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REGULARITY AND ENERGY CONSERVATION FOR THE COMPRESSIBLE
EULER EQUATIONS

EDUARD FEIREISL, PIOTR GWIAZDA, AGNIESZKA ŚWIERCZEWSKA-GWIAZDA,
AND EMIL WIEDEMANN

ABSTRACT. We give sufficient conditions on the regularity of solutions to the inhomogeneous
incompressible Euler and the compressible isentropic Euler systems in order for the energy to be
conserved. Our strategy relies on commutator estimates similar to those employed by P. Constantin
et al. for the homogeneous incompressible Euler equations.

1. INTRODUCTION

We study in this paper the relationship between regularity and the conservation or dissipation of
energy for two models of fluid dynamics: We consider the inhomogeneous incompressible Euler
equations,

∂t(ρu)+div(ρu⊗u)+∇p = 0,

∂tρ +div(ρu) = 0,

divu = 0,

(1.1)

as well as the compressible isentropic Euler equations,

∂t(ρu)+div(ρu⊗u)+∇p(ρ) = 0,

∂tρ +divρu = 0.
(1.2)

In both systems, ρ ≥ 0 is the scalar density of a fluid, u is its velocity, and p is the scalar pressure.
Note however that in the incompressible case p is an unknown, whereas in the compressible system
it is a constitutively given function of the density. We consider these equations in any space
dimension (it makes sense to study (1.1) in two or more space dimensions and (1.2) in one or
more space dimensions). While the compressible isentropic Euler equations are a well-accepted
model for compressible flows, the inhomogeneous incompressible Euler equations have received
somewhat less attention than its homogeneous special case (when ρ ≡ 1 in (1.1)). Nevertheless, a
number of results on (1.1) are available, among them [5, 6, 11, 12].

Both systems have energies which are at least formally conserved. For (1.1) the energy density
is given by 1

2 ρ|u|2 and for (1.2) it is 1
2 ρ|u|2 +P(ρ), where P is the pressure potential associated

with p. In compressible fluid dynamics, it is well-known that shocks may form, giving rise to
energy dissipation. For incompressible fluids, the situation is more subtle, but it had been expected
for a long time that the energy in fully turbulent flow should dissipate with a rate independent of
viscosity and, accordingly, there should exist weak solutions of the incompressible Euler equations
which do not conserve energy. Such weak solutions were eventually constructed by Scheffer [14]
and Shnirelman [15].

A common feature of these energy-dissipating solutions is that they necessarily exhibit a certain
degree of irregularity. The question therefore is how much regularity is needed to guarantee the
conservation of energy. In the context of incompressible turbulence, this question is the subject
of a famous conjecture of Onsager [13], according to which energy should be conserved if the
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solution is Hölder continuous with exponent greater than 1/3, while solutions with less regular-
ity possibly dissipate energy. The first part of this assertion was proved (for the homogeneous
incompressible Euler equations) in [3, 4, 8], while significant progress has recently been made in
constructing energy-dissipating solutions slightly below the Onsager regularity (the currently best
available results are [1, 2]).

We give in this paper sufficient conditions on the regularity of ρ and u to ensure the conserva-
tion of energy. Our approach relies on the idea of Constantin et al. [4] to use suitable commutator
estimates. Accordingly our regularity assumptions are stated in terms of Besov spaces Bα,∞

p simi-
larly to [4]. However, since we have now two unknowns ρ and u, it is possible to “trade” regularity
between the density and the velocity. In particular, if the velocity is sufficiently regular, then the
energy will be conserved even if the density is only of bounded variation.

The term ∂t(ρu) is nonlinear in (ρ,u) and therefore requires a commutator estimate. In turn this
makes it necessary to make an assumption on Besov regularity also in time (for the homogeneous
incompressible Euler system this is not needed). One may circumvent this time regularity assump-
tion, as was done very recently in [11] for the system (1.1), by formulating the equations in terms
of the density and the momentum m = ρu and obtaining the energy conservation by multiplication
of the momentum equation by (ρu)ε/ρε instead of uε , where the index ε indicates a suitable reg-
ularization. Then however, (ρu)ε/ρε is no longer divergence-free, which requires a commutator
estimate involving the pressure; as a consequence, a regularity assumption on the pressure has to
be made. We choose to rather assume some time regularity, as this approach allows us to handle
vacuum states (meaning ρ = 0).

Theorems 3.1 and 4.1 thus give energy conservation for (1.1) and (1.2), respectively, under
the assumption of Besov regularity in time and space. Theorem 4.3 states energy conservation
for (1.2) with no assumption on regularity in time, but under the assumption that ρ,u ∈ BV ∩C in
space. Again, shocks provide an example that this result is optimal in the sense that the continuity
assumption cannot be dropped. For Theorem 4.3 we make use of a specific time regularization
that allows us to deduce some time regularity from the space regularity; such an argument was
already used in [10] and later in [9, 16].

Let us remark that statements similar to Theorems 3.1 and 4.1 could also be proved for the
Euler-Boussinesq equations

∂tu+div(u⊗u)+∇p = θ f ,

∂tθ +div(θu) = 0,

divu = 0

(without having to assume time regularity) and for Navier-Stokes systems (cf. [11]).
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P.G. and A.Ś.-G. received support from the National Science Centre (Poland), 2015/18/M/ST1/00075.
The work of E.F. has received funding from the European Research Council under the Euro-

pean Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078.
The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by
RVO:67985840.



ENERGY CONSERVATION FOR COMPRESSIBLE EULER 3

2. BESOV SPACES

In this section we briefly discuss some properties of the Besov space Bα,∞
p (Ω), where Ω =

(0,T )×Td or Ω = Td . The said Besov space comprises those functions w for which the norm

‖w‖Bα,∞
p (Ω) := ‖w‖Lp(Ω)+ sup

ξ∈Ω

‖w(·+ξ )−w‖Lp(Ω∩(Ω−ξ ))

|ξ |α
(2.1)

is finite (here Ω−ξ = {x−ξ : x ∈Ω}).
Let η ∈C∞

c (RN) for N = 1+d or N = d (according to the choice of Ω) be a standard mollifying
kernel and set

η
ε(x) =

1
εN η

( x
ε

)
.

With the notation wε =ηε ∗w for any function w, wε is well-defined on Ωε = {x∈Ω : dist(x,∂Ω)>

ε}.
It is then easy to check that the definition of the Besov spaces implies

‖wε −w‖Lp(Ω) ≤Cε
α‖w‖Bα,∞

p (Ω) (2.2)

and

‖∇wε‖Lp(Ω) ≤Cε
α−1‖w‖Bα,∞

p (Ω). (2.3)

Moreover, it is easy to see that (Bα,∞
p ∩L∞)(Ω) is an algebra, i.e. the product of two functions in

this space is again contained in the space.
Let BV ((0,T )×Td) denote the space of functions of bounded variation.

Proposition 2.1. (BV ∩L∞)(Ω)⊂ B
1
p ,∞
p (Ω) for every p ∈ [1,+∞].

Proof. Let w ∈ (BV ∩L∞)(Ω). First observe that, trivially,

‖w(·+ξ )−w‖L∞(Ω∩(Ω−ξ )) ≤ 2‖w‖L∞ .

Next, let (wn) be a sequence of smooth functions that converge strictly to w in BV (Ω). This means
that wn → w in L1(Ω), ∇wn → ∇w weakly-(*) in M (Ω), and, in addition, TV (wn)→ TV (w),
where TV denotes the total variation. For each n, wn is in W 1,1(Ω) and so we can estimate

‖wn(·+ξ )−wn‖L1(Ω∩(Ω−ξ )) ≤ |ξ |‖Dwn‖L1 = |ξ |TV (wn).

The left hand side converges to ‖w(·+ ξ )−w‖L1 because wn→ w in L1, whereas the right hand
side converges to |ξ |TV (w) by the strict convergence.

Finally we interpolate between the L1 and the L∞ estimate to obtain

‖w(·+ξ )−w‖Lp(Ω∩(Ω−ξ )) ≤C‖w‖1/p
BV ‖w‖

1−1/p
L∞ |ξ |1/p ≤C‖w‖BV∩L∞ |ξ |1/p.

�

3. AN ONSAGER-TYPE STATEMENT FOR THE INHOMOGENEOUS INCOMPRESSIBLE EULER

EQUATIONS

Consider the inhomogeneous incompressible Euler system on (0,T )×Td :

∂t(ρu)+div(ρu⊗u)+∇p = 0,

∂tρ +div(ρu) = 0,

divu = 0.

(3.1)
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Theorem 3.1. Let ρ , u, p be a solution of (3.1) in the sense of distributions. Assume

u ∈ Bα,∞
p ((0,T )×Td), ρ,ρu ∈ Bβ ,∞

q ((0,T )×Td), p ∈ Lp∗
loc((0,T )×Td) (3.2)

for some 1≤ p,q≤ ∞ and 0≤ α,β ≤ 1 such that

2
p
+

1
q
= 1,

1
p
+

1
p∗

= 1, 2α +β > 1. (3.3)

Then the energy is locally conserved, i.e.

∂t

(
1
2

ρ|u|2
)
+div

[(
1
2

ρ|u|2 + p
)

u
]
= 0 (3.4)

in the sense of distributions on (0,T )×Td .

Remark 3.2. (1) If ρ ≡ 1, then (3.1) reduces to the homogeneous incompressible Euler
equations, and the choice p = q = 3 and α = β yields the classical result of Constantin et
al. [4] (except for the time regularity, which can be relaxed in this case).

(2) It may seem unnatural to impose regularity requirements on ρ , u, and ρu at the same
time. By the fact that the spaces Bα,∞

p ∩ L∞ are algebras, however, we may replace the
assumptions (3.2) by

u ∈ (Bα,∞
p ∩L∞)((0,T )×Td), ρ ∈ (Bβ ,∞

q ∩L∞)((0,T )×Td), p ∈ Lp∗
loc((0,T )×Td)

with exponents that satisfy (3.3) and, in addition, p≥ q and α ≥ β (so that Bα,∞
p ⊂ Bβ ,∞

q ).
(3) The hypothesis concerning integrability of the pressure may be completely omitted as

soon as we are interested only in the total energy balance

d
dt

E(t) = 0 in the sense of distributions in (0,T ), where E(t) =
1
2

∫
Td

ρ|u|2 dx.

Proof. We follow the strategy of [4] and mollify the momentum equation in time and space (with
a kernel and notation as in Section 2):

∂t(ρu)ε +div(ρu⊗u)ε +∇pε = 0.

Let ϕ ∈C∞
c ((0,T )×Td) be a test function. Multiplication with ϕuε and integration in time and

space gives∫ T

0

∫
Td

∂t(ρu)ε ·ϕuεdxdt +
∫ T

0

∫
Td

div(ρu⊗u)ε ·ϕuεdxdt +
∫ T

0

∫
Td

ϕuε ·∇pεdxdt = 0.

(3.5)

Here we take ε > 0 small enough so that suppϕ ⊂ (ε,T − ε)×Td . We can rewrite this equality,
using appropriate commutators, as∫ T

0

∫
Td

∂t(ρ
εuε) ·ϕuεdxdt +

∫ T

0

∫
Td

div((ρu)ε ⊗uε) ·ϕuεdxdt

+
∫ T

0

∫
Td

ϕuε ·∇pεdxdt = Rε
1 +Rε

2,

(3.6)

where

Rε
1 =

∫ T

0

∫
Td

∂t [ρ
εuε − (ρu)ε ] ·ϕuεdxdt

and

Rε
2 =

∫ T

0

∫
Td

div [(ρu)ε ⊗uε − (ρu⊗u)ε ] ·ϕuεdxdt.
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The first integral on the left hand side of (3.6) equals∫ T

0

∫
Td

ϕ∂tρ
ε |uε |2dxdt +

1
2

∫ T

0

∫
Td

ϕρ
ε
∂t |uε |2dxdt, (3.7)

whereas for the second integral in (3.6) we use the mollified version of the continuity equation,

∂tρ
ε +div(ρu)ε = 0,

to compute

∫ T

0

∫
Td

div((ρu)ε ⊗uε) ·ϕuεdxdt =−
∫ T

0

∫
Td

ϕ((ρu)ε ⊗uε) : ∇uεdxdt

−
∫ T

0

∫
Td

uε · ((ρu)ε ⊗uε)∇ϕdxdt

=−1
2

∫ T

0

∫
Td

ϕ(ρu)ε ·∇|uε |2dxdt

−
∫ T

0

∫
Td

uε · ((ρu)ε ⊗uε)∇ϕdxdt

=
1
2

∫ T

0

∫
Td

ϕ div(ρu)ε |uε |2dxdt

+
∫ T

0

∫
Td

1
2

∇ϕ · (ρu)ε |uε |2−uε · ((ρu)ε ⊗uε)∇ϕdxdt

=−1
2

∫ T

0

∫
Td

ϕ∂tρ
ε |uε |2dxdt

+
∫ T

0

∫
Td

1
2

∇ϕ · (ρu)ε |uε |2− (uε · (ρu)ε)uε ·∇ϕdxdt.

(3.8)

The third integral in (3.6) can be handled using the divergence-free condition on u:∫ T

0

∫
Td

ϕuε ·∇pεdxdt =−
∫ T

0

∫
Td

∇ϕ ·uε pεdxdt. (3.9)

Thus, combining (3.7), (3.8), (3.9), and (3.6), we find

1
2

∫ T

0

∫
Td

∂tϕρ
ε |uε |2dxdt +

∫ T

0

∫
Td

∇ϕ ·
[
(uε · (ρu)ε)uε − 1

2
(ρu)ε |uε |2 + pεuε

]
dxdt

=−Rε
1−Rε

2.

To prove our claim, it suffices to show Rε
1,R

ε
2→ 0 as ε → 0. Indeed, the fact that this is sufficient

in order to prove the theorem follows from standard properties of mollifications together with our
assumptions (3.2).

For Rε
1, we observe that

ρ
εuε − (ρu)ε =(ρε −ρ)(uε −u)

−
∫

ε

−ε

∫
Td

η
ε(τ,ξ )(ρ(t− τ,x−ξ )−ρ(t,x))(u(t− τ,x−ξ )−u(t,x))dξ dτ.

(3.10)
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The first part of Rε
1 therefore can be estimated by virtue of an integration by parts, (2.2), (2.3), and

our assumptions as∣∣∣∣∫ T

0

∫
Td

ϕ∂t [(ρ
ε −ρ)(uε −u)] ·uεdxdt

∣∣∣∣
≤
∫ T

0

∫
Td
|∂tϕ(ρ

ε −ρ)(uε −u) ·uε |dxdt +
∫ T

0

∫
Td
|ϕ(ρε −ρ)(uε −u) ·∂tuε |dxdt

≤C‖ϕ‖C1ε
β

ε
α‖ρ‖

Bβ ,∞
q
‖u‖2

Bα,∞
p

+C‖ϕ‖C0ε
β

ε
α

ε
α−1‖ρ‖

Bβ ,∞
q
‖u‖2

Bα,∞
p
→ 0

as ε → 0.
For the second part of

∫
ϕRε

1dt according to (3.10), we estimate (using integration by parts,
Fubini, (2.1) and (2.3))∣∣∣∣∫ T

0

∫
Td

ϕ∂t

∫
ε

−ε

∫
Td

η
ε(τ,ξ )(ρ(t− τ,x−ξ )−ρ(t,x))(u(t− τ,x−ξ )−u(t,x))dξ dτ ·uεdxdt

∣∣∣∣
≤C‖ϕ‖C1ε

β
ε

α‖ρ‖
Bβ ,∞

q
‖u‖2

Bα,∞
p

+C‖ϕ‖C0ε
β

ε
α

ε
α−1‖ρ‖

Bβ ,∞
q
‖u‖2

Bα,∞
p
→ 0

as ε → 0.
The estimate for Rε

2 is very similar. We write

(ρu)ε ⊗uε − (ρu⊗u)ε = ((ρu)ε −ρu)⊗ (uε −u)

−
∫

ε

−ε

∫
Td

η
ε(τ,ξ )(ρu(t− τ,x−ξ )−ρu(t,x))⊗ (u(t− τ,x−ξ )−u(t,x))dξ dτ.

The first part of Rε
2 can be estimated similarly as for Rε

1:∣∣∣∣∫ T

0

∫
Td

ϕ div[((ρu)ε −ρu)⊗ (uε −u)] ·uεdxdt
∣∣∣∣

≤ ‖ϕ‖C0

∫ T

0

∫
Td
|((ρu)ε −ρu)⊗ (uε −u) : ∇uε |dxdt

+‖ϕ‖C1

∫ T

0

∫
Td
|(((ρu)ε −ρu)⊗ (uε −u))uε |dxdt

≤C‖ϕ‖C0ε
β

ε
α

ε
α−1‖ρu‖

Bβ ,∞
q
‖u‖2

Bα,∞
p

+C‖ϕ‖C1ε
β

ε
α‖ρ‖

Bβ ,∞
q
‖u‖2

Bα,∞
p
→ 0.

Likewise, for the second part of Rε
2 we get∣∣∣∣∫ T

0

∫
Td

div
{∫

ε

−ε

∫
Td

η
ε(τ,ξ )(ρu(t− τ,x−ξ )−ρu(t,x))⊗ (u(t− τ,x−ξ )−u(t,x))dξ dτ

}
·ϕuεdxdt

∣∣∣∣
≤C‖ϕ‖C0ε

β
ε

α
ε

α−1‖ρu‖
Bβ ,∞

q
‖u‖2

Bα,∞
p

+C‖ϕ‖C1ε
β

ε
α‖ρ‖

Bβ ,∞
q
‖u‖2

Bα,∞
p
→ 0,

which completes the proof.
�

Although Theorem 3.1 implies that the energy E(t) = 1
2
∫
Td ρ|u|2dx is conserved in the sense of

distributions, it is still conceivable that it takes different values on a set of times of measure zero.
That this can in fact not occur under some further assumptions is the content of our next result:

Corollary 3.3. If, in addition to the assumptions of Theorem (3.1),

ρ,u ∈ L∞((0,T )×Td),

sup
t∈[0,T ]

(‖ρ‖
Bβ ,∞

q (Td)
+‖ρu‖

Bβ ,∞
q (Td)

)< ∞,

and β > 0, then it follows that

ρ ∈Cweak([0,T ],L2(Td)), ρu ∈Cweak([0,T ],L2(Td ,Rd)), (3.11)
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and, setting

E(t) =
∫

ρ(t,·)>0

|ρu|2

ρ
(t) dx,

we have E(s) = E(t) for all s, t ∈ [0,T ].

Proof. The weak continuity (3.11) follows in a standard way from the equations, cf. e.g. Appen-
dix A in [7]. Moreover, by the Fréchet-Kolmogorov Theorem, Bβ ,∞

q (Td) embeds compactly into
L1(Td). Therefore, if t ∈ [0,T ] and tn→ t, then ρ(tn)→ ρ(t) and ρu(tn)→ ρu(t) strongly in L1.

Our aim is to prove strong continuity in L1 of the energy density, i.e. as n→ ∞

1ρ(tn)>0
|ρu|2

ρ
(tn)→ 1ρ(t)>0

|ρu|2

ρ
(t) in L1(Td), (3.12)

Consider two sets: Fε = {x ∈ Td : ρ(t)≥ ε} and Td \Fε .
Step 1. We begin with the set Fε . From the strong convergence in L1 we conclude that, up to

a subsequence (not relabeled), (ρ(tn))n∈N and (ρu(tn))n∈N converge a.e. in Fε . By Egorov’s theo-
rem, for every δ > 0 there exists a set Eδ such that |Td \Eδ |< δ , where the sequence (ρ(tn))n∈N
converges uniformly. This allows to conclude that on the set Eδ ∩Fε for sufficiently large n also
ρ(tn) ≥ ε

2 . Since the function (ρ,u) 7→ |ρu|2
ρ

is well defined and also continuous on [ ε

2 ,∞)×Td ,
we deduce (as δ > 0 was arbitrary)

|ρu|2

ρ
(tn)→

|ρu|2

ρ
(t) a.e. in Fε

as n→ ∞. Since |ρu|2
ρ

is uniformly bounded in L∞((0,T )×Td), the sequence
(
|ρu|2

ρ
(tn)
)

n∈N
is

equiintegrable in L1(Fε) and by Vitali’s theorem we conclude strong convergence in L1(Fε).
Step 2. On the set Td \Fε observe that since u is in L∞((0,T )×Td) and in the same way as in

the previous step we conclude that ρ(tn) is sufficiently small for n large enough, then ρ(tn)|u|2(tn)
converges to zero as ε → 0. Thus (3.12) holds. �

We end our discussion of the inhomogeneous incompressible Euler equations by recording a
special case of Theorem 3.1 which states that, if the velocity is sufficiently regular, we can ensure
energy conservation even when the density has jump discontinuities. More precisely, we have:

Corollary 3.4. Let ρ ∈ (BV ∩L∞)((0,T )×Td) and u ∈ (Bα,∞
3 ∩L∞)((0,T )×Td) be a solution

of (3.1), where α > 1
3 . Then the energy is conserved.

Proof. Combine Proposition 2.1, Theorem 3.1 and Remark 3.2(2). �

In fact we can go to the extreme and assume only ρ ∈ L1 and u to be Hölder continuous with
exponent greater than 1/2, then still we have energy conservation.

4. ENERGY CONSERVATION FOR THE COMPRESSIBLE ISENTROPIC EULER EQUATIONS

We consider now the isentropic Euler equations,

∂t(ρu)+div(ρu⊗u)+∇p(ρ) = 0,

∂tρ +div(ρu) = 0.
(4.1)

In contrast to the inhomogeneous incompressible system (3.1), the pressure p = p(ρ) is no longer
a Lagrange multiplier, but a constitutively given function of the density. We will make use of the
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so-called pressure potential defined by

P(ρ) = ρ

∫
ρ

1

p(r)
r2 dr.

It turns out that we can prove a theorem on the compressible system that is similar to Theorem 3.1:

Theorem 4.1. Let ρ , u be a solution of (4.1) in the sense of distributions. Assume

u ∈ Bα,∞
3 ((0,T )×Td), ρ,ρu ∈ Bβ ,∞

3 ((0,T )×Td), 0≤ ρ ≤ ρ ≤ ρ a.a. in(0,T )×Td ,

for some constants ρ , ρ , and 0≤ α,β ≤ 1 such that

β > max
{

1−2α;
1−α

2

}
. (4.2)

Assume further that p ∈C2[ρ,ρ], and, in addition

p′(0) = 0 as soon as ρ = 0. (4.3)

Then the energy is locally conserved, i.e.

∂t

(
1
2

ρ|u|2 +P(ρ)
)
+div

[(
1
2

ρ|u|2 + p(ρ)+P(ρ)
)

u
]
= 0

in the sense of distributions on (0,T )×Td .

Remark 4.2. (1) For the isentropic pressure law p(ρ) = κργ , γ > 1, our C2 assumption on
p is satisfied if either we exclude vacuum (i.e. we assume ρ > 0) or we choose γ ≥ 2.

(2) The conservation of total energy follows, under appropriate additional assumptions, simi-
larly to Corollary 3.3.

(3) The conclusion of Corollary 3.4 remains true. This can be interpreted roughly as follows:
Energy dissipating shocks can not form exclusively in the density, but only in the density
and the velocity simultaneously.

(4) Shocks also provide examples that show that our assumptions are sharp: A shock solution
dissipates energy, but ρ and u are in BV ∩L∞, which embeds (see Proposition (2.1)) into
B1/3,∞

3 . Hence such a solution satisfies (4.2) with equality but fails to satisfy the conclu-
sion. Besides, there are also (non-physical) BV weak solutions that produce energy.

(5) It is easy to check that under the hypotheses on the pressure p stated above, we have
P ∈C2[ρ,ρ].

(6) The hypothesis on temporal regularity can be relaxed provided ρ > 0, meaning there is

no vacuum. Indeed, in this case (ρu)ε

ρε can be used as a test function in the momentum
equation, cf. [11].

We state another result on the compressible system, where we do not need to require Besov
regularity in time:

Theorem 4.3. Assume that the pressure p satisfies

p ∈C2(0,∞)∩C[0,∞), p(0) = 0. (4.4)

Let ρ ∈ L∞((0,T )×Td), u ∈ L∞((0,T )×Td) be a solution of (4.1) in the sense of distributions.
In addition, assume that

u(t) ∈ BV ∩C(Td), ρ(t) ∈ BV ∩C(Td) for a.a. t ∈ [0,T ]
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and

u, ρ ∈ L∞(0,T ;C(Td)), ∇u, ∇ρ ∈ L∞

weak−(∗)(0,T ;M (Td)). (4.5)

Then the energy is locally conserved, i.e.

∂t

(
1
2

ρ|u|2 +P(ρ)
)
+div

[(
1
2

ρ|u|2 + p(ρ)+P(ρ)
)

u
]
= 0

in the sense of distributions on (0,T )×Td .

Remark 4.4. Following the proof of Corollary 3.3, we observe that in the situation of Theo-
rem 4.3 the conservation of total energy holds for every time without any further assumptions.

4.1. Proof of Theorem 4.1. Just as in the previous section, we mollify the momentum equation,
multiply by ϕuε for a test function ϕ , and integrate in time and space to obtain (3.5). We rewrite
this again using commutators to obtain

∫ T

0

∫
Td

∂t(ρ
εuε) ·ϕuεdxdt +

∫ T

0

∫
Td

div((ρu)ε ⊗uε) ·ϕuεdxdt

+
∫ T

0

∫
Td

ϕuε ·∇p(ρε)dxdt = Rε
1 +Rε

2 +Rε
3,

(4.6)

the only difference to (3.6) being the pressure term, for which we introduce the commutator

Rε
3 =

∫ T

0

∫
Td

∇(p(ρε)− p(ρ)ε) ·ϕuεdxdt,

while Rε
1 and Rε

2 are defined as in the last section.
For the first and second integral in (4.6) we find, as before, the relations (3.7) and (3.8), because

the corresponding computations did not require uε to be divergence-free. It is only the third in-
tegral which requires additional attention. For this we first need to observe that, due to the chain
rule and the mollified mass equation,

∂tP(ρε)+∇P(ρε) ·uε +P′(ρε)ρε divuε = Sε ,

where we introduced the commutator

Sε = P′(ρε)div(ρεuε − (ρu)ε).

Observe also that, by definition of P,

ρ
εP′(ρε) = P(ρε)+ p(ρε).
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After these preparations, we can compute the third integral in (4.6) as∫ T

0

∫
Td

ϕuε ·∇p(ρε)dxdt

=−
∫ T

0

∫
Td

∇ϕ ·uε p(ρε)dxdt−
∫ T

0

∫
Td

ϕ p(ρε)divuεdxdt

=−
∫ T

0

∫
Td

∇ϕ ·uε p(ρε)dxdt−
∫ T

0

∫
Td

ϕ[ρεP′(ρε)−P(ρε)]divuεdxdt

=−
∫ T

0

∫
Td

∇ϕ ·uε p(ρε)dxdt +
∫ T

0

∫
Td

ϕ[∂tP(ρε)+∇P(ρε) ·uε +P(ρε)divuε ]dxdt

−
∫ T

0

∫
Td

ϕSεdxdt

=−
∫ T

0

∫
Td

∇ϕ ·uε p(ρε)dxdt−
∫ T

0

∫
Td

∂tϕP(ρε)+∇ϕ ·P(ρε)uεdxdt

−
∫ T

0

∫
Td

ϕSεdxdt

Putting everything together, we see that the theorem is proved once we have shown that Rε
3 and∫ ∫

ϕSεdxdt tend to zero as ε → 0. Indeed, the assumptions of Theorem 4.1 are stronger than
those of Theorem 3.1, so that our previous estimates for Rε

1 and Rε
2 hold a fortiori.

Consider first Rε
3. Let us observe that if p ∈C2([a,b]) then

|p(s)− p(s0)− p′(s0)(s− s0)| ≤C(s− s0)
2

for every s,s0 ∈ [a,b]. Note that the constant C can be chosen independently of s,s0. Therefore

|p(ρε(t,x))− p(ρ(t,x))− p′(ρ(t,x))(ρε(t,x)−ρ(t,x))| ≤C(ρ(t,x)−ρ
ε(t,x))2

and similarly

|p(ρ(t,y))− p(ρ(t,x))− p′(ρ(t,x))(ρ(t,y)−ρ(t,x))| ≤C(ρ(t,x)−ρ(t,y))2.

Applying convolution w.r.t. y to the last inequality we get, after invoking Jensen’s inequality:

|p(ρ)ε(t,x)− p(ρ(t,x))− p′(ρ(t,x))(ρε(t,x)−ρ(t,x))| ≤C(ρ(t,x)−ρ(t, ·))2 ∗y η
ε .

Therefore

|p(ρε(t,x))− p(ρ)ε(t,x)| ≤C((ρ(t,x)−ρ
ε(t,x))2 +(ρ(t,x)−ρ(t, ·))2 ∗y η

ε .

We can thus estimate

|Rε
3|=

∣∣∣∣∫ T

0

∫
Td

∇(p(ρε)− p(ρ)ε) ·ϕuεdxdt
∣∣∣∣

≤
∫ T

0

∫
Td
|ϕ(p(ρε)− p(ρ)ε)divuε |dxdt +

∫ T

0

∫
Td
|(p(ρε)− p(ρ)ε)uε ·∇ϕ|dxdt

≤C‖ϕ‖C0ε
2β

ε
α−1‖ρ‖2

Bβ ,∞
3
‖u‖Bα,∞

3
+C‖ϕ‖C1ε

2β‖ρ‖2
Bβ ,∞

3
‖u‖Bα,∞

3
→ 0.

Finally, let us estimate
∫ ∫

ϕSεdxdt. We use (3.10) to split Sε into two parts, so that we can
estimate for the first part∣∣∣∣∫ T

0

∫
Td

ϕ div[(ρε −ρ)(uε −u)]P′(ρε)dxdt
∣∣∣∣

≤
∫ T

0

∫
Td
|∇ϕ(ρε −ρ)(uε −u)P′(ρε)|dxdt +

∫ T

0

∫
Td
|ϕ(ρε −ρ)(uε −u) ·P′′(ρε)∇ρ

ε |dxdt

≤C‖ϕ‖C1ε
β

ε
α‖ρ‖

Bβ ,∞
3
‖u‖Bα,∞

3
+C‖ϕ‖C0ε

β
ε

α
ε

β−1‖ρ‖2
Bβ ,∞

3
‖u‖Bα,∞

3
→ 0
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as ε → 0. The second part is estimated similarly, thus completing the proof.
�

4.2. Proof of Theorem 4.3. Regularization
Again we will regularize in space and time, but now with different parameters. Thus we con-

sider the regularization by spatial convolution

vε(t,x) =
∫
Td

η
ε(x)v(t,x− y) dy,

where ηε is as in Section 2, and, following [10], by time convolution

vh(t,x) =
∫ T

0
χh(t− s)v(s,x) ds;

where

χh =
1
h

1[−h,0].

Note that vh enjoys lower time regularity than the standard regularization by smooth kernels.
Specifically, we identify

∂tvh =
v(t +h)− v(t)

h
∈ X (4.7)

provided t and t +h are Lebesgue points of a function v ∈ L1
loc(0,T ;X). In particular, the function

vh is absolutely continuous in [h,T −h], with the derivative given by (4.7) for a.a. t ∈ (h,T −h).
We use the notation

vε,h = (vε)h.

Regularizing (4.1)1 we get

∂tρ
ε +div(ρu)ε = 0, ∂tρ

ε,h +div(ρu)ε,h = 0 (4.8)

where the latter equation is satisfied in (h,T −h).
Similarly we have

∂t(ρu)ε +div((ρu)ε ⊗uε)+∇(p(ρ))ε = div((ρu)ε ⊗uε)−div(ρu⊗u)ε , (4.9)

and

∂t (ρ
εuε)

h
+div((ρu)ε ⊗uε)

h
+∇(p(ρ))ε,h

=
(
div((ρu)ε ⊗uε)−div(ρu⊗u)ε

)h
+∂t (ρ

εuε − (ρu)ε)
h
.

(4.10)

Total energy balance.
We multiply (4.10) by ϕuε,h, where ϕ ∈ C∞

c ((h,T − h)×Td), and integrate the resulting ex-
pression over (0,T )×Td . Now, we proceed in several steps.

To handle the term containing the time derivative we use the identity (4.7) to obtain∫ T

0

∫
Td

∂t (ρ
εuε)

h ·uε,h
ϕ dxdt =

∫
R

∫
Td

ρε(t +h)uε(t +h)−ρε(t)uε(t)
h

·uε,h
ϕ dxdt

=
∫
R

∫
Td

ρε(t +h)uε(t +h)−ρε(t)uε(t)
h

·uε,h
ϕ dxdt

−
∫
R

∫
Td

ρ
ε uε(t +h)−uε(t)

h
·uε,h

ϕ dxdt +
1
2

∫
R

∫
Td

ρ
ε
∂t(|uε,h|2)ϕ dxdt

=
∫
R

∫
Td

ρε(t +h)−ρε(t)
h

uε(t +h) ·uε,h
ϕ dxdt +

1
2

∫
R

∫
Td

ρ
ε
∂t(|uε,h|2)ϕ dxdt

=
∫
R

∫
Td

∂tρ
ε,huε(t +h) ·uε,h

ϕ dxdt +
1
2

∫
R

∫
Td

ρ
ε
∂t(|uε,h|2)ϕ dxdt.
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Thus using the regularized equation of continuity∫ T

0

∫
Td

∂t (ρ
εuε)

h ·uε,h
ϕ dxdt

=−
∫
R

∫
Td

div(ρu)ε,huε(t +h) ·uε,h
ϕ dxdt +

1
2

∫
R

∫
Td

ρ
ε
∂t(|uε,h|2)ϕ dxdt

=
∫
R

∫
Td
(ρu)ε,h ·∇

(
uε(t +h) ·uε,h

ϕ

)
dxdt +

1
2

∫
R

∫
Td

ρ
ε
∂t(|uε,h|2)ϕ dxdt.

Consequently, we may infer that∫ T

0

∫
Td

∂t (ρ
εuε)

h ·uε,h
ϕ dxdt

=
1
2

∫
R

∫
Td

ρ
ε
∂t(|uε,h|2)ϕ dxdt +

1
2

∫
R

∫
Td

∂t (ρ
ε
ϕ) |uε,h|2 dxdt

+
∫
R

∫
Td
(ρu)ε,h ·∇

(
uε(t +h) ·uε,h

ϕ

)
dxdt− 1

2

∫
R

∫
Td

∂t (ρ
ε
ϕ) |uε,h|2 dxdt

=
1
2

∫
R

∫
Td

∂t

(
ρ

ε |uε,h|2ϕ

)
dxdt +

∫
R

∫
Td
(ρu)ε,h ·∇

(
uε(t +h) ·uε,h

ϕ

)
dxdt

− 1
2

∫
R

∫
Td
(ρu)ε

∇

(
ϕ|uε,h|2

)
dxdt− 1

2

∫
R

∫
Td

ρ
ε |uε,h|2∂tϕ dxdt

=−1
2

∫
R

∫
Td

ρ
ε |uε,h|2∂tϕ dxdt

+
∫
R

∫
Td
(ρu)ε,h ·∇

(
uε(t +h) ·uε,h

ϕ

)
dxdt− 1

2

∫
R

∫
Td
(ρu)ε

∇

(
ϕ|uε,h|2

)
dxdt.

(4.11)

For further computations observe that the convective term reads∫ T

0

∫
Td

div((ρu)ε ⊗uε)h ·uε,h
ϕ dx dt =−

∫
R

∫
Td
((ρu)ε ⊗uε)h : ∇

(
uε,h

ϕ

)
dx dt.

In accordance with hypothesis (4.4), we may write the pressure as

p(ρ) = pδ (ρ)+(p(ρ)− pδ (ρ)), with pδ ∈C2[0,∞), pδ (0) = p′
δ
(0) = 0, |p− pδ |< δ

(4.12)

for any δ > 0. Accordingly, we get∫ T

0

∫
Td
(∇pδ (ρ))

ε,huε,h
ϕ dxdt

=−
∫
R

∫
Td
(pδ (ρ))

ε,h divuε,h
ϕ dxdt−

∫
Td
(pδ (ρ))

ε,huε,h ·∇ϕ dxdt +O(δ )‖ϕ‖C1

=−
∫
R

∫
Td

pδ (ρ
ε,h)divuε,h

ϕ dxdt−
∫
R

∫
Td
(pδ (ρ))

ε,huε,h ·∇ϕ dxdt

+
∫
R

∫
Td

(
pδ (ρ

ε,h)− (pδ (ρ))
ε,h
)

divuε,h
ϕ dxdt +O(δ )‖ϕ‖C1 .

(4.13)

Now, we rewrite the equation of continuity (4.1)1 as

∂tρ
ε,h +div

(
ρ

ε,huε,h
)
=−div(ρu)ε,h +div

(
ρ

ε,huε,h
)

;

whence, after renormalization,

∂tPδ (ρ
ε,h)+div

(
Pδ (ρ

ε,h)uε,h
)
+ pδ (ρ

ε,h)divuε,h =−P′
δ
(ρε,h)

[
div(ρu)ε,h−div

(
ρ

ε,huε,h
)]

.
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(4.14)

where

Pδ (ρ) = ρ

∫
ρ

1

pδ (z)
z2 dz.

As a consequence of (4.12), we have Pδ ∈C2[0,∞).
Thus going back to (4.13) we conclude that

∫ T

0

∫
Td
(∇p(ρ))ε,huε,h

ϕ dx =
∫ T

0

∫
Td

[
∂tPδ (ρ

ε,h)+div
(

Pδ (ρ
ε,h)uε,h

)]
ϕ dxdt

−
∫
Td
(pδ (ρ))

ε,huε,h ·∇ϕ dxdt

+
∫
R

∫
Td

(
pδ (ρ

ε,h)− (pδ (ρ))
ε,h
)

divuε,h
ϕ dxdt

+
∫
R

∫
Td

P′
δ
(ρε,h)

[
div(ρu)ε,h−div

(
ρ

ε,huε,h
)

ϕ

]
dxdt +O(δ )‖ϕ‖C1

=−
∫
R

∫
Td

P(ρε,h)∂tϕ dxdt−
∫ T

0

∫
Td

P(ρε,h)uε,h ·∇ϕ dxdt

−
∫
Td
(p(ρ))ε,huε,h ·∇ϕ dxdt

+
∫
R

∫
Td

(
pδ (ρ

ε,h)− (pδ (ρ))
ε,h
)

divuε,h
ϕ dxdt

+
∫
R

∫
Td

P′
δ
(ρε,h)

[
div(ρu)ε,h−div

(
ρ

ε,huε,h
)

ϕ

]
dxdt +O(δ )‖ϕ‖C1 .

(4.15)

Thus summing up (4.11), (4.13) and (4.15) we obtain

−1
2

∫
R

∫
Td

ρ
ε |uε,h|2∂tϕ dxdt

+
∫
R

∫
Td
(ρu)ε,h ·∇

(
uε(t +h) ·uε,h

ϕ

)
dxdt− 1

2

∫
R

∫
Td
(ρu)ε

∇

(
ϕ|uε,h|2

)
dxdt

−
∫
R

∫
Td
((ρu)ε ⊗uε)h : ∇

(
uε,h

ϕ

)
dxdt

−
∫
R

∫
Td

P(ρε,h)∂tϕ dxdt−
∫
R

∫
Td

P(ρε,h)uε,h ·∇ϕ dxdt

−
∫
R

∫
Td
(p(ρ))ε,huε,h ·∇ϕ dxdt

+
∫
R

∫
Td

(
pδ (ρ

ε,h)− (pδ (ρ))
ε,h
)

divuε,h
ϕ dxdt

+
∫
R

∫
Td

P′
δ
(ρε,h)

[
div(ρu)ε,h−div

(
ρ

ε,huε,h
)]

ϕ dxdt

−
∫
R

∫
Td

((
div((ρu)ε ⊗uε)−div(ρu⊗u)ε

)h
+∂t (ρ

εuε − (ρu)ε)
h
)
·uε,h

ϕ dxdt = O(δ )‖ϕ‖C1 ,
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which may be rewritten as∫
R

∫
Td

(
1
2

ρ
ε
∣∣uε,h

∣∣2 +P(ρε,h)

)
∂tϕ dxdt

+
∫
R

∫
Td

(
((ρu)ε ⊗uε)h ·uε,h +

1
2
(ρu)ε |uε,h|2− (ρu)ε,h

(
uε(t +h) ·uε,h

))
·∇ϕ dxdt

+
∫
R

∫
Td

(
P(ρε,h)+(p(ρ))ε,h

)
uε,h ·∇ϕ dxdt =

5

∑
i=1

E1
ε,h +O(δ )‖ϕ‖C1

(4.16)

where

E1
ε,h =

∫
R

∫
Td
(ρu)ε,h ·∇

(
uε(t +h) ·uε,h

)
ϕ dxdt− 1

2

∫
R

∫
Td
(ρu)ε ·∇

(
|uε,h|2

)
ϕ dxdt

−
∫
R

∫
Td
((ρu)ε ⊗uε)h : ∇

(
uε,h
)

ϕ dxdt

E2
ε,h =

∫
R

∫
Td

(
pδ (ρ

ε,h)− (pδ (ρ))
ε,h
)

divuε,h
ϕ dxdt

E3
ε,h =

∫
R

∫
Td

P′
δ
(ρε,h)

[
div(ρu)ε,h−div

(
ρ

ε,huε,h
)]

ϕ dxdt

E4
ε,h =−

∫
R

∫
Td

((
div((ρu)ε ⊗uε)−div(ρu⊗u)ε

)h
)
·uε,h

ϕ dxdt

and

E5
ε,h =−

∫
R

∫
Td

(
∂t (ρ

εuε − (ρu)ε)
h
)
·uε,h

ϕ dxdt.

Estimating the errors
We perform the limit first ε → 0 and second h→ 0. We start with the last integral E5 rewriting

it as

E5
ε,h =

∫
R

∫
Td

(
(ρεuε − (ρu)ε)

h
)
·∂t(uε,h

ϕ) dxdt.

For h fixed, the term ∂t(uε,hϕ) remains uniformly bounded as u belongs to L∞. On the other hand,
by the same token

ρ
εuε − (ρu)ε → 0 in Lp((0,T )×Td) for any 1≤ p < ∞;

whence E5
ε,h vanishes for ε → 0.

The next step is to rewrite E1
ε,h as

E1
ε,h =

∫
R

∫
Td
(ρu)ε,h(t−h) ·∇uε ·uε,h(t−h)ϕ(t−h) dxdt

+
∫
R

∫
Td
(ρu)ε,h ·uε(t +h) ·∇uε,h

ϕ dxdt

−
∫
R

∫
Td
(ρu)ε ·∇uε,h ·uε,h

ϕ dxdt

−
∫
R

∫
Td
((ρu)ε ⊗uε)h : ∇uε,h

ϕ dxdt

At this stage we invoke the assumption that

ess sup
t∈[0,T ]

(‖ρ(t, ·)‖BV∩C(Td)+‖u(t, ·)‖BV∩C(Td ;RN))< ∞.
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Consequently,

(ρu)ε,h→ (ρu)h in C([h,T −h]×Td ;Rd),

uε,h→ uh in C([h,T −h]×Td ;Rd) as ε → 0,

∇uε → ∇u in Lp
weak−(∗)(0,T ;M (Td ;Rd×d)) as ε → 0,

∇uε,h→ ∇uh in Cweak−(∗)([h,T −h];M (Td ;Rd×d)) as ε → 0,

(ρu)ε → ρu in Lp(0,T ;C(Td ;Rd)),

uε → u in Lp(0,T ;C(Td ;Rd)) for any 1≤ p < ∞ as ε → 0.

Thus we may conclude that

E1
ε,h→ E1

h =
∫
R

∫
Td
(ρu)h(t−h) ·∇u ·uh(t−h)ϕ(t−h) dxdt

+
∫
R

∫
Td
(ρu)h ·u(t +h) ·∇uh

ϕ dxdt

−
∫
R

∫
Td
(ρu) ·∇uh ·uh

ϕ dxdt

−
∫
R

∫
Td
(ρu⊗u)h : ∇uh

ϕ dxdt

as ε → 0.
Now, observe that

vh→ v in Lp(0,T ;X) for v ∈ L∞(0,T ;X) and any 1≤ p < ∞,

and

v(·+h)− v→ 0 in Lp(0,T ;X) as h→ 0 for v ∈ L∞(0,T ;X) and any 1≤ p < ∞,

where X is a Banach space. Thus we may infer that that E1
h → 0 as h→ 0.

It is easy to observe that the limits in E2
ε,h, E4

ε,h can be performed in the same way.
Finally, we write E3

ε,h as

E3
ε,h =−

∫
R

∫
Td

∇(P′
δ
(ρε,h)ϕ)

[
(ρu)ε,h−

(
ρ

ε,huε,h
)]

dxdt,

where

∇P′
δ
(ρε,h) = P′′

δ
(ρε,h)∇ρ

ε,h,

and apply the same arguments to conclude. As δ > 0 in (4.16) can be taken arbitrarily small, the
desired conclusion follows. �
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BONN, ENDENICHER ALLEE 60, 53115 BONN, GERMANY

E-mail address: emil.wiedemann@hcm.uni-bonn.de

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

