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Resumé

Předložená disertačńı práce je souborem 11 p̊uvodńıch vědeckých praćı
[1] – [11] a úvodu, který je psán jako přehled teorie přirozených a kalibračně
přirozených bandl̊u a operátor̊u a jejich využit́ı v diferenciálńı geometrii a
matematické fyzice.

Invariantnost geometrických operaćı s poli geometrických objekt̊u na
dané varietě vzhledem k lokálńım difeomorfismům či volbě lokálńıch souřad-
nic je jedńım ze základńıch požadavk̊u nejen moderńı diferenciálńı geometrie
na diferencovatelných varietách, ale i řady obor̊u teoretické fyziky, jako je
např. obecná relativita či klasická teorie pole. Požadavek invariantnosti je
efektivně řešen pomoćı teorie přirozených bandl̊u a přirozených operátor̊u.
Pojem přirozený bandl, který zavedel v roce 1972 A. Nijenhuis, si velmi
rychle vydobyl významné mı́sto v moderńı diferenciálńı geometrii.

Prvńı kapitola teźı je věnována popisu hlavńıch vlastnost́ı přirozených
bandl̊u a přirozených operátor̊u a také př́ınosu autora předkládané disertace
v této oblasti [1, 3].

Hlavńım nástrojem při studiu přirozených operátor̊u na přirozených band-
lech je jejich jednoznačná reprezentace pomoćı zobrazeńı mezi typovými
fibry přirozených bandl̊u, které jsou ekvivariantńı vzhledem k akćım dife-
renciálńı grupy jistého konečného řádu. To umožuje v celé řadě př́ıpad̊u
úplný popis invariantńıch operaćı. Ve druhé kapitole jsou jako př́ıklady
přirozených operátor̊u uvedeny p̊uvodńı výsledky autora. Je provedena
úplná klasifikace přirozených operátor̊u typu Frölicher-Nijenhuisovy závorky
projektabilńıch tečně hodnotových forem na fibrované varietě [2]. V obecné
relativitě na prostoročase s absolutńım časem (Galile̊uv prostoročas) je d̊u-
ležitý vzájemně jednoznačný vztah mezi čas zachovávaj́ıćımi konexemi na
prostoročase a fázovými konexemi na prvńım jetovém prodloužeńı pros-
toročasu. Tento vztah je v práci [5] zobecněn pro libovolnou fibrovanou
varietu a je klasifikován operátor, který transformuje lineárńı konexi na
fibrované varietě do konexe na prvńım jetovém prodloužeńı této variety.
Významným nástrojem při studiu přirozených operátor̊u na lineárńıch ko-
nex́ıch a tenzorových poĺıch jsou redukčńı věty, které ř́ıkaj́ı, že takovéto
operátory je možno vyjádřit jako operátory na kovariantńıch derivaćıch
daných tenzorových poĺı a tenzoru křivosti. Tyto redukčńı věty jsou v [10]
zobecněny pro operátory s hodnotami v přirozených bandlech vyšš́ıch řád̊u
a jako aplikace je provedena úplná klasifikace tensorových poĺı typu (0, 2) na
kotečném bandlu variety s konex́ı. Jako aplikace v obecné teorii relativity
jsou uvedeny klasifikace symplektických a Poissonových struktur na tečném
bandlu prostoročasu bez absolutńıho času (Einstein̊uv prostoročas) [4, 6]
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a klasifikace kosymplektické struktury na fázovém prostoru Galileovského
prostoročasu [4].

V kalibračně invariantńıch fyzikálńıch teoríıch se mimo invariantnosti
vzhledem k lokálńım difeomorfismům vyžaduje také invariantnost vzhledem
ke změně kalibrace. Prvńı geometrickou interpretaćı kalibračně přirozených
operaćı je práce R. Utiyamy z roku 1956. Geometricky se kalibračně inva-
riantńı teorie daj́ı popsat pomoćı kalibračně přirozených bandl̊u a přiroze-
ných operátor̊u na kalibračně přirozených bandlech, které zavedl v roce 1981
D. Eck. Ve třet́ı kapitole je uveden přehled vlastnost́ı kalibračně přirozených
bandl̊u a přirozených operátor̊u a jejich infinitesimálńı vlastnosti [3].

Jako aplikace v kalibračně invariantńı teorii pole uvád́ıme klasifikaci při-
rozených kvantových Lagrangian̊u a přirozených Schrödingerových operáto-
r̊u na kvantovém bandlu nad Galileovským prostoročasem [7]. Utiyamovy
výsledky pro kalibračńı grupu Gl(n,R) jsou zobecněny jako redukčńı věty
pro obecnou lineárńı konexi na vektorovém bandlu [8], včetně operátor̊u
s hodnotami v bandlech vyšš́ıch řad̊u [9]. Konečně v [11] je zobecněna
Utiyamova věta pro libovolný řád pro libovolnou kalibračńı grupu G.
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Introduction

The term ”geometric invariant” has been used in differential geometry
since the end of the 19th century. In the 1930’s Schouten and his collab-
orators, [81], used the notion of ”geometric object”. A modern functorial
approach to the theory of geometrical objects and invariant operations with
geometric objects was introduced by Nijenhuis, [73], in the 1950’s. Starting
from the famous paper by Nijenhuis, [76], geometrical objects and invari-
ant operations with geometrical objects have been very intensively studied
by using the concepts of natural bundles and natural differential operators.
Nijenhuis defined natural bundles as lifting functors on the category Mm of
m-dimensional manifolds and their local embeddings. Lifting functors are
supposed to satisfy three conditions: prolongation, localization and regu-
larity (continuity).

The following main four types of problems have been studied in the last
34 years:

1. finiteness of order of natural bundles and operators;
2. extension of lift functors on further categories and study of special

types of functors;
3. regularity conditions;
4. properties and classifications of natural differential operators.
1. Palais and Terng first proved, [77], that the order k of a natural

bundle is finite k < 2n+1 where n is the dimension of the standard fiber.
Later Epstein and Thurston, [44], gave much better bound. They proved
k ≤ 2n + 1 and that this bound is sharp for m = 1. Finally Zajtz, [92],
proved k ≤ { n

n−1 ; nm + 1}. Krupka, [63], and Terng, [85], have proved
independently that a k-order natural bundle is a bundle associated with the
frame bundle of order k.

2. Kolář, [57], generalized lift functors on the category M of all differ-
entiable manifolds and their smooth mappings. Such functors are called
prolongation functors. Some geometric properties of prolongation functors
were studied in [1]1. Mikulski, [70], has shown that a prolongation functor
with infinite order exists. Later various prolongation functors on subcat-
egories of M were studied. The special attention was devoted to product
preserving functors (Weil functors) which were studied by Eck, [43], Kainz
and Michor, [55], and Luciano, [67]. Constructions used on Weil functors
can be generalized also for infinite dimensional functional bundles, [31, 34].

3. In definitions of lift and prolongation functors there is the regularity
condition saying that a smoothly parameterized family of diffeomorphisms

1The references marked by bold numbers refer to the papers of the author which are

included to the thesis.
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is prolonged into a smoothly parameterized family of diffeomorphisms. But
this condition turns out to be a consequence of remaining prolongation and
localization properties. This was proved by Epstein and Thurston, [44], for
lifting functors and by Kolář and Slovák, [61], for prolongation functors.

4. Main problem of the theory of natural differential operators is to
give a complete classification of them for concrete underlying geometric
structures. Such classification is based on the one–to–one correspondence of
natural operators and equivariant maps between standard fibres. To classify
equivariant maps we can use several methods. Formerly the method of Lie
equations was used, [16], recently we use the algebraic method described in
[60]. In literature it is possible to find many examples and applications of
natural operations used in geometry and physics. For wide list of references
we recommend to see [16, 60, 45].

In the thesis we use the term “natural operator” on natural bundles in
the sense of [16, 60, 85], see Section 1.10. The bundle structure of natural
bundles given by natural prolongation functors is studied in Section 1.9
and [1]. Infinitesimal properties of natural bundles and natural operators
are studied in Sections 1.14 and 1.15, see [3]. As applications of natural
operators we shall classify the Frölicher-Nijenhuis bracket of projectable
tangent valued forms, see Section 2.1 and [2], the relations between linear
connections on a fibred manifold and connections on the 1st jet prolongation
are studied in Section 2.2, see [5], higher order valued reduction theorems
are studied in Section 2.5 and [10]. As applications in classical field theories
we study natural symplectic and Poisson structures on the tangent bundle of
the Einstein spacetime (a pseudo-Riemannian manifold with a Lorentzian
metric) given by a metric and a linear connections, see Section 2.3 and
[4, 6], and natural cosymplectic structures on the phase space of the Galilei
spacetime given by a vertical metric and a phase connection, see Section 2.4
and [4].

Natural operators on natural bundles describe the invariance of geomet-
rical or physical theories with respect to changes of local coordinates. But
in physical theories another sort of invariance plays an important role, the
so called ”gauge invariance”. Invariant gauge theory has been introduced
in the book by H. Weyl, [90], in 1918 as a generalization of the Einstein’s
general relativity (published in 1915). Weyl considered spacetime metrics
invariant not only with respect to isomorphisms of spacetime but also with
respect to ”gauge transformations” (the term ”gauge = Eiche” was used for
the first time by H. Weyl). The original invariant physical gauge theories
was related with the gauge group U(1) acting on wave functions and elec-
tromagnetic potentials. In early 1950’s the concept of gauge invariance was
generalized for any Lie group G playing the role of the gauge group. The
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first geometrical interpretation of gauge invariance with respect to a gen-
eral gauge group can be found in the famous paper by Utiyama, [88]. The
geometrical description of the gauge invariance is the following, Drechsler
and Mayer, [41]. Let π : P → M be a principal G-bundle over a (usually
spacetime) manifold M and E → M be a bundle associated with P . An
automorphism of P , over M , induces a fibred automorphism of E, over M ,
which is said to be a change of gauge. A physical theory is said to be gauge
invariant if it is invariant with respect to changes of gauge and with respect
to local diffeomorphisms of M . Gauge invariant theories can be described
geometrically by using the concepts of gauge-natural bundle functors and
natural operators between gauge-natural bundles, see Section 3 and [42, 60].

Infinitesimal properties of gauge-natural bundles and natural operators
of gauge-natural bundles are studied in Sections 3.11 and 3.12, see [3].
Gauge-natural theories have wide applications in gauge field theories, see
[45]. As concrete applications we shall study natural quantum Lagrangians
and natural Schrödinger operators on the quantum bundle over the Galilei
spacetime, see Section 4.1 and [7]. We shall generalize the Utiyama’s results
for the gauge group Gl(n,R) and prove the reduction theorems for general
linear connections, see Section 4.2 and [8]. The higher order valued versions
of reduction theorems for general linear connections are presented in Section
4.3, see [9]. As application of higher order valued reduction theorems we
shall classify all classical connections on the total space of a vector bundle
given by a general linear connection and a classical connection on a base
manifold, see Section 4.3 and [30]. Finally, in Section 4.4 and [11], we
present the higher order Utiyama’s theorem for any gauge group G.

In what follows we shall use the following notations. M is the category
of all smooth manifolds and smooth mappings, Mm is the category of all
m-dimensional smooth manifolds and local diffeomorphisms, FMm is the
category of all fibred manifolds with m-dimensional bases and smooth fi-
bred morphisms covering local diffeomorphisms of bases, VBm (ABm) is
the category of all vector (affine) bundles with m-dimensional bases and
smooth linear (affine) fibred morphisms covering local diffeomorphisms of
bases and, finally, PBm(G) is the category of all principal G-bundles with
m-dimensional bases and smooth principal fibred morphisms covering local
diffeomorphisms of bases.

In what follows all manifolds and maps are supposed to be smooth.
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1. Natural bundles and operators

We recall here definitions and basic properties of the theory of natural
bundles and natural operations, ([1, 3]) and [16, 60, 76, 85]. As examples
we mention functors and operators which will be used later.

1.1. Natural bundles. We recall the original definition by A. Nijenhuis,
[76],

Definition 1.1. A natural bundle is a quadruple (E, π,B, X) where E
(”total space”) and X (”base space”) are C∞-manifolds, π : E → X a
C∞-map (”projection map”) and B : C(X) → C(E) is a functor (”lifting
functor”) of the pseudogroups (categories) of local diffeomorphisms of X
and E, subject to these three conditions:

(a) If U is an object of C(X), then B(U) = π−1(U);
(b) If V ⊂ U is open and f : U → X is a morphism of C(X), then

Bf |B(V ) = (f |V ) ;

(c) If F : U → X×Y is a (smooth) family of local diffeomorphisms of X,
and fy is a member of the family determined by y ∈ Y , then F̄ : Ū → E×Y
is a (smooth) family of diffeomorphisms of E, where

Ū = {(z, y) ∈ E × Y |(π(z), y) ∈ U}

and
F̄ (z, y) = (Bfy(z), y) . �

The last, so called regularity or continuity condition, says that a smoothly
parametrized family of diffeomorphisms in C(X) is lifted to smoothly para-
metrized family of diffeomorphisms in C(E). But this condition turns out
to be a consequence of (a) and (b), [44].

Recently the definition of lifting functors was reformulated as follows,
[60],

Definition 1.2. A natural lift functor is a covariant functor F from Mm

to FMm satisfying
i) for each manifold M ∈ ObMm,

pM : FM →M

is a fibred manifold over M ,
ii) for each embedding f ∈ MorMm, Ff is a fibred manifold morphism

over f , which maps fibres diffeomorphically onto fibres. �

A natural bundle is then a triplet (FM, pM ,M).
Later (Theorem 1.4) we shall see that pM : FM →M is indeed a bundle.



NATURAL BUNDLES AND OPERATORS 5

1.2. Natural bundle functor. The concept of natural lift functor was
generalized, [1] and [58, 60], to the concept of natural bundle functor.

Definition 1.3. A natural bundle functor on a subcategory C of M is a
covariant functor F from C to the category FM satisfying

i’) for each manifold M ∈ ObC, pM : FM →M is a fibred manifold over
M ,

ii’) for each f ∈ MorC, Ff is a fibred manifold map covering f such that
Fι(U) = ι(FU) for any open subset ι : U ↪→M . �

A natural bundle functor on the subcategory Mm of M, for a certain m,
is a natural lift functor. In literature natural bundle functors are also called
”prolongation functors”.

1.3. Geometrical object. A geometrical object on a manifold M is now
an element from FM , where F is a natural bundle functor. A section
σ : M → FM is a field of geometrical objects on M .

1.4. Order of natural bundle functors. We say that a natural lift func-
tor F is of finite order r if r is the smallest number such that

jrxf = jrxg ⇒ Ff |FxM = Fg|FxM

for any (f, g : M →M) ∈ MorMm and any x ∈M .
Any natural lift functor have a finite order, [60, 77, 92], while there exist

natural bundle functors of an infinite order, [70].

1.5. Differential group. Let us denote by Grm the Lie group

Grm = invJr0 (Rm,Rm)0

of invertible r-jets (with source and target 0) of diffeomorphisms of Rm
which preserve 0. The group multiplication is given by the jet composition.
The canonical coordinates on Grm will be denoted by (aλµ, . . . , a

λ
µ1...µr

) and
tilde will refer to the inverse element.

1.6. Standard fiber. Let F be an r-order natural lift functor and let F0 =
F0Rm. Because of ii) of Definition 1.2 F0 is diffeomorphic with FxM for any
x ∈M , M ∈ ObMm. F0 will be called the standard fiber of F . Applying F
on origin–preserving diffeomorphisms of Rm we get a left action of Grm on
F0 which make F0 to be a left smooth Grm-manifold, [63, 85].

1.7. Natural fibred coordinate chart. Local coordinate charts (xλ) on
M and (yp) on F0 induce a fibred coordinate chart (xλ, yp) on FM , which
is said to be the natural fibred coordinate chart .
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1.8. Examples. 1. The tangent functor T is a natural bundle functor of
order one on the category M with values in the category VB. In dimensionm
the corresponding standard fiber is Rm on which G1

m = Gl(m,R) acts in the
standard way by the matrix multiplication. The natural fibred coordinate
chart on TM will be denoted by (xλ, ẋλ).

2. The cotangent functor T ∗ is a natural lift functor of order one with
values in the category VBm. The standard fiber is Rm∗ with the standard
action of G1

m. The natural fibred coordinate chart on T ∗M will be denoted
by (xλ, ẋλ).

3. The functor ∧pT ∗ of p–forms is a natural lift functor of order one
with values in the category VBm. The standard fiber is ∧pRm∗ on which
G1
m acts in the standard tensor way. The natural fibred coordinate chart

on ∧pT ∗M will be denoted by (xλ, ωλ1...λp), 1 ≤ λ1 < · · · < λp ≤ m.
4. The functor of pseudo–Riemannian metrics pRm is a natural lift

functor of order one such that pRmM are subbundles of objects of the
category VBm. Its standard fiber (pRm)0 is the subspace in �2Rm∗ of non-
degenerate symmetric matrices and the tensor action of G1

m. The natural
fibred coordinate chart on pRm(M) will be denoted by (xλ, gλµ), gλµ = gµλ,
det(gλµ) 6= 0.

5. The functor of kr-velocities T rk is a natural bundle functor of order r
on the category M. For any M ∈ ObM, we define T rkM = Jr0 (Rk,M) and,
for any f ∈ MorM, f : M → M , we define T rk f(jr0α) = jr0(f ◦ α), where
jr0α ∈ T rkM . The standard fiber of T rk in dimension m is Jr0 (Rk,Rm)0 and
the action of Grm on the standard fiber is given by the jet composition.

6. The functor of r-order frames F r is a natural lift functor of order
r. For any M ∈ ObMm, we define F rM = invJr0 (Rm,M) and, for any
f ∈ MorMm, F rf is defined as in Example 1.8.5. The values of the functor
F r are in the category PBm(Grm).

7. The functor Cla of classical (linear) connections on a given manifold
is a natural lift functor of order two with values in the category ABm. Its
standard fiber is R∗m ⊗ Rm ⊗ Rm∗ on which G2

m acts via the well known
transformation relations of the Christoffel symbols

Λ̄µλν = aλρ(Λσ
ρ
τ ã
σ
µã

τ
ν + ãρµν) .

The natural fibred coordinate chart on ClaM will be denoted by (xλ,Λµλν).
By Claτ will be denoted the functor of torsion free linear connections. In

natural fibred coordinates Claτ is characterized by Λµλν = Λνλµ.
8. Let F be a natural lift functor of order r and Js be the functor of

s-jet prolongation, [79]. Then JsF ≡ Js ◦F is a natural lift functor of order
(r + s). If F0 is the standard fiber of F , then the standard fiber of JsF is
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(JsF )0 = T snF0 and the action of Gr+sm on (JsF )0 is obtained by the jet
prolongation of the action of Grm on F0.

1.9. The bundle structure. In the theory of natural lift functors the func-
tor of r-order frames, defined in Example 1.8.6, plays a fundamental role.
Namely, we have the following theorem, [60, 63, 85].

Theorem 1.4. Any natural lift functor F of order r, with the standard fiber
F0, is canonically represented by

FM = [F rM,F0], Ff = [F rf, idF0 ],

where M ∈ ObMm, f ∈ MorMm, and [F rM,F0] = (F rM,F0)/Grm is the
bundle associated with F rM . �

This theorem implies that there is the one–to–one correspondence be-
tween r–order natural lift functors and left Grm–manifolds.

Now we shall generalize Theorem 1.4 to prolongation functors, [1]. Let
us define the category Lr. ObLr is the set of natural numbers 1, 2, 3, . . . ,
MorLr(m,n) = Lr(m,n) = Jr0 (Rm,Rn)0 and the composition in Lr is given
by the composition of jets. If F is an r-th order prolongation functor, we
shall denote by S = {S1, S2, . . . }, Si = F0Ri. Then we have the action λ
of the category Lr on S defined by a system of maps

λm,n : Lr(m,n)× Sm → Sn

given by

λm,n(A, s) = Ff(s)

for any A = jr0f ∈ Jr0 (Rm,Rn)0, s ∈ F0Rm. It is easy to see that λ satisfies
the condition

λm,p(B ◦A, s) = λn,p(B, λm,n(A, s)) ,(1.1)

A ∈ Lr(m,n), B ∈ Lr(n, p), s ∈ Sm. On the other hand if an action λ of
Lr on S with the property (1.1) is given, then we define FM = (F rM,Sm)
with the equivalence

(u, s) ∼ (u ◦A, λm,m(A−1, s))

and
Ff(u, s) = (v, λm,n(v−1 ◦A ◦ u, s)) ,

where u ∈ F rxM, v ∈ F ryN, A ∈ Jrx(M,N)y. It is easy to see that F (g◦f) =
(Fg) ◦ (Ff) and F is a prolongation functor of order r. So we have a
generalization of Theorem 1.4

Theorem 1.5. ([1]) There is a bijective correspondence between r-th order
prolongation functors and actions of the category Lr on S. �
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1.10. Natural operator. Let F be a natural lift functor, f : M → M be
a mapping in MorMm and σ : M → FM be a section. Then we define the
section f∗σ : M → FM by f∗σ = Ff ◦ σ ◦ f−1.

Definition 1.6. A natural differential operator D from a natural lift functor
F1 to a natural lift functor F2 is a family of differential operators

{D(M) : C∞(F1M) → C∞(F2M)}M∈ObMm

such that
(i) D(M)(f∗σ) = f∗D(M)(σ) for every section σ ∈ C∞(F1M) and every

f : M →M in MorMm,
(ii) DU (σ|U) = (DMσ)|U for every section σ ∈ C∞(F1M) and every

open submanifold U ⊂M ,
(iii) every smoothly parameterized family of sections of F1M is trans-

formed into a smoothly parametrized family of sections of F2M . �

1.11. Order of natural differential operator. A natural differential op-
erator is of order k, 0 ≤ k ≤ ∞, if all D(M), M ∈ ObMm, are of order k.
Thus, a k-order natural differential operator D from F1 to F2 is character-
ized by the associated fibred manifold morphisms D(M) : JkF1M → F2M ,
over M , according to the formula D(M)(jkxσ) = D(M)(σ)(x). The fam-
ily D = {D(M)}M∈ObMm

defines a natural transformation of the functors
JkF1 and F2.

1.12. Equivariant mappings given by natural operators. Coordinate
independent geometrical constructions are in fact natural differential oper-
ators between natural lift functors. The study of natural differential oper-
ators is based on relations between natural differential operators and equi-
variant mappings. The basic tool is the following theorem, [16, 60, 85],

Theorem 1.7. There is a bijective correspondence between the set of k-
order natural differential operators from a natural lift functor F1 to a natural
lift functor F2 and equivariant mappings from the standard fiber of JkF1 to
the standard fiber of F2. �

Theorem 1.7 can be generalized to prolongation functors as follows

Theorem 1.8. ([1]) There is a bijective correspondence between the set of
natural transformations of two r-th order prolongation functors and the set
of covariant maps of actions of Lr given by these prolongation functors. �

1.13. Examples. 1. The exterior derivative d is a first order natural op-
erator from ∧pT ∗, p ≥ 0, to ∧p+1T ∗. The corresponding G2

n-equivariant
mapping from J1(∧pT ∗)0 = T 1

n(∧pRm∗) to (∧p+1T ∗)0 = ∧p+1Rm∗ is given,
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in the canonical coordinate chart (ωλ1...λp), 1 ≤ λ1 < ... < λp ≤ m, on
(∧pRm∗), by

ωλ1...λp+1 ◦ d = ω[λ1...λp,λp+1] ,

where [...] denotes the antisymmetrization. For p ≥ 1, the naturality de-
termines d up to a constant multiple, [16, 58], while in classical proofs the
linearity was supposed.

2. The Levi-Civita connection is a first order natural differential opera-
tor from pRm to Claτ . The corresponding G2

m-equivariant mapping from
J1(pRm)0 to Cla0 is given by the formal Christoffel symbols

Λµλν = − 1
2g
λρ(gρµ,ν + gρν,µ − gµν,ρ),

where (gλµ) is the inverse matrix of (gλµ). The uniqueness of the Levi–
Civita connection is the classical geometrical problem. The proof of the
uniqueness by using natural technics can be found in [16, 64, 84].

3. The curvature tensor of a classical connection is a first order natural
differential operator from Cla to T ∗ ⊗ T ⊗ (∧2T ∗). The corresponding G3

m-
equivariant mapping from J1 Cla0 to (T ∗ ⊗ T ⊗ (∧2T ∗))0 = R∗m ⊗ Rm ⊗
(∧2Rm∗) is given by

wν
κ
λµ = Λνκλ,µ − Λνκµ,λ + ΛρκµΛν

ρ
λ − ΛρκλΛνρµ .

The curvature tensor is not unique operator of this type and plays an im-
portant role in classification of natural operators defined on classical con-
nections, see Section 2.5 and [10], [58, 60, 80].

1.14. Infinitesimal properties of natural lift functors. The regularity
property of lift functors allows us to lift vector fields on a manifold M to
projectable vector fields on the natural bundle FM by using flows. Namely
if exp(tξ) is the flow of a vector field ξ on M then

F (exp(tξ)) = exp(tFξ)

is the flow of the vector field Fξ on FM which is said the flow lift of ξ.
Moreover, if F is of order r, then Fξ depends on r-jets of ξ. Properties of the
flow lift are used in [3] to define on a fibred manifold p : E →M infinitesimal
natural structure of order r by a rule transforming vector fields on M into
projectable vector fields on E. This transformation can be described by
using the notion of systems, see [3] and [71]. Let us recall that a projectable,
linear, regular system of vector fields on a fibred manifold E is a pair (H, η),
where qH : H → M is a vector bundle, called the space of the system,
and η : H ×M E → TE is a linear fibred morphism over E, called the
evaluation morphism of the system, which is projectable over a linear fibred
morphism over M , of maximum rank, η̄ : H → TM . Any (local) section
h : M → H induces the distinguished vector field η̃(h) on E by η̃(h)(y) =
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η(h(p(y)), y), y ∈ E. The system is monic if the construction h 7→ η̃(h) is
injective and is almost involutive if on H there is a bracket [, ] such that
η̃([k, k]) = [η̃(h), η̃(k)]. A projectable, linear, regular, canonical, monic and
almost involutive system is called strong. If (H, η) be a projectable, linear
and regular system of vector fields on E, we can define the Lie derivative
of sections σ ∈ C∞(E) with respect to sections h ∈ C∞(H) by Lhσ =
Tσ ◦ η̄(h)− η̃(h) ◦ σ : M → V E.

Definition 1.9. ([3]) An infinitesimal natural lift of order r is a fibred
manifold p : E → M together with a system (JrTM,µ) of vector fields of
E which is linear, regular, canonical, projectable over πr0 : JrTM → TM
and almost involutive with respect to the subsheaf of integrable sections of
JrTM → TM . The system (JrTM,µ) is called the natural system. �

1.15. Infinitesimal properties of natural operators. If σ : M → FM
is a section of an r-th order natural bundle (a field of geometrical objects)
then we can define the Lie derivative of σ with respect to a vector field ξ
by the formula

Lξσ =
d

dt
|0{exp(−tξ)∗σ} .

Lξσ is a section of V FM . Natural differential operators D from a natural
lift functor F to a natural lift functor G are infinitesimally characterized by
the commutativity with the Lie derivatives, [56], in the sense that

LξD(M)(σ) = TD(M)(Lξσ) ,

for any vector field ξ on M and any section σ ∈ C∞(FM). This property
can be used to define natural operators between infinitesimal natural lifts
defined by Definition 1.9.

Definition 1.10. ([3]) Let E1, E2 be two fibred manifolds over M and
assume that a structure of infinitesimal r-order natural lift is given on E1

by a natural system (JrTM,µ1) and a structure of infinitesimal s-order
natural lift is given on E2 by a natural system (JsTM,µ2). A k-order
operator D from C∞(E1) to C∞(E2) is said to be (infinitesimally) natural
if

TD(Ljrξσ) = LjsξD(σ) ,
for any section σ : M → E1 and any vector field ξ : M → TM . �

2. Applications of natural operators on natural bundles

In this Section we shall mention some applications of natural operators
on natural bundles. First, we shall classify the Frölicher-Nijenhuis bracket
of projectable tangent valued forms, Section 2.1 and [2], the relations be-
tween linear connections on a fibred manifold and connections on the 1st
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jet prolongation of this fibred manifold are studied in Section 2.2 and [5],
higher order valued reduction theorems are studied in Section 2.5 and [10].
As application in classical field theories we study natural symplectic and
Poisson structures on the tangent bundle of a pseudo-Riemannian manifold
given by a metric and a linear connection, see Section 2.3 and [4, 6], and
natural cosymplectic structures on the phase space of the Galilei spacetime
given by a vertical metric and a phase connection, see Section 2.4 and [4].
For other examples of natural operators see [16, 60].

2.1. Natural operations with tangent valued forms. Frölicher and Ni-
jenhuis (F-N), [46, 74], introduced a bracket [ , ] in the sheaf Ω(M,TM) =
⊕

0≤r≤m
Ωr(M,TM), m = dimM , of (local) tangent valued differential forms

on a manifold M and proved that it gives rise to a graded Lie algebra (F-N
algebra), i.e., the bracket is R-bilinear and satisfies the graded anticom-
mutativity and the graded Jacobi identity. This algebra has been widely
applied to the study of complex, almost complex, almost tangent and other
structures on a manifold, see [39, 47, 75]. The F-N algebra can be linked
with the theory of connections, [38, 40, 51, 72], in the sense that the dif-
ferential calculus associated with a classical connection can be expressed in
terms of the F-N algebra. Mangiarotti and Modugno, [68], showed that the
F-N algebra P(E) = ⊕

0≤r≤m+n
Pr(E), m+n = dimE, of projectable tangent

valued forms on a fibred manifold p : E → M is the natural framework for
the study of (general) Ehresmann connections on fibred manifolds and that
the F-N bracket yields a generalization of the standard differential calculus
associated with general connections. In particular the exterior covariant
differential, the curvature tensor and the Bianchi identity can be expressed
by the F-N bracket.

The F-N bracket on Ω(M,TM) satisfy the naturality condition, [48].
Kolář and Michor, [59], gave the full classification of natural R-bilinear nat-
ural operators Ωr(M,TM) × Ωs(M,TM) → Ωr+s(M,TM). They proved
that, for r, s ≥ 2, r + s < dimM − 1, there exists a ten parameter family of
such operators.

In [2] all R-bilinear natural operators Pr(E) × Ps(E) → Pr+s(E) are
classified. We have

Theorem 2.1. ([2]) All natural R-bilinear operators

Pr(E)× Ps(E) → Pr+s(E) , dimM > r + s, r, s ≥ 1 ,

form a vector space over R generated by the following three operators

[φ, ψ] , p∗dCφ ∧ ψ , φ ∧ p∗dCψ ,
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where C is the contracting operator, d is the exterior derivative and ∧ is the
exterior product of base differential forms with tangent valued forms on E.

It is easy to see that only scalar multiples of the F-N bracket satisfy the
graded anticommutativity and the graded Jacobi identity. So we have

Corollary 2.2. ([2]) The F-N bracket is the only (up to a multiplicative
constant) natural graded R-bilinear operator P(E)× P(E) → P(E). �

The Theorem 2.1 has direct consequences for the theory of general con-
nections on a fibred manifold. Namely we have

Theorem 2.3. ([2]) Let Γ be a general connection on E. Then, (exterior)
covariant differential DΓ = [Γ, .] is the only (up to a multiplicative constant)
derivation DΓ : P(E) → P(E) of degree 1 which satisfies the naturality
condition f∗(DΓφ) = Df∗Γ(f∗φ) . �

Theorem 2.4. ([2]) The curvature tensor is the only (up to a multiplicative
constant) vertical valued 2-form associated naturally with a given connection
Γ. �

2.2. Relations between classical connections on the tangent bundle
and connections on the 1-jet bundle of a fibred manifold. In general
relativistic theories over spacetime with absolute time (the Galilei space-
time, see Section 2.4) there is the bijective relation between time preserving
linear connections on spacetime and affine connections on 1-jet bundle of
spacetime (phase space), [35]. This result can be generalized for a general
fibred manifold and so we classify all natural operations transforming clas-
sical connections on the tangent bundle of a fibred manifold to connections
on the 1-jet bundle.

Let p : Y →M be a fibred manifold with a local fibred coordinate chart
(xλ, xi) = (xa), λ = 1, . . . ,dimM = m, i = 1, . . . ,dimY − dimM = n,
a = 1, . . . ,dimY = n+m. A classical (linear) connection Λ on the bundle
πM : TM → M and a classical (linear) connection K on the bundle πY :
TY → Y can be expressed by the vertical projections νΛ : TTM → TM
and νK : TTY → TY , respectively. a pair of classical connections (K,Λ) is
said to be fibre preserving if Tp ◦ νK = TTp ◦ νΛ.

Let us consider the complementary contact maps of 1-jet prolongation of
Y

d : J1Y → T ∗M ⊗
Y
TY , ϑ : J1Y → T ∗Y ⊗

Y
V Y .

Then we have

Theorem 2.5. ([5]) Let Λ be a classical connection on M and K a classical
connection on Y . The map

νΓ = ϑ ◦ ν(K⊗Λ∗) ◦ Td
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turns out to be a connection on the bundle π1
0 : J1Y → Y . Moreover, we

have the coordinate expression

Γaiλ = Ka
i
jx
j
λ +Ka

i
λ − xiµ(Ka

µ
jx
j
λ +Ka

µ
λ) ,

i.e., the connection Γ is independent of Λ.
Thus, we have obtained a natural operator

χ : K 7→ Γ

transforming classical connections on TY into connections on J1Y . �

The connection χ(K) is not generally affine. We have

Lemma 2.6. ([5]) If (K,Λ) are fibre preserving, then the induced connec-
tion χ(K) on J1Y is affine. �

The connection χ(K) is not unique connection on J1Y constructed nat-
urally from K. We have the following classification theorem

Theorem 2.7. ([5]) All natural operations transforming a classical con-
nection K on Y into connections on J1Y form the following 2–parameter
family

χ(K) + (id⊗d∗ ⊗ ϑ)(k1TK + k2I ⊗ T̂K) ,

where k1, k2 ∈ R, TK is the torsion tensor of K, ˆ denotes the contraction
and I is the identity tensor on TY . �

Corollary 2.8. ([5]) For a torsion free connection K the connection χ(K)
is the unique natural connection on J1Y given by K. �

2.3. Natural symplectic and Poisson structures on the tangent
bundle of a pseudo-Riemannian manifold. Let (M, g) be a pseudo-
Riemannian manifold and h(u) = 1

2g(u, u), u ∈ TM . If dimM = 4 and g
is a Lorentzian metric (M, g) is said to be the Einstein spacetime. Then
Ω(g) = dvh, dv being the vertical differential, is the canonical natural metric
symplectic 2-form on TM . From the point of view of natural geometry Ω(g)
is a natural operator J1(pRmM) ×M TM → ∧2T ∗(TM) over the identity
of TM . Let us note that Ω(g) can be defined as the lift of the metric g with
respect to the Levi Civita connection K(g) as Ω(g,K(g)) = νK∧̄ϑ, where ∧̄
is the wedge product followed by the contraction through the metric g and
ϑ = dλ ⊗ ∂λ is the identity form on TM . The following natural question
arises: to classify all natural operators of the above type. This problem was
solved for symmetric (0, 2)-tensor fields on TM by Kowalski and Sekizawa,
[62], and for natural 2-forms in [19]. The classification, in both symmet-
ric and antisymmetric situations, is based on the classification of natural
F -metrics on TM . We have, see [62] for Riemannian metrics and [19] for
pseudo-Riemannian metrics,
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Lemma 2.9. Let (M, g) be a pseudo-Riemannian manifold of dimension
≥ 3. Then all natural F -metrics on M derived from g are symmetric and
are of the form

βu(g)(ξ, η) = µ(h(u))gx(ξ, η) + ν(h(u))gx(ξ, u)gx(η, u)(2.1)

where µ, ν are arbitrary smooth functions of one real variable and u, ξ, η ∈
TxM . �

Now, by using the natural F -metrics (2.1), we have

Theorem 2.10. ([19]) All natural operators from J1(pRmM) × TM to
∧2T ∗(TM) over the identity of TM are lifts Ω(β,K) of natural F -metrics
with respect to the Levi-Civita connection K(g). �

The result of Theorem 2.10 can be generalized for any classical connection
K and we obtain natural 2-form Ω(β,K) on TM . We have

Theorem 2.11. ([19]) All natural operators pRmM × ClaM × TM →
∧2T ∗(TM) over the identity of TM are lifts of natural F -metrics with re-
spect to classical connections. �

If (M, g) is a Lorentz manifold (the Einstein spacetime) then natural
2-forms on TM plays the fundamental role for geometrical quantisation,
[91]. So it is very important to know under which conditions Ω(β,K) is
symplectic, [65]. We have

Theorem 2.12. ([4]) Let K be a classical connection on M . Then Ω(β,K)
is a symplectic 2-form on TM if and only if

βu(g)(ξ, η) = µ(h(u))gx((ξ, η) +
dµ(h(u))

dt
gx(ξ, u)gx(η, u) ,

u, ξ, η ∈ TxM , where the real smooth function µ satisfies

µ(t) 6= 0, µ(t) + 2t
dµ(t)
dt

6= 0

for all t ∈ R. Moreover g and K have to satisfy

(A) dKg = 0,
(B) g ⊗∇g is the symmetric (0,5)-tensor field,

where dKg is the exterior covariant differential defined in [60]. �

Remark 2.13. In [32] conditions for Ω(g,K) to be symplectic was found
for a general (non linear) connection on TM . �

The geometric quantization on TM can be considered also with respect
to a Poisson structure, [89], given by a natural 2-vector field Λ on TM such
that the Schouten-Nijenhius bracket satisfies [Λ,Λ] = 0. First, for a classical
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connection K on M and the metric g, we have the canonical 2-vector field
Λ(g,K) given in coordinates by

(2.2) Λ(g,K) = gλµ(∂λ +Kλ
ρ
σẋ

σ∂̇ρ) ∧ ∂̇µ .
Then we have the following classification theorem given by a natural F -
metric γ

Theorem 2.14. ([6]) Let (M, g) (dimM > 3) be an oriented pseudo-
Riemannian manifold endowed with a symmetric classical connection K.
Then all natural 2-vector fields on TM are of the form

Λ(γ,K) = γ1(h(u)) Λ(g,K) + γ2(h(u))uH ∧ uV

where γ1, γ2 are smooth real functions defined on R and uH or uV are hor-
izontal or vertical lifts, respectively. �

Lemma 2.15. ([6]) The 2-vector field Λ(γ,K) is of maximal rank if and
only if γ1(t) 6= 0 and γ1(t) + 2tγ2(t) 6= 0 for any t ∈ R. �

Theorem 2.16. ([6]) The nondegenerate 2-vector field Λ(γ,K) defines a
Poisson structure on TM if and only if the conditions (A), (B) and

(C) γ1(t)γ2(t)− γ1(t)γ̇1(t)− 2tγ2(t)γ̇1(t) = 0

are satisfied for any t ∈ R. �

Let us note that the conditions of Theorem 2.16 for nondegenerate nat-
ural Poisson structures are equivalent with conditions for natural symplec-
tic structures given by Theorem 2.12, i.e., the Poisson structure given by
Λ(γ,K) is dual to the symplectic structure given by Ω(β,K).

2.4. Natural cosymplectic structures on the phase space of the
Galilei spacetime. The Galilei spacetime is assumed to be a 4-dimensional
manifold t : E → B fibred over 1-dimensional affine orientable manifold B
(time) and endowed with a vertical Riemannian metric g. Typical fibred
coordinate charts will be denoted by (x0, yi). In what follows the index 0
will refer to the base space and Latin indices i, j, k, ... = 1, 2, 3 will refer to
the fibres, while Greek indices ϕ,ψ, ... = 0, 1, 2, 3 will refer both to the base
space and the fibres.

On the Galilei background a motion is defined to be a section of t : E →
B. This implies that the 1-jet bundle of motions (the Galilei phase bundle)
is the usual 1-jet bundle π1

0 : J1E → E.
We consider the 1-jet bundle J1E as the affine subbundle J1E ⊂ T ∗B⊗E

TE which is constituted by the vectors which project on 1 ∈ T ∗B ⊗B TB.
The induced fibred coordinate charts on J1E will be denoted (x0, yi, yi0).
The canonical local bases of the modules of vector fields and forms on J1E
will be denoted by (∂ϕ, ∂0

i ) and (dϕ, di0).
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A (phase) connection on J1E → E is defined to be a tangent valued
1-form Γ : J1E → T ∗E ⊗

J1E
TJ1E, which projects on 1E : E → T ∗E⊗E TE.

Its coordinate expression is

Γ = dϕ ⊗ (∂ϕ + Γi0ϕ∂
0
i ), Γi0ϕ ∈ C∞(J1E).

The connection Γ is said to be affine if Γi0λ = Γijλy
j
0 +Γi0λ , Γiλµ ∈ C∞(E).

In [54] it is proved

Theorem 2.17. There is a canonical bijection between time-preserving con-
nections on TE → E and affine phase connections on J1E → E. In coor-
dinates this bijection reads as Kϕ

i
ψ 7→ Γiϕψ. �

According to Theorem 2.17 a spacetime connection is a torsion free time-
preserving connection on TE or equivalently an affine torsion free phase
connection on J1E → E.

The spacetime connection Γ can be characterized by the associated verti-
cal-valued 1-form νΓ : J1E → T ∗J1E⊗E(T ∗B⊗EV E) with the coordinate
expression

νΓ = (di0 − (Γijϕy
j
0 + Γi0ϕ)dϕ)⊗ d0 ⊗ ∂i.

The contact 2-form on J1E derived from g and Γ is then the T ∗B-valued
2-form

Ω(g,Γ) = νΓ∧̄ϑ : J1E → T ∗B ⊗
J1E

∧2T ∗J1E,

where ∧̄ denotes the wedge product followed by the contraction through the
metric g. In coordinates we have

Ω(g,Γ) = gijd
0 ⊗ (di0 − (Γikϕy

k
0 + Γi0ϕ)dϕ) ∧ (dj − yj0d

0).

In [54] it is proved that the contact 2-form Ω(g,Γ) is a non-degenerate
2-form in the sense that dt ∧ Ω ∧ Ω ∧ Ω is a volume form on J1E.

Moreover we have the following, [54],

Theorem 2.18. The contact 2-form Ω(g,Γ) is closed if and only if Riϕjψ =
Rjψ

i
ϕ and ∇g̃ = 0, where g̃ is the contravariant metric. �

Remark 2.19. The closed contact 2-form Ω[g,Γ] plays a distinguished role
in the theory built by Jadczyk and Modugno, [54], and is used for geometric
quantization in the Galilei background. �

Let us denote by Qτ (J1E) → E the bundle of space-time connections.
From the viewpoint of natural geometry Ω(g,Γ) is a natural operator from
S2V ∗E ×E Qτ (J1E) ×E J1E to T ∗B ⊗J1E ∧2T ∗J1E over the identity of
J1E.
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Theorem 2.20. ([4]) All natural operators from S2V ∗E ×E Qτ (J1E) ×E
J1E to T ∗B ⊗J1E ∧2T ∗J1E over the identity of J1E are scalar multiples
of the contact 2-form Ω(g,Γ). �

Remark 2.21. According to Theorem 2.20 dt and Ω(g,Γ) define the unique
(up to a constant multiple) cosymplectic structure on the Galilei phase
space. �

2.5. Higher order valued reduction theorems for classical connec-
tions. It is well known that natural operators of linear symmetric con-
nections on manifolds and of tensor fields which have values in bundles of
geometrical objects of order one can be factorized through the curvature
tensors, the tensor fields and their covariant differentials. These results are
known as the first (the operators of connections only) and the second re-
duction theorems (RT). The history of the first RT goes back to the paper
by Christoffel, [37], and the history of the second RT goes back to the paper
by Ricci and Levi Civita, [78]. For further references see [60, 66, 80, 87].
In [80] the proof for algebraic operators (concomitants) is given. In [60]
the first and the second RTs are proved for all natural differential operators
by using the modern approach of natural bundles and natural differential
operators, [60, 16, 76, 85]. The local version of the first RT is known also
as the replacement theorem, [86, 87]. The RTs play very important role in
theoretical physics. Namely, if we represent linear connections on manifolds
as principal connections on the principal bundles of first order frames, then
the RTs are in fact higher order versions of the Utiyama’s theorem (the first
RT) and Utiyama’s invariant interaction (the second RT), [88].

In [10] we generalize the RTs for natural operators which have values
in higher order natural bundles. For these theorems we shall use the name
higher order valued reduction theorems for classical symmetric connections.
Let us denote by ∇(k,r), k ≤ r, the sequence of operators (∇k, . . . ,∇r)
and by C

(k,r)
C M the (k, r)-order curvature bundle of classical symmetric

connections obtained as the image of the operator ∇(k,r)R on Claτ M . Then
we obtain the first k-order valued reduction theorem for classical symmetric
connections.

Theorem 2.22. ([10]) Let F be a natural bundle functor of order k ≥ 1 and
let r+2 ≥ k. All natural differential operators f : C∞(Claτ M) → C∞(FM)
which are of order r are of the form

f(jrΛ) = g(jk−2Λ,∇(k−2,r−1)R[Λ])

where g is a unique natural operator

g : Jk−2 Claτ M ×
M
C

(k−2,r−1)
C M → FM . �
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Similarly, we define the (k, r)-order Ricci bundle Z(k,r)M as the image
of the pair of the operators (∇(k−2,r−2)R,∇(k,r)) applied on classical sym-
metric connections and sections of a 1st order natural bundle VM . Then
the second k-order valued reduction theorem can be formulated as follows.

Theorem 2.23. ([10]) Let F be a natural bundle of order k ≥ 1 and let
r + 1 ≥ k. All natural differential operators f : C∞(Claτ M ×

M
VM) →

C∞(FM) of order r with respect sections of VM are of the form

f(jr−1Λ, jrΦ) = g(jk−2Λ, jk−1Φ,∇(k−2,r−2)R[Λ],∇(k,r)Φ)

where g is a unique natural operator

g : Jk−2 Claτ M ×
M
Jk−1VM ×

M
Z(k,r)M → FM . �

Remark 2.24. The order (r − 1) of the above operators with respect to
classical symmetric connections is the minimal order we have to use. The
second reduction theorem can be easily generalized for any operator of order
s ≥ r − 1 with respect to connections. Then

f(jsΛ, jrΦ) = g(jk−2Λ, jk−1Φ,∇(k−2,s−1)R[Λ],∇(k,r)Φ) . �

Remark 2.25. If Λ is a linear non-symmetric connection on M , then there
exists its splitting Λ = Λ̃ + T , where Λ̃ is the classical connection obtained
by the symmetrization of Λ and T is the torsion tensor of Λ. Then all
natural operators of order r defined on Λ are of the form

f(jrΛ) = f(jrΛ̃, jrT ) = g(jk−2Λ̃, jk−1T, ∇̃(k−2,r−1)R[Λ̃], ∇̃(k,r)T ) . �

Remark 2.26. If g is a metric field on M , then there exists the unique
classical Levi Civita connection Λ given by the metric field g. Then, apply-
ing the second reduction theorem, we get that all natural operators of order
r ≥ 1 defined on g are of the form

f(jrg) = f(jr−1Λ, jrg) = h(jk−2Λ, jk−1g,∇(k−2,r−2)R[Λ])

= h(jk−1g,∇(k−2,r−2)R[Λ]) . �

Typical applications of of higher order valued reduction theorems are
classifications of natural tensor fields on the tangent (or cotangent) bundle
of a manifold endowed with a classical connection or lifts of tensor fields to
the tangent (or cotangent) bundle by means of a classical connection, see
[22, 24, 62, 82, 83]. As a concrete example let us classify all (0,2)-tensor
fields on T ∗M given by a linear (non-symmetric) connection Λ.

Theorem 2.27. ([10]) Let (M,Λ) be a manifold endowed with a linear
(non-symmetric) connection Λ. Then all finite order natural (0,2)-tensor
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fields on T ∗M are of the maximal order one and they form a 14-parameter
family of operators with coordinate expression

Φ =
(
A ẋλ ẋµ + C1 ẋλ Tρ

ρ
µ + C2 ẋµ Tρ

ρ
λ + C3 ẋρ Tλ

ρ
µ

+ F1 Tρ
ρ
λ Tσ

σ
µ + F2 Tσ

ρ
λ Tρ

σ
µ + F3 Tρ

ρ
σ Tλ

σ
µ

+G1 Tρ
ρ
λ;µ +G2 Tρ

ρ
µ;λ +G3 Tλ

ρ
µ;ρ +H1Rρ

ρ
λµ +H2Rλ

ρ
ρµ

)
dλ ⊗ dµ

+B dλ ⊗ (ḋλ + Λλρµ ẋρ dµ) + C (ḋλ + Λλρµ ẋρ dµ)⊗ dλ ,

where A,B,C,Ci, Fi, Gi,Hj, i = 1, 2, 3, j = 1, 2, are real constants. �

3. Gauge–natural bundles

In this Section we recall basic definitions and properties of gauge–natural
bundle functors, [42, 58], and infinitesimal gauge–natural structures, [3].

3.1. Gauge–natural bundle functors. Gauge–natural bundle functors
was introduced by D. Eck, [42]. We recall here the definition of [60]. Let us
recall that B is the base functor from the category FM to the category M.

Definition 3.1. A gauge–natural bundle over m-dimensional manifolds is
a functor F : PBm(G) → FM such that

(a) every PBm(G)-object π : P → BP is transformed into a fibered
manifold qP : FP → BP over BP ,

(b) every PBm(G)-morphism f : P → P̄ is transformed into a fibered
morphism Ff : FP → FP̄ over Bf ,

(c) for every open subset U ⊂ BP , the inclusion i : π−1(U) → P is
transformed into the inclusion Fi : q−1

P (U) → FP . �

A gauge–natural bundle is then a quadruple (FP, πP ,M, π : P → BP ).
Later (Theorem 3.3) we shall see that FP is actually a bundle.
In the original definition, [42], there is one more continuity condition

which says that a smoothly parametrized family of diffeomorphisms of P
is ”transformed” into a smoothly parameterized family of isomorphisms of
FP . But this condition is a consequence of i), ii) and iii), [60].

3.2. Functor W r. Let (π : P →M) ∈ ObPBm(G), let W rP be the space
of all r-jets jr(0,e)ϕ, where ϕ : Rm ×G→ P is in MorPBm(G), 0∈ Rm and
e is the unity in G. The space W rP is a principal fibre bundle over M with
structure groupW r

mG = Jr(0,e)(R
m×G,Rm×G) of all r-jets of principal fibre

bundle isomorphisms Ψ : Rm ×G→ Rm ×G covering the diffeomorphisms
ψ : Rm → Rm such that ψ(0) = 0. The group W r

nG is the semidirect
product Grm o T rmG of Grm and T rmG with respect to the action of Grm on
T rmG given by the jet composition. Let (ϕ : P → P ) ∈ MorPBm(G), then
we can define the principal bundle morphism W rϕ : W rP → W rP̄ by the
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jet composition. The rule transforming any P ∈ ObPBm(G) into W rP ∈
ObPBm(W r

mG) and any ϕ ∈ MorPBm(G) into W rϕ ∈ MorPBm(W r
mG) is

a gauge–natural bundle functor, [58].
Let us note that the first prolongation W 1

mG can be expressed as the
product G1

m ×G× (G⊗ Rm∗) with the following composition, [58],

(X, g, Z)(X̄, ḡ, Z̄) = (XX̄, gḡ, ad(ḡ−1)ZX̄ + Z̄).

3.3. Bundle structure. The gauge–natural bundle functor W r described
in Paragraph 3.2 plays a fundamental role in the theory of gauge–natural
bundle functors. We have, [42, 58],

Theorem 3.2. Every gauge–natural bundle FP is a fibred bundle associated
with the gauge–natural bundle W rP for a certain order r. �

3.4. Order of gauge–natural bundle functors. The number r from
Theorem 3.2 is called order of the gauge–natural bundle functor F . So
if F is an r-order gauge–natural bundle functor then

FP = [W rP, F0], Fϕ = [W rϕ, idF0 ],

where F0 is a W r
mG-manifold called the standard fibre of F .

3.5. Gauge and total order of gauge–natural functors. Let F be an
s-order gauge–natural bundle functor and let r ≤ s be the minimal number
such that the action of W s

mG = GsmoT smG on F0 can be factorized through
the canonical projection πsr : T smG→ T rmG, s ≥ r. Then s is said to be the
total order of F , r is the gauge order and we say that F is of order (s, r).
In what follows we shall denote by W

(s,r)
m G = Gsm o T rmG and by W s,rP

the corresponding principal bundle.

3.6. Gauge–natural fibred coordinate chart. A local fibred coordinate
chart (xλ, pσ) on P and a coordinate chart (yp) on F0 induce a fibred co-
ordinate chart (xλ, yp) on FP , which is said to be the gauge–natural fibred
coordinate chart.

3.7. Examples. 1. Any r-order natural lift functor in the sense of Defi-
nition 1.1 is the (r,0)-order gauge–natural bundle functor with the trivial
gauge action, i.e., the action (Grm ×G)× F0 −→ F0 does not depend on G.

2. Let (π : P → M) ∈ ObPBm(G) and let us denote by PriP → M
the bundle of principal connections on P . Then Pri is a (1,1)-order gauge–
natural bundle functor with the standard fibre G⊗Rm∗ and with the action
of W 1

mG given by, [58],

(X, g, Z)(Y ) = ad(g)(Y + Z)X−1.
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In particular, let G = Grn, then PriP can be viewed as the bundle
LinE of linear connections on an associated vector bundle E → M with
n-dimensional fibres. The standard fibre of Lin is Lin0 = R∗n ⊗ Rn ⊗ Rm∗
with coordinates (Kj

i
λ), i, j = 1, ..., n, λ = 1, ...,m, and the action of

W
(1,1)
m G1

n = G1
m o T 1

mG
1
n on Lin0 is given, in the canonical coordinates

(aλµ, a
i
j , a

i
jλ) on G1

m o T 1
mG

1
n, by

K̄j
i
λ = aipKq

p
ρ ã

q
j ã

ρ
λ + aipρ ã

p
j ã

ρ
λ ,

where tilde refers to the inverse element.
3. Let F0 be a left G–manifold. The associated gauge–natural bundle

functor is defined by

assF0(P ) = [P, F0], assF0(ϕ) = [ϕ, idF0 ] ,

where P ∈ ObPBm(G), ϕ ∈ MorPBm(G), is a 0-order gauge–natural bun-
dle. Especially the adjoint bundle adP is the 0-order gauge–natural bundle
given by the adjoint action of G on its Lie algebra G.

4. If F is a gauge–natural bundle functor of order (s, r) then JkF is a
gauge–natural bundle functor of order at most (s+ k, r + k). The number
(s + k) is exact, but (r + k) may be too big. For instance if F is an s-
order natural lift functor, i.e., an (s,0)-order gauge–natural bundle functor,
then JkF is an (s + k)-order natural lift functor, i.e., an (s + k,0)-order
gauge–natural bundle functor.

5. adP ⊗ (∧pT ∗M) is a (1,0)-order gauge–natural bundle functor.

3.8. Gauge–natural operators. Let (ϕ, f) ∈ Mor PBm(G), ϕ : P → P ,
f : M → M , F be a gauge–natural bundle functor and σ : M → FP be a
section. Then we define the section ϕ∗σ : M → FP by ϕ∗σ = Fϕ ◦σ ◦ f−1.

Definition 3.3. A natural differential operator D from a gauge–natural
bundle functor F1 to a gauge–natural bundle functor F2 is a family of dif-
ferential operators

{D(P ) : C∞(F1P ) → C∞(F2P )}P∈ObPBm(G)

such that
(i) D(P )(ϕ∗σ) = ϕ∗D(P )(σ) for every section σ ∈ C∞(F1P ) and every

(ϕ, f) ∈ MorPBm(G), ϕ : P → P over f : M →M ,
(ii) Dπ−1(U)(σ|U) = (DPσ)|U for every section σ ∈ C∞(F1P ) and every

open subset U ⊂M ,
(iii) every smoothly parameterized family of sections of F1P is trans-

formed into a smoothly parameterized family of sections of F2P . �
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Definition 3.4. A differential operator D from a gauge–natural bundle
functor F1 to a gauge–natural bundle functor F2 is said to be gauge–natural
if

D(P )(F1ϕ ◦ σ) = F2ϕ ◦D(P )(σ)

for any ϕ ∈ MorPBm(G), over the identity, and any section σ ∈ C∞(F1P ).

3.9. Order of natural operators. A natural differential operator D from
F1 to F2 is of a finite order k if allD(P ), (π : P →M) ∈ObPBm(G), depend
on k-order jets of sections of F1P . Thus, a k-order natural operator from F1

to F2 is characterized by the associated fibred manifold morphism D(P ) :
JkF1P → F2P , over M , such that the family D = {D(P )}P∈ObPBm(G) is a
natural transformation of JkF1 to F2.

Theorem 3.5. Let F1 and F2 be gauge–natural bundle functors of order
≤ r. Then we have a one-to-one correspondence between natural differential
operators of order k from F1 to F2 and W r+k

m G-equivariant mappings from
(JkF1)0 to (F2)0. �

This theorem is due to Eck, [42], see also [60].

Remark 3.6. For the case of gauge–natural operators of order k we obtain
that the corresponding equivariant mappings are equivariant with respect
to the actions of the group T r+km G ≈ {Jr+k0 id} × T r+km G.

3.10. Curvature operator. The curvature operator of principal connec-
tions is a 1-order natural operator from Pri to G⊗(∧2T ∗) with the associated
W

(2,2)
m G-equivariant morphism

(uaλµ) ◦R = Γaλ,µ − Γaµ,λ + cabd Γbλ Γdµ ,

where cabd are the structure constants of G.

3.11. Infinitesimal properties of gauge–natural bundle functors.
The continuity property of gauge–natural bundle functors allows to trans-
form G-invariant vector fields on a principal G-bundle P to projectable
vector fields on the gauge–natural bundle FM by using flows. Namely if
exp(tΞ) is the flow of a G invariant vector field Ξ on P , projectable on the
vector field ξ on M , then F (exp(tΞ)) = exp(tFΞ) is the flow of the vector
field FΞ on FP which is said the flow transformation of Ξ. Moreover, if F
is of order r, then FΞ depends on r-jets of Ξ. Properties of the flow trans-
formation are used in [3] to define on a fibred manifold E →M infinitesimal
gauge–natural structure of order r by a rule transforming a strong system
of vector fields into projectable vector fields on E. This transformation can
be described by using the notion of systems, see [3] and [71].
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Definition 3.7. ([3]) Let (H, η) be a strong system on p : E → M . An
infinitesimal gauge–natural transformation of order r is a fibred manifold p :
E →M together with a system (JrH,µ) which is linear, regular, canonical,
projectable over (πr0 ◦Jrη̄) : JrH → TM and almost involutive with respect
to the subsheaf of integrable sections of JrH →M . �

We say that the system (JrH, η) defines a structure of an infinitesimal
gauge–natural bundle of order r on E. The system (JrH, η) is called the
gauge–natural system.

3.12. Infinitesimal properties of natural operators. If σ : M → FP
is a section of an r-th order gauge–natural bundle then we can define the
Lie derivative of σ with respect to a G-invariant vector field Ξ on P , over
the vector field ξ on M , by the formula

LΞσ =
d

dt
|0{exp(−tΞ)∗σ} .

Lξσ is a section of V FP . Natural differential operators D from a gauge–
natural bundle functor F to a gauge–natural functor functor G are infinites-
imally characterized by the commutativity with the Lie derivatives, [3], in
the sense that

LΞD(P )(σ) = TD(P )(LΞσ) ,
for any G-invariant vector field Ξ on P and any section σ ∈ C∞(FP ).
This property can be used to define natural operators between infinitesimal
gauge–natural transformations defined by Definition 3.7.

Definition 3.8. ([3]) Let E1, E2 be two fibred manifolds over M and let
a structure of r-order infinitesimal gauge–natural transformation be given
on E1 by a gauge–natural system (JrH,µ1) and a structure of s-order in-
finitesimal gauge–natural transformation is given on E2 by a gauge–natural
system (JsH,µ2). A k-order operator D from C∞(E1) to C∞(E2) is said
to be (infinitesimally) natural if

TD(Ljrhσ) = LjshD(σ) ,

for any section σ : M → E1 and any vector field h : M → H. �

4. Applications of natural operators on gauge–natural
bundles

As applications of natural operators on gauge-natural bundles we shall
study natural quantum Lagrangians and natural Schödinger operators on
the quantum bundle over the Galilei spacetime, [7], we shall generalize the
Utiyama’s reduction method for the gauge group Gl(n,R), [8, 9], and for a
general Lie group G, [11].
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4.1. Natural operators on the quantum bundle over Galilei space-
time. In Galilei covariant classical and quantum mechanics studied in [7]
and [21, 25, 26, 27, 28, 53, 54] all objects have their physical dimensions
expressed by the fact that they have values in unit spaces. Moreover, the
theory is covariant with respect to changes of bases of units. We assume the
following fundamental unit spaces, which are positive 1–dimensional “semi–
vector spaces” over R+: the space T of time intervals, the space L of lengths
and the space M of masses. a time unit of measurement is defined to be
an element u0 ∈ T, or its dual u0 ∈ T∗. Moreover, we assume the Planck
constant to be an element ~ ∈ T∗ ⊗ L2 ⊗ M. We refer to a particle with
mass m ∈ M and charge q ∈ T∗ ⊗ L3/2 ⊗M1/2, where Lp/q = ⊗pL⊗⊗qL∗.

We assume the classical (Galilei) spacetime to be a 4-dimensional ori-
entable manifold E, the absolute time to be a 1-dimensional oriented affine
space B associated with the vector space T ⊗ R and the time map to
be a surjective map t : E → B of rank 1. Moreover, we assume the
fibres of spacetime to be equipped with a “scaled” Riemannian metric
g : E → L2 ⊗ (V ∗E ⊗E V ∗E) or its inverse ḡ : E → L∗2 ⊗ (V E ⊗E V E).

Thus, we have the time-form dt : E → T⊗ T ∗E. Given a mass m ∈ M,
it is convenient to introduce the “normalized” metric G = m

~ g : E →
T ⊗ (V ∗E ⊗E V ∗E) or its inverse Ḡ = ~

m ḡ : E → T∗ ⊗ (V E ⊗E V E). We
stress that the normalized metric and all objects which will be derived from
it incorporate the chosen mass and the Planck constant.

We choose an orientation of spacetime. We shall refer to spacetime charts
(xλ), which are adapted to the fibring t and to the chosen orientation of
E, and such that x0 is a Cartesian chart of B associated with a time unit
of measurement u0. The index 0 will refer to the base space, Latin indices
i, j, · · · = 1, 2, 3 will refer to the fibres, while Greek indices λ, µ, · · · = 0, 1, 2, 3
will refer both to the base space and the fibres.

We have the coordinate expressions dt = u0⊗d0 and G = G0
ij u0⊗ďi⊗ďj .

The metric g and the spacetime orientation yield the space-like vertical
volume form η : E → L3 ⊗ Λ3V ∗E and spacetime volume form υ = dt ∧ η :
E → (T⊗ L3)⊗ Λ4T ∗E , respectively.

The classical phase space is defined to be the first jet space t10 : JE ≡
J1E → E of sections.

The spacetime connection is defined to be a torsion free linear connection
K of the bundle TE → E such that ∇dt = 0 and ∇g = 0. Such connection
is characterized by Kλ

0
µ = 0, the vertical restriction of K is the Levi-Civita

connection κ given by g and gpiK0
p
j+gpiK0

p
i = − 1

2∂0gij . Let us note that
the operator χ, [5], identifies spacetime connections with affine connections
on the phase space.
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We assume the quantum bundle to be a Hermitian line bundle over space-
time π : Q→ E, i.e., π : Q→ E is a Hermitian complex vector bundle with
one-dimensional fibres. Let us denote by h : Q ×E Q → C ⊗ Λ3V ∗E the
Hermitian product with values in vertical volume forms. Let b : E → Q
be a (local) base of Q such that h(b,b) = η. Such a local base is said to
be normal and the fibred coordinate chart (x0, xi, z), z ∈ F(Q,C⊗ L∗3/2),
induced by a normal base of Q is said to be a normal coordinate chart on
Q. In any fibred normal coordinate chart h(Ψ,Ψ) = ψ̄ψη for every section
Ψ = ψb ∈ S(Q).

A linear connection Q on Q is said to be Hermitian if it preserves the
Hermitian fibred product h. In a normal fibred coordinate chart Hermitian
connections are expressed in the form

Q = dλ ⊗ (∂λ + iQλ I), Qλ ∈ F(E,R) ,

where I = z ⊗ b is the Liouville vector field on Q.
Let us consider the pullback bundle π↑ : Q↑ := JE ×E Q → JE of the

quantum bundle π : Q→ E, with respect to t10 : JE → E. Let us recall that
a connection Q : Q↑ → T ∗JE⊗JETQ↑ is said to be the universal connection
of the system of connections ξ : JE×EQ→ T ∗E⊗E TQ if, for every section
o : E → JE, the associated connection ξ(o) : Q→ T ∗E⊗ETQ of the system
is obtained from Q by pullback according to the formula ξ(o) = o∗Q.

A connection Q: Q↑ → T ∗JE⊗JETQ↑ is said to be a quantum connection
if, [53], Q1) Q is Hermitian, Q2) Q is a universal connection, Q3) the
curvature of Q is given by R[Q] = iΩ ⊗ I , where Ω = Ω[g, χ(K)] is the
cosymplectic 2-form studied in Section 2.4. Let us note that the coefficients
of the quantum connections are in fact quantum potentials of the quantum
theory.

Let us consider a section Ψ ∈ S(Q), its pullback on JE (denoted by the
same symbol) and a quantum connection Q. The covariant differential of Ψ
with respect to Q is a fibred morphism over E

∇[Q]Ψ : JE → T ∗E ⊗
E
Q , ∇λ = ∂λψ − i Qλ ψ ,

and the time-like and the space-like covariant differentials of Ψ are

◦
∇Ψ = d y∇Ψ : JE → T∗ ⊗Q, ∇̌Ψ : JE → V ∗E ⊗

E
Q .
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Then, for any section Ψ ∈ S(Q), we obtain the following invariant fibred
morphisms over E

◦
L(Ψ) =

1
2
dt ∧

(
h(Ψ, i

◦
∇Ψ) + h(i

◦
∇Ψ,Ψ)

)
: JE → Λ4T ∗E ,

Ľ(Ψ) =
1
2
dt ∧ (Ḡ⊗ h)(∇̌Ψ, ∇̌Ψ) : JE → Λ4T ∗E ,

and the canonical quantum Lagrangian is a unique (up to a multiplicative
factor) linear combination of the above morphisms which projects on E,
namely

Lcan(Ψ) =
◦
L(Ψ)− Ľ(Ψ)

with coordinate expression

Lcan(Ψ) =
1
2

(
i(ψ̄∇0ψ − ψ∇0ψ)−Gpq0 ∇pψ∇qψ

)
υ0 ,

where υ0 = υ(u0) =
√
g d0 ∧ d1 ∧ d2 ∧ d3.

The canonical quantum Lagrangian is a natural operator transforming
vertical metrics, sections of the quantum bundle and quantum connections
into volume forms on E. This operator is of order one with respect to
sections of the quantum bundle. Now we shall discuss the classification
of natural quantum Lagrangians under the additional condition that they
depend on spacetime connections (up to finite order k).

Theorem 4.1. ([7]) All 1st order (with respect to sections of the quan-
tum bundle) natural quantum Lagrangians induced by the gravitational and
quantum structure of spacetime are of the form

L(Ψ) = aLcan(Ψ)− b
~

2m
Rdt ∧ h(Ψ,Ψ) ,

where Lcan(Ψ) is the canonical quantum Lagrangian, R is the scalar curva-
ture of the vertical metric connection κ and a, b are real numbers. �

The Schrödinger operator associated with a natural quantum Lagrangian
L is then the sheaf morphism

OSch(L) = 〈ῡ; ]E(L)〉 : S(Q) → S(T∗ ⊗Q) ,

where ]E(L) : J2Q→ L3⊗Q⊗Λ4T ∗E is the Euler-Lagrange morphism, i.e.,
for any section Ψ ∈ S(Q), we have the Euler-Lagrange operator ]E(L)(Ψ) =
]E(L) ◦ j2Ψ associated with L.

Let us consider a section (an observer) o : E → JE ↪→ T∗ ⊗ TE and let
us define the divergence of o as a T∗-valued function given by

Loη = div(o)η : E → T∗ ⊗ L3 ⊗ Λ3V ∗E
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which, in coordinates adapted to o, has a coordinate expression div(o) =
∂0
√
g√
g . Further we have the (observed) Laplacian

o

∆(Ψ) = 〈ḡ;∇[o∗Q⊗K]∇[o∗Q]Ψ〉 : E → Q ,

where the second order covariant differential is considered with respect to
the tensor product linear connection o∗Q⊗K. Then the Schödinger operator
associated with the natural quantum Lagrangian of Theorem 4.1 can be
expressed as

(4.1) OSch(L(Ψ)) = u0 ⊗
(
a
(
i (∇0 +

1
2
div(o)) +

~0

2m

o

∆
)
− b

~0

2m
R

)
(Ψ) .

Let us note that even if the operators ∇0, div(o) and
o

∆ depend on an
observer o, the Schrödinger operator (4.1) is observer independent.

Now we shall classify all natural operators OSch : S(Q) → S(T∗ ⊗ Q)
of the Schrödinger type, i.e., we shall classify all second order operators
depending on the vertical metric field, the spacetime connection and its
derivatives of finite order k and the quantum connection and its first order
derivatives.

Theorem 4.2. ([7]) All 2nd order natural operators of Schrödinger type
are of the form

OSch(Ψ) = u0 ⊗
(
a
(
i (∇0 +

1
2
div(o)) +

~0

2m

o

∆
)
− b

~0

2m
R

)
(Ψ),

where R is the scalar curvature of the vertical metric connection, o is an
observer and a, b are complex numbers. �

In Theorem 4.1 we have classified all 1st order natural quantum La-
grangians. Naturally, there is a question if higher order natural quantum
Lagrangians exist. The answer is positive, at least in the second order. If we
consider the Schrödinger operator OSch(Lcan) associated with the canonical
quantum Lagrangian Lcan, then it is easy to see that

LSch(Ψ) =
1
2
(
dt ∧ h(Ψ,OSch(Lcan(Ψ))) + dt ∧ h(OSch(Lcan(Ψ)),Ψ)

)
is the 2nd order natural quantum Lagrangian. Moreover, we can classify all
2nd order Lagrangians and we get.

Theorem 4.3. ([7]) All 2nd order (with respect to sections of the quan-
tum bundle) natural quantum Lagrangians induced by the gravitational and
quantum structure of spacetime are of the form

L(Ψ) = aLcan(Ψ)− b
~

2m
Rdt ∧ h(Ψ,Ψ) + cLSch(Ψ)
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where a, b, c are real numbers. �

Remark 4.4. Let us note that the Schrödinger operator associated with
the 2nd order natural quantum Lagrangians from Theorem 4.3 is

OSch(L(Ψ)) = (a+ c)OSch(Lcan(Ψ))− b
~

2m
R(Ψ) ,

so the second order part of the above quantum Lagrangian does not give
new physical information. �

4.2. Reduction theorems for general linear connections. In Section
4.1 we have studied second order natural quantum Lagrangians and second
order Schrödinger operators. In both situations such operators are factor-
ized through the covariant differentials of sections of the quantum bundle
where the first order covariant differentials are given by the quantum connec-
tion but the second order covariant differentials are given by both quantum
and spacetime connections. This fact was a motivation how to generalize
the reduction theorems for general linear connections on vector bundles.

Let E → M be a vector bundle with a m-dimensional base and n-
dimensional fibres. Local linear fiber coordinate charts on E will be denoted
by (xλ, yi).

We define a linear connection on E to be a linear splitting K : E → J1E .
Considering the contact morphism J1E → T ∗M ⊗ TE over the identity of
TM , a linear connection can be regarded as a TE-valued 1-form K : E →
T ∗M ⊗ TE projecting into the identity of TM . The coordinate expression
of a linear connection K is of the type

K = dλ ⊗
(
∂λ +Kj

i
λ y

j ∂i
)
, with Kj

i
λ ∈ C∞(M,R) .

Linear connections can be regarded as sections of a (1,1)-order G =
Gl(n,R)-gauge-natural bundle LinE →M described in Example 3.7.2.

The curvature of a linear connection K on E turns out to be the vertical
valued 2–form R[K] = −[K,K] : E → V E ⊗ Λ2T ∗M , where [, ] is the
Froelicher-Nijenhuis bracket. If we consider the identification V E = E ×

M
E

and linearity of R[K], the curvature R[K] can be considered as the curvature
tensor field R[K] : M → E∗ ⊗ E ⊗ Λ2T ∗M and

R[K] : C∞(LinE) → C∞(E∗ ⊗ E ⊗ Λ2T ∗M)

is a natural operator which is of order one.
Let us set Ep,rq,s = ⊗pE ⊗ ⊗qE∗ ⊗ ⊗rTM ⊗ ⊗sT ∗M . Then a classical

connection Λ on M and a linear connection K on E induce the linear tensor
product connection Kp

q ⊗ Λrs = ⊗pK ⊗⊗qK∗ ⊗⊗rΛ⊗⊗sΛ∗ on Ep,rq,s
Kp
q ⊗ Γrs : Ep,rq,s → T ∗M ⊗

M
TEp,rq,s
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which can be considered as a linear splitting Kp
q ⊗Λrs : Ep,rq,s → J1Ep,rq,s . Let

Φ ∈ C∞(Ep,rq,s ). We define the covariant differential of Φ with respect to the
pair of connections (K,Λ) as a section of Ep,rq,s ⊗ T ∗M defined by

∇(K,Λ)Φ = j1Φ− (Kp
q ⊗ Λrs) ◦ Φ .

The iterated rth order covariant differential applied on the curvature ten-
sor of a linear connection is a natural operator which is of order (r−1) with
respect to classical connection and of order (r+1) with respect to linear con-
nections. Let us denote by CrLE the image of this operator and by C(s)

C M×M
C

(r)
L E the (s, r)-order curvature bundle of classical and linear connections

given as the image of the pair of the operators (∇(s+1)R,∇(r+1)R), s ≥ r−2,
∇(s) = (id,∇, . . . ,∇s), defined on Claτ M × LinE. Let us assume a (1, 0)-
order Gl(n,R)-gauge natural bundle FE, then the first reduction theorem
for linear and classical connections can be formulated as follows.

Theorem 4.5. ([8]) Let s ≥ r− 2, r ≥ 0. All natural differential operators

f : C∞(Claτ M ×
M

LinE) → C∞(FE)

which are of order s with respect to classical connections and of order r with
respect to linear connections are of the form

f(jsΛ, jrK) = g(∇(s−1)R[Λ],∇(r−1)R[K])

where g is a zero order natural operator

g : C∞(C(s−1)
C M ×

M
C

(r−1)
L E) → C∞(FE) . �

Let us assume the kth order covariant differential of sections of Ep1,p2q1,q2 .
It is a natural operator of order k with respect to sections of Ep1,p2q1,q2 and
of order (k − 1) with respect to classical and linear connections. Let us
define the k-th order Ricci bundle Z(k)E as the image of the triplet of the
operators (∇(k−2)R,∇(k−2)R,∇(k)) defined on Claτ M × LinE × Ep1,p2q1,q2 .
Then the second reduction theorem for linear and classical connections can
be formulated as follows.

Theorem 4.6. ([8]) Let s, r ≥ k − 1, s ≥ r − 2. All natural differential
operators

f : C∞(Claτ M ×
M

LinE ×
M
Ep1,p2q1,q2 ) → C∞(FE)

which are of order s with respect to classical connections, of order r with
respect to linear connections and of order k with respect to sections of Ep1,p2q1,q2
are of the form

f(jsΛ, jrK, jkΦ) = g(∇(s−1)R[Λ],∇(r−1)R[K],∇(k)Φ)
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where g is a zero order natural operator

g : C∞((C(s−1)
C M ×

M
C

(r−1)
L E) ×

C
(k−2)
C M×

M
C

(k−2)
L E

Z(k)E) → C∞(FE) . �

4.3. Higher order valued reduction theorems for general linear
connections. In Section 2.5 we have generalized the classical RTs for
higher order valued natural operators. The similar generalization can be
done also for reduction Theorems 4.5 and 4.6 of general linear connections.
Let us denote by C(k,s)

C M ×
M
C

(k,r)
L E the (k, s, r)-order curvature bundle of

classical and linear connections given as the image of the pair of the oper-
ators (∇(k,s)R,∇(k,r)R), s ≥ r − 2, defined on Claτ M × LinE. Then the
first k-th order valued reduction theorem for linear and classical connections
can be formulated as follows.

Theorem 4.7. ([9]) Let s ≥ r − 2, r + 1, s + 2 ≥ k ≥ 1. Let F be a
Gl(n,R)-gauge-natural bundle of order k. All natural differential operators

f : C∞(Claτ M ×
M

LinE) → C∞(FE)

which are of order s with respect to classical connections and of order r with
respect to linear connections are of the form

f(jsΛ, jrK) = g(jk−2Λ, jk−1K,∇(k−2,s−1)R[Λ],∇(k−1,r−1)R[K])

where g is a unique natural operator

g : Jk−2 Claτ M ×
M
Jk−1 LinE ×

M
C

(k−2,s−1)
C M ×

M
C

(k−1,r−1)
L E → FE . �

Let us denote by Z(k,r)E the (k, r)-order Ricci bundle defined as the im-
age of the triplet of the operators (∇(k−2,r−2)R,∇(k−2,r−2)R,∇(k,r)) defined
on Claτ M × LinE × Ep1,p2q1,q2 . Then the second k-th order valued reduction
theorem for linear and classical connections can be formulated as follows.

Theorem 4.8. ([9]) Let F be a Gl(n,R)-gauge-natural bundle of order
k ≥ 1 and let r + 1 ≥ k. All natural differential operators

f : C∞(Claτ M ×
M

LinE ×
M
Ep1,p2q1,q2 ) → C∞(FE)

of order r with respect sections of Ep1,p2q1,q2 are of the form

f(jr−1Λ, jr−1K, jrΦ) = g(jk−2Λ, jk−2K, jk−1Φ,

∇(k−2,r−2)R[Λ],∇(k−2,r−2)R[K],∇(k,r)Φ)

where g is a unique natural operator

g : Jk−2 Claτ M ×
M
Jk−2 LinE ×

M
Jk−1Ep1,p2q1,q2 ×

M
Z(k,r)E → FE . �
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Remark 4.9. The order (r−1) of the operator of Theorem 4.8 with respect
to linear and classical connections is the minimal order we have to use. The
second reduction theorem can be easily generalized for any operators of
orders s1 or s2 with respect to connections Λ or K, respectively, where
s1 ≥ s2 − 2, s1, s2 ≥ r − 1. Then

f(js1Λ, js2K, jrΦ) = g(jk−2Λ, jk−2K, jk−1Φ,

∇(k−2,s1−1)R[Λ],∇(k−2,s2−1)R[K],∇(k,r)Φ) . �

Remark 4.10. The above higher order valued valued reduction theorems
deal with symmetric classical connections on the base manifolds. If Λ is a
non-symmetric classical connection, then there is its unique splitting Λ =
Λ̃ + T, where Λ̃ is the symmetric classical connection obtained from Λ by
symmetrization, i.e., Λ̃µλν = 1

2 (Λµλν + Λνλµ), and T is the torsion (1, 2)-
tensor, i.e., Tµλν = 1

2 (Λµλν−Λνλµ). Then any finite order natural operator
for Λ and K is of the form, s ≥ r − 2,

f(jsΛ, jrK) = f(jsΛ̃, jrK, jsT ) =

= g(jk−2Λ̃, jk−2K, jk−1T, ∇̃(k−2,s−1)R[Λ̃], ∇̃(k−2,r−1)R[K], ∇̃(k,s)T ) ,

where ˜ refers to Λ̃. �

As applications of higher order valued reduction theorems we shall clas-
sify all classical connections on the total space of a vector bundle and all
connections on the 1st jet prolongation of a vector bundle given naturally
by a general linear connection K and a classical connection Λ on the base,
[30]. We have an induced natural classical connection D(Λ,K) on E given
by, [49, 60],

Proposition 4.11. There exists a unique classical connection D = D(Λ,K)
on the total space E with the following properties

∇DhK(X)h
K(Y ) = hK(∇Λ

XY ), ∇DhK(X)s
V = (∇KXs)V ,

∇DsV h
K(X) = 0, ∇DsV σ

V = 0 ,

for all vector fields X,Y on M and all sections s, σ of E, where hK is
the horizontal lift with respect to K, ∇K ,∇Λ,∇D are covariant differentials
with respect to K, Λ , D, respectively, and sV , σV denote the vertical lifts of
the sections s, σ, respectively. �

Remark 4.12. The gauge–natural bundle ClaE is aGl(n,R)-gauge-natural
bundle of order (2,2) and D(Λ,K) defines the natural operator D from
C∞(ClaM ×

M
LinE) to C∞(ClaE) which is of order zero with respect to Λ

and of order one with respect to K. �
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The difference of any two classical connections on E is a tensor field
on E of the type (1, 2). So, having the connection D(Λ,K), all classical
connections on E naturally given by K and Λ are of the type D(Λ,K) +
Φ(Λ,K), where Φ(Λ,K) is a natural (1,2)-tensor field on E. Hence, the
problem of classification of natural classical connections on E is reduced to
the problem of classification of natural tensor fields on E. any tensor field
on E is a section of a Gl(n,R)-gauge-natural bundle of order (1, 1). Then,
by Theorem 4.8 and Remark 4.10, we get

Corollary 4.13. ([30]) Let Φ be a tensor field on E naturally given by a
classical connection Λ on M (in order s) and by a general linear connection
K on E (in order r, s ≥ r − 2). Then

Φ(u, jsΛ, jrK) = Ψ(u, ∇̃(s)T, ∇̃(s−1)R[Λ̃],K, ∇̃(r−1)R[K]) ,

where u ∈ E and ˜ refers to the classical symmetrized connection Λ̃. �

Now we can use the above Corollary 4.13 to classify (1,2)-tensor fields on
E. We have the following families of natural operators given by Λ and K.

A) Λ gives 3-parameter family of (1,2)-tensor fields on M , [60], given by

S(Λ) = a1 T + a2ITM ⊗ T̂ + a3 T̂ ⊗ ITM ,

where T is the torsion tensor of Λ, T̂ is its contraction and ITM : M →
TM ⊗ T ∗M is the identity tensor.

B) Λ and K define naturally the following 9-parameter family of (0,2)
tensor fields on M , [60], given by

G(Λ,K) = b1 C
12
13 (T ⊗ T ) + b2 C

12
31 (T ⊗ T ) + b3 C

12
12 (T ⊗ T )

+ c1 C
1
1∇̃T + c2 C1

1∇̃T + c3 C
1
3∇̃T

+ d1 C
1
1R[Λ̃] + d2 C

1
2R[Λ̃] + e1 C

1
1R[K] ,

where Cijkl is the contraction with respect to indicated indices and C1
1∇̃T

denotes the conjugated tensor obtained by the exchange of subindices.
C) The value of the curvature tensor R[K] applied on the Liouville vector

field L is in T ∗M ⊗ V E ⊗ T ∗M .
D) Finally, if we consider νK as the vertical valued 1-form νK : E →

T ∗E ⊗ V E with coordinate expression

νK = (di −Kj
i
λ y

j dλ)⊗ ∂i ,

we have 2-parameter family of operator obtained by applying the morphism
ιT∗M ⊗ ιV E ⊗ idT∗E on

H(Λ,K) = h1 νK ⊗ T̂ + h2 T̂ ⊗ νK .
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Summarizing the above constructions we get

Theorem 4.14. ([30]) All classical connections on E naturally given by Λ
(in order s) and by K (in order r, s ≥ r− 2) are of the maximal order one
and are of the form

D̃(Λ,K) = D(Λ,K) + hK
(
S(Λ)

)
+ L⊗G(Λ,K) +R[K](L) +H(Λ,K) ,

i.e. form a 15-parameter family of connections. �

Remark 4.15. In [50, 60] the same result was obtained by direct calcula-
tions without using the reduction theorems. Our result coincides with the
result of [50, 60] but our base of the 15-parameter family of operators differ
from the base used in [50, 60]. �

In Section 2.2 (see [5]), we have described a natural operator χ trans-
forming a classical connection on the total space of a fibered manifold and
a classical connection on the base manifold into a connection on the 1st jet
prolongation of the fibered manifold. Applying this operator on a classical
connection D(Λ,K) on the total space of a vector bundle E →M we get

Theorem 4.16. A general linear connection K on E and a classical con-
nection Λ on M give naturally the connection Γ(Λ,K) = χ(D(Λ,K)) on
J1E. �

Any natural connection on J1E is then of the form Γ̃(Λ,K) = Γ(Λ,K)+
Ψ(Λ,K), where Ψ(Λ,K) is a natural section of T ∗E ⊗ T ∗M ⊗ V E. Then
we have

Theorem 4.17. ([30]) All connections on J1E naturally given by Λ (in
order s) and by K (in order r, s ≥ r− 2) are of the maximal order one and
are of the form

Γ̃(Λ,K) = Γ(Λ,K) + θ ◦ hK
(
S(Λ)

)
+ L⊗G(Λ,K) +R[K](L) + νK ⊗ T̂ ,

i.e. form a 14-parameter family of connections. �

Remark 4.18. Let us note that Γ̃(Λ,K) = χ
(
D̃(Λ,K)

)
. �

4.4. Higher order Utiyama’s theorem. One of the most famous results
in gauge invariant theories is the Utiyama’s theorem, [88], that classifies
those Lagrangians for gauge fields (principal connections on principal bun-
dles) which are (locally) gauge invariant. In his original paper, [88], Utiyama
considered his theorem only locally with specific gauge transformations.
Later the Utiyama’s theorem was reproved by many authors also globally,
see for instance [36, 42, 69]. The Utiyama’s theorem can be formulated glob-
ally as follows: given a principal connection Γ then any gauge invariant first
order Lagrangian is given by a gauge invariant Lagrangian of the curvature
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tensor R[Γ], i.e. Ω(j1Γ) = Ω̃(R[Γ]). The Utiyama’s theorem can be very
simply generalized for operators with values in a gauge-natural bundle of
order (1, 0). In this case we shall use the term Utiyama-like theorem instead
of the Utiyama’s theorem. The Utiyama-like theorem was proved (in order
1) in [60].

Higher order local version of the Utiyama-like theorem was studied in [52]
where the author generalized the replacement theorem for gauge fields. The
results obtained in [52] are local and not complete since only concomitants
obtained from the covariant differentials of the curvature tensor of the gauge
field are assumed, while concomitants obtained from classical connections
on the base are not considered. By using the methods of gauge–natural
bundles we obtain complete and global coordinate free description of higher
order Utiyama-like theorem.

Let G be an n-dimensional Lie group, P ∈ ObPBm(G), Γ a principal
connection on P and adP the adjoint vector bundle associated with the
principal bundle P . Then we have the induced adjoint linear connection
ad(Γ) on adP .

The curvature tensor of a principal connection is a 1-order natural op-
erator from PriP into adP ⊗

∧2
T ∗M . The covariant differential of the

curvature tensor R[Γ] with respect to Γ and a classical connection Λ on the
base M is then defined as the covariant differential with respect to ad(Γ)
and Λ, see Section 4.2. Then the iterated rth order covariant differential
∇rR[Γ] is a natural operator on ClaM×PriP which is of order (r−1) with
respect to classical connections and of order (r+1) with respect to principal
connections. Let us denote by C(s)

C M × C
(r)
P P , s ≥ r − 2, (s, r)-order cur-

vature bundle for classical and principal connections obtained as the image
of the pair of the operators (∇(s)R,∇(r)R) defined on Claτ ×PriP . Then
higher order Utiyama-like theorem for principal and classical connections
can be formulated as follows.

Theorem 4.19. ([11]) Let s ≥ r − 2, r ≥ 0, and let F be a (1,0)-order
G-gauge-natural bundle functor. All natural differential operators

f : C∞(Claτ M ×
M

PriP ) → C∞(FP )

which are of order s with respect to classical connections and of order r with
respect to principal connections are of the form

f(jsΛ, jrΓ) = g(∇(s−1)R[Λ],∇(r−1)R[Γ])

where g is a zero order natural operator

g : C∞(C(s−1)
C M ×

M
C

(r−1)
P P ) → C∞(FP ) . �
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Remark 4.20. The curvature bundle of classical and principal connections
is given by identities depending on the structure constants of the group G.
So all natural operators defined on the curvature bundle depend also on the
structure constants, i.e.,

f(jsΛ, jrΓ) = g(c,∇(s−1)R[Λ],∇(r−1)R[Γ]) .

For instance cbab∇ρr
. . .∇ρ1Raλµ is an example of a natural tensor field of

the type (0, r+2) on M given by Λ (in order (r−1)) and Γ (in order (r+1)).
In the case of (general) linear connections the structure constants are given
by the Kronecker deltas and they contract with the curvature tensor fields,
i.e., they are not ”visible”. �
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[3] J. Janyška and M. Modugno: Infinitesimal natural and gauge-natural lifts, Diff.

Geom. and its Appl. 2 (1992) 99–121.
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[18] J. Janyška: Remarks on the Nijenhuis tensor and almost complex connections,

Arch. Math. (Brno) 26 (1990) 229–240.
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[32] J. Janyška: Geometric structures on the tangent bundle of the Einstein spacetime,

to appear in Arch. Math. (Brno) 2006.
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[48] A. Frölicher and A. Nijenhuis: Invariance of vector form operations under mappings,

Comm. Math. Hel. 34 (1960) 227–248.

[49] J. Gancarzewicz: Horizontal lifts of linear connections to the natural vector bundle,
in: Proc. Inter. Coll. Diff. Geometry, Santiago de Compostela (Spain), Research

Notes in Math. 121, Boston: Pitman. 1985, 318–324.
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[64] D. Krupka and V. Mikolášová: On the uniqueness of some differential invariants:

d, { , }, ∇, Czechoslovak Math. J. 34 (1984) 588–597.
[65] P. Libermann and CH. M. Marle: Symplectic Geometry and analytical Mechanics,

Reidel Publ., Dordrecht, 1987.

[66] G. Lubczonok: On reduction theorems, Ann. Polon. Math. 26 (1972) 125–133.
[67] O. O. Luciano: Categories of multiplicative functors and Morimoto’s conjecture,

Preprint 46, Inst. Fourier, Laboratoire des Mathématiques, Grenoble, 1986.
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tions, Math. Ann. 54 (1901) 125–201.

[79] D. J. Saunders: The Geometry of Jet Bundles, London Math. Soc., Lecture Note
Series 142, Cambridge University Press, 1986.

[80] J. A. Schouten: Ricci calculus, Berlin-Göttingen, 1954.

[81] J. A. Schounten and J. Haantjes: On the theory of the geometric object, Proc.
London Math. Soc. 42 (1937) 356–376.



40 REFERENCES

[82] M. Sekizawa: Natural transformations of affine connections on manifolds to metrics
on cotangent bundles, in: Proc. of the 14th Winter School on abstract analysis,
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