ω.

Define

KΩ,λΨ(x) = lim
ε↘0

∫
∂Ω\B(x;ε)

Kλ
Ω(x, y)Ψ(y) dσ(y), x ∈ ∂Ω.

Then KΩ,λ is a bounded linear operator on L2(∂Ω; Cm) (adjoint to K ′
Ω,λ). There

exists the nontangential limit [Dλ
ΩΨ]+(x) of Dλ

ΩΨ with respect to Ω+ and the
nontangential limit [Dλ

ΩΨ]−(x) of Dλ
ΩΨ with respect to Ω− for almost all x ∈ ∂Ω

and

(4.10) [Dλ
ΩΨ]±(x) = ±1

2
Ψ(z) + KΩ,λΨ(z).

At infinity we have the estimate

Dλ
ΩΨ(x) = O(|x|1−m) as |x| → ∞.
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Lemma 4.1. Let µ ∈ C \ {z ≤ 0}. If i, j ≤ m then |∇Eµ
ij(x) − ∇E0

ij(x)| =
O(|x|2−m) as |x| → 0.

Proof. For m > 2 see [44, Theorem 2.5]. Let now m = 2. Since Qµ
i = Q0

i , we obtain
subtracting (4.1) for λ = µ and λ = 0

−∆(E0
ij − Eµ

ij) + µ(E0
ij − Eµ

ij) = µE0
ij .

Fix q ∈ (2,∞). Since µE0
ij ∈ Lq

loc(R2), regularity results for elliptic equations yields
that (E0

ij−Eµ
ij) ∈ W 2,q

loc (R2).(See for example [31, Chapter 2, Théorème 3.2] and [38,
Proposition 2.7].) Sobolev’s embedding theorem gives that (E0

ij − Eµ
ij) ∈ C1(R2)

(see for example [1, Theorem 4.12]). �

Lemma 4.2. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary. If
λ ∈ C \ {z ≤ 0} then KΩ,λ −KΩ,0 is a compact linear operator on L2(∂Ω, Rm).

(See [25, Theorem 3.3].)

Proposition 4.3. Let Ω ⊂ Rm be an open set with compact boundary of class C1,α,
m ≥ 2, 0 < α < 1, λ ∈ C \ {z < 0}. Then KΩ,λ is a compact linear operator on
L∞(∂Ω, Cm) and on L2(∂Ω, Cm).

Proof. According to [47] and [6, Chapter III, Lemma 2.1] there is a constant C
such that |Kλ

Ω(x, y)| ≤ C|x − y|α+1−m for each x, y ∈ ∂Ω. So, KΩ,λ is a compact
linear operator on L∞(∂Ω, Cm) by [11, § 4.5.2, Satz 2] and on L2(∂Ω, Cm) by [46,
Satz 12.1]. �

Now we show that the double layer potential Dλ
Ω is a bounded operator from

L∞(∂Ω, Cm) to L∞(Rm\∂Ω, Cm). To use Lemma 3.3 we need the following lemma:

Lemma 4.4. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary. Let
r ∈ (0,∞) be such that ∂Ω ⊂ B(0; r). Then there exists a constant C such that

(4.11) |K0
Ω(x, y)−K0

Ω(z, y)| ≤ C
|x− z|
|z − y|m

for all x, z ∈ B(0; r), y ∈ ∂Ω with |z − y| > 2|x− z|.

Proof. There exists a constant C1 such that

|∇2E0
ij(x− y)|+ |∇Q0

j (x− y)| ≤ C1|x− y|−m, i, j ≤ m.

Let i, j, k be given. If x, z ∈ B(0; r), y ∈ ∂Ω, then there exists z̃ in the interval xz
such that

|∂kE0
ij(x− y)− ∂kE0

ij(z − y)| = |(x− z) · ∇∂kE0
ij(z̃ − y)| ≤ C1|x− z||y − z̃|−m.

If |z − y| > 2|x− z| then |z̃ − y| > |z − y|/2. Thus

|∂kE0
ij(x− y)− ∂kE0

ij(z − y)| ≤ 2mC1|x− z||z − y|−m.

By the same way we prove

|Qj(x− y)−Qj(z − y)| ≤ 2mC1|x− z||z − y|−m.

By the definition of K0
Ω we obtain (4.11). �

Proposition 4.5. Let Ω ⊂ Rm be an open set with compact boundary of class C1,α,
0 < α < 1, and λ ∈ C \ {z < 0}. Then there exists a constant C such that

(4.12) |Dλ
Ωf | ≤ C‖f‖L∞(∂Ω) on Rm \ ∂Ω, ∀f ∈ L∞(∂Ω, Cm).
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Proof. Suppose first that λ = 0. Fix ρ > 0 such that ∂Ω ⊂ B(0; ρ). According to
Lemma 4.4 there exists a constant C1 such that

|K0
Ω(x, y)−K0

Ω(z, y)| ≤ C1
|x− z|
|z − y|m

for all x, z ∈ B(0; ρ), y ∈ ∂Ω with |z−y| > 2|x−z|. According to [47] or [6, Chapter
III, Lemma 2.1] there is a constant C2 such that |K0

Ω(z, y)| ≤ C2|z − y|α+1−m

for each z, y ∈ ∂Ω. Clearly, there exists a constant C3 such that |K0
Ω(x, y)| ≤

C3|x − y|1−m for all x ∈ B(0; ρ) and y ∈ ∂Ω. Lemma 3.3 gives that there exists a
constant C such that (4.12) holds.

Suppose now that λ 6= 0.
According to Lemma 4.1 and the definition of Kλ

Ω there exists a constant C4

such that

|Kλ
Ω(x, y)−K0

Ω(x, y)| ≤ C4|x− y|3/2−m, ∀x ∈ B(0; ρ), y ∈ ∂Ω,

and |Kλ
Ω(x, y)−K0

Ω(x, y)| ≤ C4 for |x| ≥ ρ and y ∈ ∂Ω. Lemma 3.2 gives that there
exists a constant C5 such that

|Dλ
Ωf −D0

Ωf | ≤ C5‖f‖L∞(∂Ω) on Rm \ ∂Ω, ∀f ∈ L∞(∂Ω, Cm).

�

5. Behaviour of bounded solutions of the Stokes resolvent system
at infinity

In this section we study a behaviour of a solution (u, p) of the Stokes resolvent
system at infinity, under assumption that u is bounded. It was shown in [36] that
if (u, p) is a solution of the Brinkman system and both u and p are bounded, then
u(x) → 0 as |x| → ∞. It does not hold if we suppose only that u is bounded. (If c
is a constant vector then u ≡ c, p = −λ(c · x) is a solution of the Stokes resolvent
system (1.1).) To describe a behaviour of u and p at infinity we find an integral
representation formula for (u, p).

First we prove Liouville’s theorem.

Proposition 5.1. Let λ ∈ C \ {z < 0}, p be a distribution, u1, . . . , um be tempered
distributions, u = (u1, . . . , um). If −∆u + λu + ∇p = 0, ∇ · u = 0 in Rm in the
sense of distribution, then u1, . . . , um, p are polynomials.

Proof. Suppose first that p is a tempered distribution. The proof is literally the
same like the proof of [36, Proposition 4.1] for λ ≥ 0.

Let now p be general. Since uj is a tempered distribution, also ∂kuj , ∆uj

are tempered distributions. Since ∂jp = ∆uj − λuj , we deduce that ∂jp is a
tempered distribution. Since −∆(∂ju)+λ(∂ju)+∇(∂jp) = 0 in Rm, we deduce that
∂ju1, . . . , ∂jum, ∂jp are polynomials. This forces that u1, . . . , um, p are polynomials,
too. �

Proposition 5.2. Let λ ∈ C \ {z < 0}, Ω ⊂ Rm be an unbounded open set with
compact boundary. Let −∆u+ λu+∇p = 0 in Ω. If u is bounded then there exists
u∞ ∈ Cm such that u(x) → u∞ as |x| → ∞. If λ 6= 0 then |u(x)−u∞| = O(|x|1−m)
as |x| → ∞.
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Proof. Choose r > 0 such that ∂Ω ⊂ B(0; r). Denote ω = B(0; 2r) \B(0; r). Then

(5.1) u = Eλ
ω[T (u, p)n] + Dλ

ωu, p = Qω[T (u, p)n] + Πλ
ωu in ω

by [47, p. 60]. Define

v =

{
u(x) + Eλ

B(0;r)[T (u, p)n](x) + Dλ
B(0;r)u(x), x ∈ Rm \B(0; r),

Eλ
B(0;2r)[T (u, p)n](x) + Dλ

B(0;2r)u(x), x ∈ B(0; 2r),

q =

{
p(x) + QB(0;r)[T (u, p)n](x) + Πλ

B(0;r)u(x), x ∈ Rm \B(0; r),
QB(0;2r)[T (u, p)n](x) + Πλ

B(0;2r)u(x), x ∈ B(0; 2r).

Then v, q are well defined by (5.1). Clearly, −∆v + λv +∇q = 0, ∇ ·v = 0 in Rm.
Proposition 5.1 gives that v1, . . . , vm are polynomials. Since v is bounded, there
exists u∞ ∈ Cm such that v ≡ u∞. Since u = u∞ + Eλ

ω[T (u, p)n] + Dλ
ωu in Ω, we

infer that u(x) → u∞ as |x| → ∞. �

Now we prove an integral representation formula for a solution (u, p) of the
Stokes resolvent system with u bounded. We need the following lemma:

Lemma 5.3. If Ω ⊂ Rm is a bounded open set with Lipschitz boundary then there
is a sequence of bounded open sets Ωj with boundaries of class C∞ such that

• Ωj ⊂ Ω.
• There are a > 0 and homeomorphisms Λj : ∂Ω → ∂Ωj, such that Λj(y) ∈

ΓΩ
a (y) for each j and each y ∈ ∂Ω and sup{|y − Λj(y)|; y ∈ ∂Ω} → 0 as

j →∞.
• There are positive functions ωj on ∂Ω bounded away from zero and infinity

uniformly in j such that for any measurable set E ⊂ ∂Ω,
∫

E
ωj dσ =

σ(Λj(E)), and so that ωj → 1 pointwise a.e. and in every Ls(∂Ω), 1 ≤ s <
∞.

• The normal vectors to Ωj, n(Λj(y)), converge pointwise a.e. and in every
Ls(∂Ω), 1 ≤ s < ∞, to n(y).

(See [50, Theorem 1.12].)

Proposition 5.4. Let Ω ⊂ Rm be an unbounded open set with Lipschitz boundary,
λ ∈ C \ {z < 0}, 1 < q < ∞. Let −∆u + λu +∇p = 0, ∇ · u = 0 in Ω. Suppose
that there exists nontangential limits of u, ∇u and p at almost all points of ∂Ω.
Fix r > 0 such that ∂Ω ⊂ B(0; r). Denote ω = Ω ∩ B(0; r). Suppose that the
nontangential maximal functions with respect to ω: u∗ω, (∇u)∗ω, p∗ω ∈ Lq(∂ω). If
u(x) → 0 as |x| → ∞, then there exists a constant p∞ such that

(5.2) u = Eλ
Ω[T (u, p)n] + Dλ

Ωu, p = QΩ[T (u, p)n] + Πλ
Ωu + p∞ in Ω.

Proof. Approximate ω from inside by open sets ω(k) as in Lemma 5.3. Then

u = Eλ
ω(k)[T (u, p)n] + Dλ

ω(k)u, p = Qω(k)[T (u, p)n] + Πλ
ω(k)u in ω(k).

by [47, p. 60]. Letting k →∞ we obtain by Lebesgue’s lemma

(5.3) u = Eλ
ω[T (u, p)n] + Dλ

ωu, p = Qω[T (u, p)n] + Πλ
ωu in ω.

Define

v =
{
−Eλ

Ω[T (u, p)n](x)−Dλ
Ωu(x) + u(x), x ∈ Ω,

Eλ
B(0;r)[T (u, p)n](x) + Dλ

B(0;r)u(x), x ∈ B(0; r),
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s =
{
−QΩ[T (u, p)n](x)−Πλ

Ωu(x) + p(x), x ∈ Ω,
QB(0;r)[T (u, p)n](x) + Πλ

B(0;r)u(x), x ∈ B(0; r).

The functions v, s are well defined by (5.3). Clearly, −∆v+λv+∇s = 0, ∇·v = 0
in Rm. Proposition 5.1 gives that v1, . . . , vm are polynomials. Since v(x) → 0 as
|x| → ∞, we deduce that v = 0. Thus ∇s = ∆v − λv ≡ 0. So, there exists a
constant p∞ such that s ≡ p∞. The definition of v, s in Ω gives (5.2) . �

6. Uniqueness of an L∞-solution of the Dirichlet problem

In this section we study the uniqueness of a solution of the Dirichlet problem for
the Stokes resolvent system (2.1). For this reason we need the following regularity
result:

Lemma 6.1. Let Ω ⊂ Rm be a bounded open set with Lipschitz boundary, λ ∈
C \ {z < 0}. Let (u, p) be an L∞-solution of the Dirichlet problem (2.1). If g ∈
W 1,2(∂Ω, Cm), then (∇u)∗Ω, p∗Ω ∈ L2(∂Ω) (and therefore u ∈ W 1,2(Ω, Cm), p ∈
L2(Ω)), and there exist nontangential limits of ∇u and p at almost all points of
∂Ω.

Proof. For λ = 0 see [40, Theorem 9.2.2, Theorem 9.2.5].
Let now λ 6= 0. Fix q ∈ (m,∞). Since u∗Ω ∈ L∞(∂Ω) ⊂ Lq(∂Ω), we have

u ∈ Lq(Ω, Cm) (see [37, Lemma 4.1]). Define u = 0 on Rm \ Ω,

v = Ẽ0 ∗ λu, π = Q ∗ λu.

Then −∆v + ∇π = λu, ∇v = 0 in Rm. Since λu ∈ Lq(Rm, Cm), we have v ∈
W 2,q(Ω, Cm), π ∈ W 1,q(Ω) (see [12, Chapter IV, Theorem 2.1]). The Sobolev
embedding theorem [1, Theorem 4.12] gives that v ∈ C1(Ω, Cm), π ∈ C(Ω). So,
(u + v, p + π) is an L∞-solution of the Dirichlet problem for the Stokes system

∆(u + v) = ∇(p + π), ∇ · (u + v) = 0 on Ω,

v + u = g̃ on ∂Ω,

where g̃ = g + v ∈ W 1,2(∂Ω, Cm). So, (∇u + ∇v)∗Ω, (p + π)∗Ω ∈ L2(∂Ω), and
there exist nontangential limits of ∇u +∇v and p + π at almost all points of ∂Ω.
Since v ∈ C1(Ω, Cm), π ∈ C(Ω), we deduce (∇u)∗Ω, p∗Ω ∈ L2(∂Ω), and there exist
nontangential limits of ∇u and p at almost all points of ∂Ω. According to [37,
Lemma 4.1] we have u ∈ W 1,2(Ω, Cm), p ∈ L2(Ω). �

We prove the uniqueness of a solution of the Dirichlet problem using Green’s
formula:

Lemma 6.2. Let Ω ⊂ Rm be a bounded open set with Lipschitz boundary, λ ∈
C \ {z < 0}. If (u, p) is a solution of the Stokes resolvent system (1.1) in Ω such
that u∗Ω, (∇u)∗Ω, p∗Ω ∈ L2(∂Ω), and there exist nontangential limits of u, ∇u and p
at almost all points of ∂Ω, then

(6.1)
∫

∂Ω

u · T (u, p)nΩ dσ =
∫

Ω

(2|∇̂u|2 + λ|u|2) dx.

Proof. Let Ωj be open sets from Lemma 5.3. Then Green’s formula gives (6.1) for
Ωj (see [47, p. 14] or [26], Theorem 1.5.1). Letting j → ∞ we obtain (6.1) for Ω
by virtue of Lebesgue’s Lemma. �



BOUNDED SOLUTIONS OF THE DIRICHLET PROBLEM FOR THE STOKES RESOLVENT SYSTEM AND FOR THE DARCY-FORCHHEIMER-BRINKMAN SYSTEM13

Proposition 6.3. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary,
λ ∈ C\{z ≤ 0}. Let (u, p) be an L2-solution of the Dirichlet problem for the Stokes
resolvent system (2.1) such that (∇u)∗Ω, p∗Ω ∈ L2(∂Ω) and there exist nontangential
limits of ∇u, p at almost all points of ∂Ω. If g ≡ 0, then u ≡ 0 and p is constant.

Proof. According to Lemma 6.2

0 =
∫

∂Ω

u · T (u, p)nΩ dσ =
∫

Ω

(2|∇̂u|2 + λ|u|2) dx.

Thus u ≡ 0. Hence ∇p = ∆u− λu = 0. This forces that p is constant. �

Proposition 6.4. Let Ω ⊂ Rm be an unbounded domain with compact Lipschitz
boundary, λ ∈ C\{z ≤ 0}. Let (u, p) be an L2-solution of the Dirichlet problem for
the Stokes resolvent system (2.1) such that u(x) → 0 as |x| → ∞. Fix r > 0 such
that ∂Ω ⊂ B(0; r) and set ω(r) = Ω∩B(0; r). Suppose that (∇u)∗ω(r), p

∗
ω(r) ∈ L2(∂ω)

and there exist nontangential limits of ∇u, p at almost all points of ∂Ω. If g ≡ 0,
then u ≡ 0 and p is constant.

Proof. Put f = T (u, p)nΩ. According to Proposition 5.4

u = Eλ
Ωf + Dλ

Ωg = Eλ
Ωf .

Lemma 6.2 gives∫
∂ω(r)

(Eλ
Ωf) · T (Eλ

Ωf , QΩf)n dσ =
∫

ω(r)

(2|∇̂Eλ
Ωf |2 + λ|Eλ

Ωf |2) dx.

Since Eλ
Ωf(x) = O(|x|−m), T (Eλ

Ωf(x), QΩf(x))n(x) = O(|x|1−m) as |x| → ∞, we
have

0 =
∫

∂Ω

(Eλ
Ωf) · T (Eλ

Ωf , QΩf)n dσ

= lim
r→∞

∫
∂ω(r)

(Eλ
Ωf) · T (Eλ

Ωf , QΩf)n dσ =
∫

Ω

(2|∇̂Eλ
Ωf |2 + λ|Eλ

Ωf |2) dx.

Thus u = Eλ
Ωf = 0 in Ω. Hence ∇p = ∆u − λu = 0. This forces that p is

constant. �

Corollary 6.5. Let Ω ⊂ Rm be a domain with compact Lipschitz boundary, λ ∈
C\{z ≤ 0}, (u, p) be an L∞-solution of the Dirichlet problem for the Stokes resolvent
system (2.1). If Ω is unbounded suppose moreover that u(x) → 0 as |x| → ∞. If
g ≡ 0, then u ≡ 0 and p is constant.

Proof. Fix r > 0 such that ∂Ω ⊂ B(0; r) and put ω = Ω ∩ B(0; r). Lemma 6.1
gives that (∇u)∗ω, p∗ω ∈ L2(∂ω), and there exist nontangential limits of ∇u and p
at almost all points of ∂ω. So, u ≡ 0 and p is constant by Proposition 6.3 and
Proposition 6.4. �

7. L∞-solutions of the Dirichlet problem

In this section we prove the existence of a bounded solution of the Dirichlet
problem (2.1) for the Stokes resolvent system and a bounded boundary condition.
We look for a particular solution of the problem in the form of a double layer
potential

u = Dλ
Ωf , p = Πλ

Ωf
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with f ∈ L∞(∂Ω, Cm). Then (u, p) is an L∞-solution of the Dirichlet problem (2.1)
if and only if

1
2
f + KΩ,λf = g.

Proposition 7.1. Let Ω ⊂ Rm be an unbounded domain with compact Lipschitz
boundary, λ ∈ C \ {z ≤ 0}. Then 1

2I + KΩ,λ is an isomorphism on L2(∂Ω, Cm).
If ∂Ω is of class C1,α with 0 < α < 1 then 1

2I + KΩ,λ is an isomorphism on
L∞(∂Ω, Cm).

Proof. The operator 1
2I +KΩ,0 is a Fredholm operator with index 0 on L2(∂Ω, Cm)

by [40, Proposition 5.3.5]. Since KΩ,0−KΩ,λ is a compact operator on L2(∂Ω, Cm)
by Lemma 4.2, the operator 1

2I + KΩ,λ is a Fredholm operator with index 0 on
L2(∂Ω, Cm). Its adjoint operator 1

2I + K ′
Ω,λ is a Fredholm operator with index 0

on L2(∂Ω, Cm), too. Let now f ∈ L2(∂Ω, Cm) be such that 1
2 f +K ′

Ω,λf = 0. Define
u = Eλ

Ωf , p = QΩf on ω = Rm \ Ω. Then T (u, p)nω = 1
2 f + K ′

Ω,λf = 0 by (4.7).
Let now G be a component of ω. Then G is bounded. Properties of single layer
potentials and Lemma 6.2 give

0 =
∫

∂G

u · T (u, p)nG dσ =
∫

G

(2|∇̂u|2 + λ|u|2) dx.

Thus u = 0 in G. Therefore ∇p = ∆u − λu = 0 in G and p is constant in G.
Since 0 = T (u, p)nG = −pnG, we infer that p = 0 in G. Hence Eλ

Ωf = 0, QΩf = 0
in Rm \ Ω. Using a nontangential limit we get Eλ

Ωf = 0 on ∂Ω. So, (Eλ
Ωf , QΩf)

is an L2-solution of the Dirichlet problem −∆v + λv + ∇π = 0, ∇ · v = 0 in Ω,
v = 0 on ∂Ω. Using properties of single layer potentials and Proposition 6.4 we
obtain that v := Eλ

Ωf = 0, π := QΩf = 0 in Ω. So, 0 = T (v, π)nΩ = 1
2 f − K ′

Ω,λf
by (4.7). Therefore, 0 = [12 f − K ′

Ω,λf ] + [12 f + K ′
Ω,λf ] = f . Since 1

2I + K ′
Ω,λ is an

injective Fredholm operator with index 0, it is an isomorphism on L2(∂Ω, Cm). So,
1
2I + KΩ,λ is an isomorphism on L2(∂Ω, Cm).

We have proved that 1
2I +KΩ,λ is an injective operator on L∞(∂Ω, Cm). If ∂Ω is

of class C1,α, then KΩ,λ is a compact operator on L∞(∂Ω, Cm) by Proposition 4.3.
The Riesz theorem gives that 1

2I + KΩ,λ is an isomorphism on L∞(∂Ω, Cm). �

Proposition 7.2. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary,
λ ∈ C \ {z ≤ 0}. For 1 ≤ q ≤ ∞ denote Lq

n(∂Ω; Cm) = {f ∈ Lq(∂Ω; Cm);
∫

∂Ω
nΩ ·

f dσ = 0}. Then 1
2I + KΩ,λ is a Fredholm operator with index 0 on L2(∂Ω, Cm)

and [ 12I + KΩ,λ](L2(∂Ω, Cm)) = L2
n(∂Ω, Cm). If ∂Ω is of class C1,α with 0 <

α < 1, then 1
2I + KΩ,λ is a Fredholm operator with index 0 on L∞(∂Ω, Cm) and

[ 12I + KΩ,λ](L∞(∂Ω, Cm)) = L∞n (∂Ω, Cm).

Proof. The operator 1
2I +KΩ,0 is a Fredholm operator with index 0 on L2(∂Ω, Cm)

by [40, Proposition 5.3.5]. Since KΩ,0−KΩ,λ is a compact operator on L2(∂Ω, Cm)
by Lemma 4.2, the operator 1

2I + KΩ,λ is a Fredholm operator with index 0 on
L2(∂Ω, Cm).

If f ∈ L2(∂Ω, Cm) then u = Dλ
Ωf , p = Πλ

Ωf is a solution of the Dirichlet problem
for the Stokes resolvent system (2.1) with g = ( 1

2I + KΩ,λ)f . Since ∇ · u = 0,
the Divergence theorem gives g ∈ L2

n(∂Ω, Cm). Thus [ 12I + KΩ,λ](L2(∂Ω, Cm)) ⊂
L2

n(∂Ω, Cm).
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We now prove that the dimension of the kernel of the operator 1
2I + K ′

Ω,λ in
L2(∂Ω, Cm) is at most 1. Let f ∈ L2(∂Ω, Cm) be such that 1

2 f +K ′
Ω,λf = 0. Define

u = Eλ
Ωf , p = QΩf on ω = Rm \ Ω. Then T (u, p)nω = 1

2 f + K ′
Ω,λf = 0 by (4.7).

Let now G be a component of ω. Choose r > 0 such that ∂Ω ⊂ B(0; r) and denote
G(r) = G ∩B(0; r). Properties of single layer potentials and Lemma 6.2 give∫

∂G(r)

u · T (u, p)nG dσ =
∫

G(r)

(2|∇̂u|2 + λ|u|2) dx.

Since Eλ
Ωf(x) = O(|x|−m), T (Eλ

Ωf(x), QΩf(x))n(x) = O(|x|1−m) as |x| → ∞, we
get for r →∞

0 =
∫

∂G

u · T (u, p)nG dσ =
∫

G

(2|∇̂u|2 + λ|u|2) dx.

Thus u = 0 in G. Hence ∇p = ∆u − λu = 0 in G and p is constant in G. Since
0 = T (u, p)nG = −pnG, we infer that p = 0 in G. Thus Eλ

Ωf = 0, QΩf = 0 in
Rm \ Ω. Using a nontangential limit we get Eλ

Ωf = 0 on ∂Ω. So, (Eλ
Ωf , QΩf) is an

L2-solution of the Dirichlet problem −∆v + λv +∇π = 0, ∇ ·v = 0 in Ω, v = 0 on
∂Ω. Using properties of single layer potentials and Proposition 6.3 we obtain that
there exists a constant c such that v := Eλ

Ωf = 0, π := QΩf = c in Ω. Therefore
1
2 f−K ′

Ω,λf = T (v, π)nΩ = −cnΩ by (4.7). Hence f = [ 12 f−K ′
Ω,λf ]+[ 12 f +K ′

Ω,λf ] =
−cnΩ. So, the dimension of the kernel of the operator 1

2I + K ′
Ω,λ in L2(∂Ω, Cm) is

at most 1.
The codimension of the range [12I +KΩ,λ](L2(∂Ω, Cm)) is equal to the dimension

of the kernel of the operator 1
2I +K ′

Ω,λ by [7, Satz 8.26] or [41, §5.4]. Thus the codi-
mension of [ 12I +KΩ,λ](L2(∂Ω, Cm)) is at most 1. Since [ 12I +KΩ,λ](L2(∂Ω, Cm)) ⊂
L2

n(∂Ω, Cm), we infer that [ 12I + KΩ,λ](L2(∂Ω, Cm)) = L2
n(∂Ω, Cm).

Suppose now that ∂Ω is of class C1,α. Then KΩ,λ is a compact operator on
L∞(∂Ω, Cm) by Proposition 4.3. Therefore, 1

2I + KΩ,λ is a Fredholm operator
with index 0 on L∞(∂Ω, Cm). Since KΩ,λ is a compact operator on L2(∂Ω, Cm) by
Proposition 4.3, we have [ 12I + KΩ,λ](L∞(∂Ω, Cm)) = [12I + KΩ,λ](L2(∂Ω, Cm)) ∩
L∞(∂Ω, Cm) = L∞n (∂Ω, Cm) by [35, Lemma 5]. �

Theorem 7.3. Let Ω ⊂ Rm be a bounded domain with boundary of class C1,α with
0 < α < 1, and λ ∈ C \ {z ≤ 0}, g ∈ L∞(∂Ω, Cm).

• Then there exists an L∞-solution of the Dirichlet problem for the Stokes
resolvent system (2.1) if and only if g ∈ L∞n (∂Ω, Cm), i.e.

∫
∂Ω

g·nΩ dσ = 0.
• If (u, p), (v, π) are two L∞-solutions of the Dirichlet problem (2.1), then

v = u, p− π is constant.
• If (u, p) is an L∞-solution of the Dirichlet problem (2.1), then u is bounded

on Ω and

(7.1) sup
x∈Ω

|u(x)| ≤ C‖g‖L∞(∂Ω,Cm),

where a constant C depends only on Ω.

Proof. Suppose that (u, p) is an L∞-solution of the Dirichlet problem for the Stokes
resolvent system (2.1). Since ∇ · u = 0, the Divergence theorem gives that g ∈
L∞n (∂Ω, Rm). If (v, π) is another L∞-solution of the Dirichlet problem (2.1), then
v ≡ u and p− π is constant by Corollary 6.5.
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Proposition 7.2 says that 1
2I + KΩ,λ is a Fredholm operator with index 0 on

L∞(∂Ω, Cm) and [ 12I + KΩ,λ](L∞(∂Ω, Cm)) = L∞n (∂Ω, Cm). The kernel Ker[ 12I +
KΩ,λ] is a one-dimensional subspace of L∞(∂Ω, Cm). So, there exists a closed
subspace X of L∞(∂Ω, Cm) such that L∞(∂Ω, Cm) = X ⊕Ker[ 12I +KΩ,λ] (see [41,
Lemma 5.1]). Define U f = [ 12I + KΩ,λ] for f ∈ X. Then U : X → L∞n (∂Ω, Cm) is
an isomorphism. According to Proposition 4.5 there exists a constant C1 such that

|Dλ
Ωf | ≤ C1‖f‖L∞(∂Ω) on Rm \ ∂Ω, ∀f ∈ L∞(∂Ω, Cm).

Let now g ∈ L∞n (∂Ω, Cm). Put u = Dλ
Ω(U−1g), p = Πλ

Ω(U−1g). Then (u, p) is an
L∞-solution of the Dirichlet problem (2.1). Clearly,

sup
x∈Ω

|u(x)| ≤ C1‖U−1‖ ‖g‖L∞(∂Ω,Cm).

�

Theorem 7.4. Let Ω ⊂ Rm be an unbounded domain with compact boundary of
class C1,α with 0 < α < 1, and λ ∈ C \ {z ≤ 0}, g ∈ L∞(∂Ω, Cm).

• If (u, p) is an L∞-solution of the Dirichlet problem for the Stokes resolvent
system (2.1), then there exists u∞ ∈ Cm such that u(x) → u∞ as |x| → ∞.

• Let u∞ ∈ Cm be given. Then

(7.2) u(x) = Dλ
Ω [(1/2)I + KΩ,λ]−1 (g − u∞) + u∞,

(7.3) p(x) = Πλ
Ω [(1/2)I + KΩ,λ]−1 (g − u∞)− λu∞ · x

is an L∞-solution (u, p) of the Dirichlet problem (2.1) such that u(x) → u∞
as |x| → ∞. If (v, π) is another L∞-solutions of the Dirichlet problem (2.1)
such that v(x) → u∞ as |x| → ∞, then v = u, p−π is constant. Moreover,
u is bounded on Ω and

(7.4) sup
x∈Ω

|u(x)| ≤ C
[
‖g‖L∞(∂Ω,Cm) + |u∞|

]
,

with a constant C depending only on Ω.

Proof. Suppose that (u, p) is an L∞-solution of the Dirichlet problem for the Stokes
resolvent system (2.1). Proposition 5.2 gives that there exists u∞ ∈ Cm such that
u(x) → u∞ as |x| → ∞. If (v, π) is another L∞-solution of the Dirichlet problem
(2.1) such that v(x) → u∞ as |x| → ∞, then v = u and p − π is constant by
Corollary 6.5.

Proposition 7.1 says that 1
2I +KΩ,λ is an isomorphism on L∞(∂Ω, Cm). Clearly,

(u, p) given by (7.2), (7.3) is an L∞-solution (u, p) of the Dirichlet problem (2.1)
such that u(x) → u∞ as |x| → ∞. According to Proposition 4.5 there exists a
constant C1 such that

|Dλ
Ωf | ≤ C1‖f‖L∞(∂Ω) on Rm \ ∂Ω, ∀f ∈ L∞(∂Ω, Cm).

Thus

sup
x∈Ω

|u(x)| ≤ C1‖[(1/2)I + KΩ,λ]−1‖
[
‖g‖L∞(∂Ω,Cm) + |u∞|

]
+ |u∞|.

�
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8. Nonlinear Dirichlet problem

Theorem 8.1. Let Ω ⊂ Rm be an unbounded domain with compact boundary of
class C1,α with 0 < α < 1, and λ ∈ C\{z ≤ 0}. Let G : ∂Ω×Cm → Cm be a locally
bounded measurable mapping. Suppose that there exists a constant q ∈ (0, 1) such
that |G(x, u)−G(x, v)| ≤ q|u− v| for all x ∈ ∂Ω and u, v ∈ Cm. If u∞ ∈ Cm then
there exists an L∞-solution (u, p) of the nonlinear Dirichlet problem for the Stokes
resolvent system

(8.1) −∆u + λu +∇p = 0, ∇ · u = 0 in Ω, u(x) = G(x,u(x)) on ∂Ω.

such that u(x) → u∞ as |x| → ∞. If (v, π) is another solution of this problem then
v ≡ u and π − p is constant. Moreover,

sup
x∈Ω

|u(x)| ≤ C

[
1

1− q
sup

y∈∂Ω
|G(y, 0)|+ |u∞|

]
where a constant C depends only on Ω.

Proof. If (u, p) is an L∞-solution of the linear Dirichlet problem (2.1), then (u, p)
is an L∞-solution of the nonlinear Dirichlet problem (8.1) if and only if g(x) =
G(x, g(x)). Define Φ(g(x)) = G(x, g(x)). Then Φ is a contractive operator on
L∞(∂Ω, Cm). The fixed point theorem ([7, Satz 1.24]) gives that there exists a
unique g ∈ L∞(∂Ω, Cm) such that g(x) = G(x, g(x)). Moreover,

‖g‖L∞(∂Ω) ≤
1

1− q
‖0− Φ(0)‖L∞(∂Ω) ≤

1
1− q

sup
y∈∂Ω

|G(y, 0)|.

According to Theorem 7.4 there exists an L∞-solution (u, p) of the linear Dirichlet
problem (2.1) such that u(x) → u∞ as |x| → ∞. So, (u, p) is an L∞-solution of the
nonlinear Dirichlet problem (8.1). Moreover, there exists a constant C dependent
only on Ω such that

sup
x∈Ω

|u(x)| ≤ C‖
[
g‖L∞(∂Ω) + |u∞|

]
.

Let now (v, π) be another L∞-solution of the nonlinear Dirichlet problem (8.1)
such that v(x) → u∞ as |x| → ∞. Then (v, π) is an L∞-solution of the linear
Dirichlet problem (2.1). Theorem 7.4 forces that v ≡ u and π − p is constant. �

In the case of a bounded domain we must add some condition on G but we can
study a nonhomogeneous system

(8.2) −∆u(x) + λu(x) +∇p(x) = F (x,u(x)), ∇ · u = 0 in Ω,

(8.3) u(x) = G(x,u(x)) on ∂Ω.

We say that (u, p) ∈ C(Ω, Cm)×C(Ω) is an L∞-solution of the problem (8.2), (8.3)
if the equations (8.2) are fulfilled in the sense of distributions, u∗Ω ∈ L∞(Ω), there
exists the nontangential limit of u at almost all points of ∂Ω and the boundary
condition (8.3) is fulfilled in the sense of a nontangential limit at almost all points
of the boundary.

The following auxiliary lemma is probably well known but we cannot find a
reference.
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Lemma 8.2. Let Ω ⊂ Rm be a bounded open set, λ ∈ C \ (−∞, 0〉. For f ∈
L∞(Ω, Cm) define f̃ = f in Ω, f̃ = 0 on Rm \ Ω, V f = Ẽλ ∗ f̃ . Then V :
L∞(Ω, Cm) → C(Ω, Cm) is a compact linear operator.

Proof. According to Lemma 4.1, (4.3), (4.4), (4.5) and (4.6) there exists a constant
C1 such that |Ẽλ(x)| + |∇Ẽλ(x)| ≤ C1|x|1−m. So, f 7→ V f , f 7→ ∇V f = (∇Ẽ) ∗
f̃ are bounded compact linear operators on L∞(Ω, Cm). (See [27, Chapter II,
Theorem 8.1 and Theorem 8.6].) Thus V : L∞(Ω, Cm) → W 1,∞(Ω, Cm) is compact.
The imbedding of W 1,∞(Ω, Cm) into C(Ω, Cm) is compact by the Sobolev imbedding
theorem [34, Chapter I, §1.10]. Hence V : L∞(Ω, Cm) → C(Ω, Cm) is a compact
linear operator. �

Theorem 8.3. Let Ω ⊂ Rm be a bounded domain with boundary of class C1,α with
0 < α < 1, and λ ∈ C \ {z ≤ 0}. Let G : ∂Ω × Cm → Cm be a locally bounded
measurable mapping such that G(x, u(x)) ∈ L∞n (∂Ω, Cm) for all u ∈ L∞n (∂Ω, Cm).
Suppose that there exists a constant q ∈ (0, 1) such that |G(x, u)−G(x, v)| ≤ q|u−v|
for all x ∈ ∂Ω and u, v ∈ Cm. Let F : Ω × Cm → Cm be a bounded measurable
mapping. Then there exists an L∞-solution (u, p) of the nonlinear Dirichlet problem
for the Stokes resolvent system (8.2), (8.3). If (u, p) is an L∞-solution of the
problem (8.2), (8.3) then u is bounded and

sup
x∈Ω

|u(x)| ≤ C

[
1

1− q
sup

y∈∂Ω
|G(y, 0)|+ sup

Ω×Cm

|F |

]
where a constant C depends only on Ω. If F (x, y) does not depend on y and (v, π) is
another L∞-solution of the problem (8.1), (8.3), then v ≡ u and π− p is constant.

Proof. If (u, p) is an L∞-solution of (8.2),

(8.4) u = g on ∂Ω

then (u, p) is an L∞-solution of (8.2), (8.3) if and only if g(x) = G(x, g(x)). The
Divergence theorem gives that g ∈ L∞n (∂Ω, Cm). Define Φ(g(x)) = G(x, g(x)).
Then Φ is a contractive operator on L∞n (∂Ω, Cm). The fixed point theorem ([7, Satz
1.24]) gives that there exists a unique g ∈ L∞n (∂Ω, Cm) such that g(x) = G(x, g(x)).
Moreover,

‖g‖L∞(∂Ω) ≤
1

1− q
‖0− Φ(0)‖L∞(∂Ω) ≤

1
1− q

sup
y∈∂Ω

|G(y, 0)|.

For v ∈ L∞(Ω, Cm) define

fv(x) = F (x,v(x)).

Extend fv by 0 outside Ω. Let

wv = Ẽλ ∗ fv, τv = Q ∗ fv

be the volume potential corresponding to fv. Then

−∆wv + λwv +∇τv = fv, ∇ ·wv = 0 in Ω

in the sense of distributions. We have wv ∈ C(Ω, Cm) by Lemma 8.2 and

‖wv‖C(Ω) ≤ C1‖fv‖L∞(Ω),
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where C1 depends only on Ω. If uv = wv + w̃v, p = τv + τ̃v, then (uv, pv) is an
L∞-solution of the problem

(8.5) −∆uv + λuv +∇pv = fv, ∇ · uv = 0 in Ω, uv = g on Ω,

and only if (w̃v, τ̃v) is an L∞-solution of the problem

(8.6) −∆w̃v + λw̃v +∇τ̃v = 0, ∇ · w̃v = 0 in Ω, w̃v = g −wv on Ω.

According to Theorem 7.3 there exists an L∞-solution (w̃v, τ̃v) of (8.6) and

sup
x∈Ω

|w̃v(x)| ≤ C2 sup
y∈∂Ω

|g(y)−wv(y)|

where a constant C2 depends only on Ω. So, uv = wv + w̃v, p = τv + τ̃v solve the
problem (8.5) and

(8.7) sup
x∈Ω

|uv(x)| ≤ C1(1 + C2) sup
Ω×Cm

|F |+ C2
1

1− q
sup

y∈∂Ω
|G(y, 0)|.

Let now (ũ, p̃) be another L∞-solution of the problem (8.5). Then

−∆(uv − ũ) + λ(uv − ũ) +∇(pv − p̃) = 0,∇ · (uv − ũ) = 0 in Ω,uv − ũ = 0 on Ω.

Theorem 7.3 forces that uv− ũ ≡ 0 and pv− p̃ is constant. Define Uv = uv. Then
U is an operator on L∞(Ω, Cm). According to (8.7) there exists a constant M such
that |Uv| ≤ M for all v ∈ L∞(Ω, Cm).

If u ∈ L∞(Ω, Cm) then there exists p such that (u, p) is an L∞-solution of the
problem (8.2), (8.3) if and only Uu = u. So, if (u, p) is an L∞-solution of the
problem (8.2), (8.3) then (8.7) holds for uu = u.
{fv;v ∈ L∞(Ω, Cm)} is a bounded subset of L∞(Ω, Cm). Since fv 7→ wv is a

compact mapping by Lemma 8.2, {wv;v ∈ L∞(Ω, Cm)} is a precompact subset of
C(Ω, Cm). Since the mapping g −wv 7→ w̃ is continuous, {uv;v ∈ L∞(Ω, Cm)} is
a precompact subset of L∞(Ω, Cm). So, U is a compact mapping on L∞(Ω, Cm).
If u ∈ L∞(Ω, Cm), 0 ≤ α ≤ 1 and u = αUu, then |u| ≤ |α||Uu| ≤ M . According
to [14, Theorem 11.3] there exists u ∈ L∞(Ω, Cm), such that Uu = u. So, (uu, pu)
is an L∞-solution of the problem (8.2), (8.3). �

Next we study L∞-solutions of the Dirichlet problem for the Darcy-Forchheimer-
Brinkman system.

Theorem 8.4. Let Ω ⊂ Rm be a bounded domain with boundary of class C1,α with
0 < α < 1, and λ ∈ C \ {z ≤ 0}, β ∈ C. Then there exist δ, ε ∈ (0,∞) such that
the following holds: If g ∈ L∞n (∂Ω, Cm) and f ∈ L∞(∂Ω, Cm) such that

(8.8) ‖g‖L∞(∂Ω) + ‖f‖L∞(Ω) < δ

then there exists an L∞-solution (u, p) of the problem

(8.9) −∆u + λu + β|u|u +∇p = f , ∇ · u = 0 in Ω, u = g on ∂Ω

such that |u| ≤ ε. If g̃ ∈ L∞n (∂Ω, Cm) and f̃ ∈ L∞(∂Ω, Cm) satisfy (8.8) and (v, π)
is an L∞-solution of the problem

(8.10) −∆v + λv + β|v|v +∇π = f̃ , ∇ · v = 0 in Ω, v = g̃ on ∂Ω

such that |v| ≤ ε then

|u− v| ≤ C
[
‖f − f̃‖L∞(Ω) + ‖g − g̃‖L∞(∂Ω)

]
, |u| ≤ C

[
‖f‖L∞(Ω) + ‖g‖L∞(∂Ω)

]
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where a constant C depends only on Ω. If f̃ = f , g̃ = g, then v ≡ u and π − p is
constant.

Proof. If F ∈ L∞(Ω, Cm), G ∈ L∞n (∂Ω), then there exists an L∞-solution (u, p) of
the problem (8.2), (8.3). Moreover, u is determined uniquely and

(8.11) |u| ≤ C1

[
‖F‖L∞(Ω) + ‖G‖L∞(∂Ω)

]
where a constant C1 ∈ (1,∞) depends only on Ω. (See Theorem 8.3.)

Fix ε and δ such that

(8.12) 0 < ε < [4C1(|β|+ 1)]−1, 0 < δ < ε/(4C1).

Let now (u, p), (v, π) be an L∞-solution of the problem (8.9), (8.10), respectively.
Then (u− v, p− π) is an L∞-solution of the problem (8.2), (8.3) with

G = g − g̃, F = f − f̃ − β|u|u + β|v|v.

By virtue of (8.11)

(8.13) |u− v| ≤ C1

[
‖f − f̃‖L∞(Ω) + ‖g − g̃‖L∞(∂Ω) + |β|‖|u|u− |v|v‖L∞(Ω)

]
.

We now estimate ‖|u|u− |v|v‖L∞(Ω):

‖v|v| − |u|u‖L∞(Ω) ≤ ‖|v|(v − u)‖L∞(Ω) + ‖[|v| − |u|]u‖L∞(Ω)

≤ ‖v − u‖L∞(Ω)

[
‖u‖L∞(Ω) + ‖v‖L∞(Ω)

]
.

If |u| ≤ ε, |v| ≤ ε, then

(8.14) ‖v|v| − |u|u‖L∞(Ω) ≤ 2ε‖v − u‖L∞(Ω) ≤ [2C1(|β|+ 1)]−1‖v − u‖L∞(Ω).

Substituting into (8.13)

sup
Ω
|u− v| ≤ C1

[
‖f − f̃‖L∞(Ω) + ‖g − g̃‖L∞(∂Ω)

]
+

1
2

sup
Ω
|u− v|.

So,

(8.15) sup
Ω
|u− v| ≤ 2C1

[
‖f − f̃‖L∞(Ω) + ‖g − g̃‖L∞(∂Ω)

]
.

For v = 0, f̃ = 0, g̃ = 0 and π̃ = 0 we have

sup
Ω
|u| ≤ 2C1

[
‖f‖L∞(Ω) + ‖g‖L∞(∂Ω)

]
.

If f̃ = f , g̃ = g then (8.15) gives that v = u. Subtracting (8.9) and (8.10) we obtain
∇(p− π) = 0. Therefore p− π is constant.

Let now g ∈ L∞n (∂Ω, Cm), f ∈ L∞(∂Ω, Cm) satisfying (8.8) be given. We show
the existence of an L∞-solution of the problem (8.9). Denote

Xε = {u ∈ L∞(Ω; Cm); ‖u‖L∞(Ω) ≤ ε}.
For v ∈ Xε there exists an L∞-solution (Uv, V v) of the problem (8.2), (8.3) with

G = g, F = f − β|v|v.

Moreover, Uv is determined uniquely. (See Theorem 8.3.) Remark that (v, V v) is
an L∞-solution of the problem (8.9) if and only if Uv = v. According to (8.11),
(8.8) and (8.12)

|Uu| ≤ C1

[
‖f‖L∞(Ω) + |β|‖v‖2

L∞(Ω) + ‖g‖L∞(∂Ω)

]
≤ C1(δ + |β|ε2) ≤ ε.
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So, U(Xε) ⊂ Xε. If v,u ∈ Xε then (Uv − Uu, V v − V u) is an L∞-solution of the
problem (8.2), (8.3) with

G = 0, F = β|u|u− β|v|v.

By virtue of (8.11) and (8.14)

|Uu− Uu| ≤ C1|β|‖v|v| − |u|u‖L∞(Ω) ≤
1
2
|u− u|.

Since U is a contraction on Xε, the Fixed point theorem ([14, Corollary 11.2]) gives
that there exists a unique u ∈ Xε such that Uu = u. So, (u, V u) is an L∞-solution
of the problem (8.9). �

9. Generalized maximum principle

In this section we prove the generalized maximum principle. We have proved
that if (u, p) is an L∞-solution of the Dirichlet problem for the Stokes resolvent
system, then u is bounded. (Remark that p might be unbounded as the formula
(7.3) shows.) Now we prove that if (u, p) is a solution of the Stokes resolvent system
such that u is bounded, then (u, p) is an L∞-solution of some Dirichlet problem for
the Stokes resolvent system.

Proposition 9.1. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary,
λ ∈ C \ {z < 0}, (u, p) be a solution of the Stokes resolvent system (1.1) in Ω. If u
is bounded then there exists a nontangential limit of u at almost all points of ∂Ω.

Proof. Suppose first that Ω is a bounded starshaped domain and λ = 0. We can
suppose that Ω is starshaped with respect to 0. For r ∈ (1/2, 1) define ur(x) =
u(
√

rx), pr(x) =
√

rp(
√

rx). Easy calculation yields

∇ · ur(x) =
√

r∇ · u(
√

rx) = 0,

∆ur(x) +∇pr(x) = r∆u(
√

rx) + r∇p(
√

rx) = 0.

Thus ur ∈ L2
n(∂Ω; Cm) by the Divergence theorem. Denote by T the restriction

of 1
2I + KΩ onto L2

n(∂Ω; Cm). Then T is an isomorphism by [40, Theorem 5.3.6].
Put fr = T−1ur. Since ur ∈ W 1,2(∂Ω, Cm) we have fr ∈ W 1,2(∂Ω, Cm) by [40,
Theorem 5.3.6]. So, vr = DΩfr, qr = ΠΩfr is an L2-solution of the Dirichlet
problem

∆vr +∇qr = 0, ∇ · vr = 0 in Ω, vr = ur on ∂Ω.

Thus ur = DΩfr by [40, Theorem 8.2.1]. Since {ur} is a bounded subset of
L2(∂Ω, Cm), the set {fr} is also bounded in L2(∂Ω, Cm). According to [45, Chap-
ter 4, Theorem 4.61.A] there exists a sequence r(j) ↑ 1 and f ∈ L2(∂Ω, Cm) such
that fr(j) → f weakly in L2(∂Ω, Cm). If x ∈ Ω then

u(x) = lim
j→∞

ur(j)(x) = lim
j→∞

DΩfr(j)(x)] = DΩf(x).

Behaviour of a Stokes double layer potential gives that there exists a nontangential
limit of u at almost all points of ∂Ω.

Let now Ω be a bounded starshaped domain and λ 6= 0. Define u = 0 on Rm \Ω,
and (

v
q

)
= (E,Q) ∗

(
λu
0

)
,

where ∗ denotes the convolution. Then ∇·v = 0, ∆v−∇q = λu. If 1 < t < ∞ then
u ∈ Lt(Rm, Cm) and thus v ∈ W 2,t

loc (Rm, Cm) (see [12, Chapter IV, Theorem 4.1]).
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Sobolev embedding theorem gives that v ∈ C(Ω, Cm). Thus (u − v, p − q) is a
solution of the Stokes system in Ω and u−v is bounded. We have proved that there
exists a nontangential limit of u−v at almost all points of ∂Ω. Since v ∈ C(Ω, Cm),
there exists a nontangential limit of u at almost all points of ∂Ω.

Let now Ω be general, λ ∈ C\{z < 0}. Choose r > 0 such that ∂Ω ⊂ B(0; r). Put
ω = Ω∩B(0; r). According to [34, Chapter I, § 1.3.2, § 1.3.3] there exist starshaped
domains Ω1, . . . ,Ωk with Lipschitz boundary such that ω = Ω1 ∪ · · · ∪ Ωk. Since
there exist nontangential limits of u with respect to Ωj at almost all points of ∂Ωj ,
there exists a nontangential limit of u with respect to Ω at almost all points of
∂Ω. �

Theorem 9.2. Let Ω ⊂ Rm be a bounded open set with boundary of class C1,α with
0 < α < 1, and λ ∈ C \ {z ≤ 0}. Let (u, p) be a solution of the Stokes resolvent
system (1.1) in Ω such that u is bounded. Then there exists g ∈ L∞(∂Ω, Cm) such
that g(z) is the nontangential limit of u for almost all z ∈ ∂Ω. Moreover,

sup
x∈Ω

|u(x)| ≤ C‖g‖L∞(∂Ω),

where a constant C depends only on Ω.

Proof. According to Proposition 9.1 there exists g ∈ L∞(∂Ω, Cm) such that g(z)
is the nontangential limit of u for almost all z ∈ ∂Ω. So, (u, p) is an L∞-solution
of the Dirichlet problem (2.1). The rest is a consequence of Theorem 7.3. �

Theorem 9.3. Let Ω ⊂ Rm be an unbounded open set with compact boundary
of class C1,α with 0 < α < 1, and λ ∈ C \ {z ≤ 0}. Let (u, p) be a solution of
the Stokes resolvent system (1.1) in Ω such that u is bounded. Then there exists
g ∈ L∞(∂Ω, Cm) and u∞ ∈ Cm such that g(z) is the nontangential limit of u for
almost all z ∈ ∂Ω and u(x) → u∞ as |x| → ∞. Moreover,

sup
x∈Ω

|u(x)| ≤ C
[
‖g‖L∞(∂Ω) + |u∞|

]
,

where a constant C depends only on Ω.

Proof. According to Proposition 9.1 there exists g ∈ L∞(∂Ω, Cm) such that g(z)
is the nontangential limit of u for almost all z ∈ ∂Ω. So, (u, p) is an L∞-solution
of the Dirichlet problem (2.1). The rest is a consequence of Theorem 7.4. �
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