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RESUME

Predlozend disertacni prace je souborem 11 puvodnich védeckych praci
[1] — [11] a tvodu, ktery je psén jako pichled teorie pfirozenych a kalibra¢né
prirozenych bandlu a operdtoru a jejich vyuziti v diferencidlni geometrii a
matematické fyzice.

Invariantnost geometrickych operaci s poli geometrickych objektu na
dané varieté vzhledem k lokdlnim difeomorfismim ¢i volbé lokalnich souiad-
nic je jednim ze zakladnich pozadavki nejen moderni diferencidlni geometrie
na diferencovatelnych varietach, ale i fady oboru teoretické fyziky, jako je
napf. obecnd relativita ¢i klasickd teorie pole. Pozadavek invariantnosti je
efektivné feSen pomoci teorie piirozenych bandlu a pfirozenych operdtort.
Pojem prirozeny bandl, ktery zavedel v roce 1972 A. Nijenhuis, si velmi
rychle vydobyl vyznamné misto v moderni diferencidlni geometrii.

Prvni kapitola tezi je vénovana popisu hlavnich vlastnosti ptirozenych
bandlu a ptirozenych operatoru a také piinosu autora predkladané disertace
v této oblasti [1, 3].

Hlavnim néstrojem pii studiu pfirozenych operatoru na ptirozenych band-
lech je jejich jednozna¢énd reprezentace pomoci zobrazeni mezi typovymi
fibry pfirozenych bandli, které jsou ekvivariantni vzhledem k akcim dife-
rencidlni grupy jistého kone¢ného #ddu. To umozuje v celé fadé piipadu
Uplny popis invariantnich operaci. Ve druhé kapitole jsou jako piiklady
pfirozenych operdtori uvedeny puvodni vysledky autora. Je provedena
uplné klasifikace prirozenych operatoru typu Frolicher-Nijenhuisovy zavorky
projektabilnich te¢né hodnotovych forem na fibrované varieté [2]. V obecné
relativité na prostorocase s absolutnim ¢asem (Galileuv prostorocas) je du-
lezity vzajemné jednoznaény vztah mezi ¢as zachovavajicimi konexemi na
prostorocase a fdzovymi konexemi na prvnim jetovém prodlouzeni pros-
torocasu. Tento vztah je v préci [5] zobecnén pro libovolnou fibrovanou
varietu a je klasifikovan operator, ktery transformuje linedrni konexi na
fibrované varieté do konexe na prvnim jetovém prodlouzeni této variety.
Vyznamnym néstrojem pii studiu pfirozenych operdtoru na linedrnich ko-
nexich a tenzorovych polich jsou redukéni véty, které tikaji, ze takovéto
operatory je mozno vyjadrit jako operdtory na kovariantnich derivacich
danych tenzorovych poli a tenzoru kiivosti. Tyto redukéni véty jsou v [10]
zobecnény pro operdtory s hodnotami v pfirozenych bandlech vyssich fadu
a jako aplikace je provedena dpln4 klasifikace tensorovych poli typu (0, 2) na
koteéném bandlu variety s konexi. Jako aplikace v obecné teorii relativity
jsou uvedeny klasifikace symplektickych a Poissonovych struktur na te¢ném
bandlu prostorocasu bez absolutniho ¢asu (Einsteintv prostorocas) [4, 6]
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a klasifikace kosymplektické struktury na fazovém prostoru Galileovského
prostorocasu [4].

V kalibra¢né invariantnich fyzikélnich teoriich se mimo invariantnosti
vzhledem k lokdlnim difeomorfismum vyzaduje také invariantnost vzhledem
ke zméné kalibrace. Prvni geometrickou interpretaci kalibra¢né pfirozenych
operaci je prace R. Utiyamy z roku 1956. Geometricky se kalibracné inva-
riantni teorie daji popsat pomoci kalibracné prirozengjch bandlu a piiroze-
nych operatoru na kalibracné ptirozenych bandlech, které zavedl v roce 1981
D. Eck. Ve tieti kapitole je uveden prehled vlastnosti kalibracné ptirozenych
bandlu a pfirozenych operdtoru a jejich infinitesimalni vlastnosti [3].

Jako aplikace v kalibra¢né invariantni teorii pole uvadime klasifikaci pti-
rozenych kvantovych Lagrangianu a pfirozenych Schrodingerovych operato-
ru na kvantovém bandlu nad Galileovskym prostorocasem [7]. Utiyamovy
vysledky pro kalibraéni grupu Gl(n,R) jsou zobecnény jako redukéni véty
pro obecnou linedrni konexi na vektorovém bandlu [8], véetné operdtoru
s hodnotami v bandlech vyssich fada [9]. Kone¢né v [11] je zobecnéna
Utiyamova véta pro libovolny 7ad pro libovolnou kalibra¢ni grupu G.



INTRODUCTION

The term ”geometric invariant” has been used in differential geometry
since the end of the 19th century. In the 1930’s Schouten and his collab-
orators, [81], used the notion of ”geometric object”. A modern functorial
approach to the theory of geometrical objects and invariant operations with
geometric objects was introduced by Nijenhuis, [73], in the 1950’s. Starting
from the famous paper by Nijenhuis, [76], geometrical objects and invari-
ant operations with geometrical objects have been very intensively studied
by using the concepts of natural bundles and natural differential operators.
Nijenhuis defined natural bundles as lifting functors on the category M,, of
m-dimensional manifolds and their local embeddings. Lifting functors are
supposed to satisfy three conditions: prolongation, localization and regu-
larity (continuity).

The following main four types of problems have been studied in the last
34 years:

1. finiteness of order of natural bundles and operators;

2. extension of lift functors on further categories and study of special
types of functors;

3. regularity conditions;

4. properties and classifications of natural differential operators.

1. Palais and Terng first proved, [77], that the order & of a natural
bundle is finite & < 2"*! where n is the dimension of the standard fiber.
Later Epstein and Thurston, [44], gave much better bound. They proved
k < 2n + 1 and that this bound is sharp for m = 1. Finally Zajtz, [92],
proved k& < {;75; 7 + 1}. Krupka, [63], and Terng, [85], have proved
independently that a k-order natural bundle is a bundle associated with the
frame bundle of order k.

2. Koléfr, [57], generalized lift functors on the category M of all differ-
entiable manifolds and their smooth mappings. Such functors are called
prolongation functors. Some geometric properties of prolongation functors
were studied in [1]'. Mikulski, [70], has shown that a prolongation functor
with infinite order exists. Later various prolongation functors on subcat-
egories of M were studied. The special attention was devoted to product
preserving functors (Weil functors) which were studied by Eck, [43], Kainz
and Michor, [55], and Luciano, [67]. Constructions used on Weil functors
can be generalized also for infinite dimensional functional bundles, [31, 34].

3. In definitions of lift and prolongation functors there is the regularity
condition saying that a smoothly parameterized family of diffeomorphisms

LThe references marked by bold numbers refer to the papers of the author which are
included to the thesis.
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is prolonged into a smoothly parameterized family of diffeomorphisms. But
this condition turns out to be a consequence of remaining prolongation and
localization properties. This was proved by Epstein and Thurston, [44], for
lifting functors and by Kolér and Slovék, [61], for prolongation functors.

4. Main problem of the theory of natural differential operators is to
give a complete classification of them for concrete underlying geometric
structures. Such classification is based on the one-to—one correspondence of
natural operators and equivariant maps between standard fibres. To classify
equivariant maps we can use several methods. Formerly the method of Lie
equations was used, [16], recently we use the algebraic method described in
[60]. In literature it is possible to find many examples and applications of
natural operations used in geometry and physics. For wide list of references
we recommend to see [16, 60, 45].

In the thesis we use the term “natural operator” on natural bundles in
the sense of [16, 60, 85], see Section 1.10. The bundle structure of natural
bundles given by natural prolongation functors is studied in Section 1.9
and [1]. Infinitesimal properties of natural bundles and natural operators
are studied in Sections 1.14 and 1.15, see [3]. As applications of natural
operators we shall classify the Frolicher-Nijenhuis bracket of projectable
tangent valued forms, see Section 2.1 and [2], the relations between linear
connections on a fibred manifold and connections on the 1st jet prolongation
are studied in Section 2.2, see [5], higher order valued reduction theorems
are studied in Section 2.5 and [10]. As applications in classical field theories
we study natural symplectic and Poisson structures on the tangent bundle of
the Einstein spacetime (a pseudo-Riemannian manifold with a Lorentzian
metric) given by a metric and a linear connections, see Section 2.3 and
[4, 6], and natural cosymplectic structures on the phase space of the Galilei
spacetime given by a vertical metric and a phase connection, see Section 2.4
and [4].

Natural operators on natural bundles describe the invariance of geomet-
rical or physical theories with respect to changes of local coordinates. But
in physical theories another sort of invariance plays an important role, the
so called ”gauge invariance”. Invariant gauge theory has been introduced
in the book by H. Weyl, [90], in 1918 as a generalization of the Einstein’s
general relativity (published in 1915). Weyl considered spacetime metrics
invariant not only with respect to isomorphisms of spacetime but also with
respect to ”gauge transformations” (the term ”gauge = Eiche” was used for
the first time by H. Weyl). The original invariant physical gauge theories
was related with the gauge group U(1) acting on wave functions and elec-
tromagnetic potentials. In early 1950’s the concept of gauge invariance was
generalized for any Lie group G playing the role of the gauge group. The
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first geometrical interpretation of gauge invariance with respect to a gen-
eral gauge group can be found in the famous paper by Utiyama, [88]. The
geometrical description of the gauge invariance is the following, Drechsler
and Mayer, [41]. Let 7 : P — M be a principal G-bundle over a (usually
spacetime) manifold M and E — M be a bundle associated with P. An
automorphism of P, over M, induces a fibred automorphism of E, over M,
which is said to be a change of gauge. A physical theory is said to be gauge
invariant if it is invariant with respect to changes of gauge and with respect
to local diffeomorphisms of M. Gauge invariant theories can be described
geometrically by using the concepts of gauge-natural bundle functors and
natural operators between gauge-natural bundles, see Section 3 and [42, 60].

Infinitesimal properties of gauge-natural bundles and natural operators
of gauge-natural bundles are studied in Sections 3.11 and 3.12, see [3].
Gauge-natural theories have wide applications in gauge field theories, see
[45]. As concrete applications we shall study natural quantum Lagrangians
and natural Schrodinger operators on the quantum bundle over the Galilei
spacetime, see Section 4.1 and [7]. We shall generalize the Utiyama’s results
for the gauge group Gl(n,R) and prove the reduction theorems for general
linear connections, see Section 4.2 and [8]. The higher order valued versions
of reduction theorems for general linear connections are presented in Section
4.3, see [9]. As application of higher order valued reduction theorems we
shall classify all classical connections on the total space of a vector bundle
given by a general linear connection and a classical connection on a base
manifold, see Section 4.3 and [30]. Finally, in Section 4.4 and [11], we
present the higher order Utiyama’s theorem for any gauge group G.

In what follows we shall use the following notations. M is the category
of all smooth manifolds and smooth mappings, M,, is the category of all
m-dimensional smooth manifolds and local diffeomorphisms, FM,,, is the
category of all fibred manifolds with m-dimensional bases and smooth fi-
bred morphisms covering local diffeomorphisms of bases, VB,, (AB,,) is
the category of all vector (affine) bundles with m-dimensional bases and
smooth linear (affine) fibred morphisms covering local diffeomorphisms of
bases and, finally, PB,,(G) is the category of all principal G-bundles with
m-~dimensional bases and smooth principal fibred morphisms covering local
diffeomorphisms of bases.

In what follows all manifolds and maps are supposed to be smooth.
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1. NATURAL BUNDLES AND OPERATORS

We recall here definitions and basic properties of the theory of natural
bundles and natural operations, ([1, 3]) and [16, 60, 76, 85]. As examples
we mention functors and operators which will be used later.

1.1. Natural bundles. We recall the original definition by A. Nijenhuis,
[76],

Definition 1.1. A natural bundle is a quadruple (E,7,B,X) where F
("total space”) and X ("base space”’) are C°°-manifolds, 7 : £ — X a
C*>-map ("projection map”) and B : C(X) — C(E) is a functor ("lifting
functor”) of the pseudogroups (categories) of local diffeomorphisms of X
and F, subject to these three conditions:

(a) If U is an object of C(X), then B(U) = 7~ 1(U);

(b) f V C Uisopen and f: U — X is a morphism of C(X), then

BfIB(V) = (fIV);

(c)f F: U — X xY is a (smooth) family of local diffeomorphisms of X,
and f, is a member of the family determined by y € Y, then F : U — ExY
is a (smooth) family of diffeomorphisms of F, where

U={(zy) € ExY|(n(2),y) €U}

and

F(zy) = Bfy(2),y). O
The last, so called regularity or continuity condition, says that a smoothly
parametrized family of diffeomorphisms in C(X) is lifted to smoothly para-
metrized family of diffeomorphisms in C(F). But this condition turns out
to be a consequence of (a) and (b), [44].
Recently the definition of lifting functors was reformulated as follows,
[60],

Definition 1.2. A natural lift functor is a covariant functor F from M,
to FM,,, satisfying
i) for each manifold M € ObM,,,,

pym FM — M

is a fibred manifold over M,
ii) for each embedding f € MorM,,, F'f is a fibred manifold morphism
over f, which maps fibres diffeomorphically onto fibres. O
A natural bundle is then a triplet (FM,par, M).
Later (Theorem 1.4) we shall see that pa; : FM — M is indeed a bundle.
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1.2. Natural bundle functor. The concept of natural lift functor was
generalized, [1] and [58, 60], to the concept of natural bundle functor.

Definition 1.3. A natural bundle functor on a subcategory € of M is a
covariant functor F' from € to the category FM satisfying

i’) for each manifold M € ObC, pp; : FM — M is a fibred manifold over
ii") for each f € Mor C, F'f is a fibred manifold map covering f such that
Fu(U) = (FU) for any open subset ¢ : U — M. O

M

A natural bundle functor on the subcategory M,,, of M, for a certain m,
is a natural lift functor. In literature natural bundle functors are also called
”prolongation functors”.

1.3. Geometrical object. A geometrical object on a manifold M is now
an element from FM, where F is a natural bundle functor. A section
o: M — FM is a field of geometrical objects on M.

1.4. Order of natural bundle functors. We say that a natural lift func-
tor F is of finite order r if r is the smallest number such that

Jof = Jzg = FfIF,M = Fg|F, M

for any (f,g: M — M) € MorM,, and any = € M.
Any natural lift functor have a finite order, [60, 77, 92], while there exist
natural bundle functors of an infinite order, [70].

1.5. Differential group. Let us denote by G7, the Lie group
Gr, = invJJ(R™,R™),

of invertible r-jets (with source and target 0) of diffeomorphisms of R™
which preserve 0. The group multiplication is given by the jet composition.
The canonical coordinates on G, will be denoted by (af;, . ,a;\“”%,) and
tilde will refer to the inverse element.

1.6. Standard fiber. Let F' be an r-order natural lift functor and let Fy =
FyR™. Because of ii) of Definition 1.2 Fj is diffeomorphic with F,, M for any
x e M, M e ObM,,. Fy will be called the standard fiber of F. Applying F’
on origin—preserving diffeomorphisms of R™ we get a left action of G}, on
Fy which make Fj to be a left smooth G7, -manifold, [63, 85].

1.7. Natural fibred coordinate chart. Local coordinate charts (z*) on
M and (y?) on Fy induce a fibred coordinate chart (z*,4?) on F'M, which
is said to be the natural fibred coordinate chart.



6 NATURAL BUNDLES AND OPERATORS

1.8. Examples. 1. The tangent functor T is a natural bundle functor of
order one on the category M with values in the category VB. In dimension m
the corresponding standard fiber is R™ on which G}, = GI(m,R) acts in the
standard way by the matrix multiplication. The natural fibred coordinate
chart on TM will be denoted by (2%, ).

2. The cotangent functor T™ is a natural lift functor of order one with
values in the category VB,,. The standard fiber is R™* with the standard
action of G . The natural fibred coordinate chart on T* M will be denoted
by ({L‘A, {t)\).

3. The functor APT* of p—forms is a natural lift functor of order one
with values in the category VB,,. The standard fiber is APR™* on which
G} acts in the standard tensor way. The natural fibred coordinate chart
on APT*M will be denoted by (ac’\,wAlmAp), 1< << Ap<m.

4. The functor of pseudo—Riemannian metrics pRm is a natural lift
functor of order one such that pRmM are subbundles of objects of the
category VB,,. Its standard fiber (pRm)g is the subspace in ©®?R™* of non-
degenerate symmetric matrices and the tensor action of G,. The natural
fibred coordinate chart on pRm(M) will be denoted by (2%, gau)s gau = Gurs
det(gan) # 0.

5. The functor of k"-velocities T}, is a natural bundle functor of order r
on the category M. For any M € ObM, we define Ty M = J§(R*, M) and,
for any f € MorM, f : M — M, we define T} f(jia) = ji(f o ), where
jooo € T M. The standard fiber of T} in dimension m is J§(R* R™), and
the action of G}, on the standard fiber is given by the jet composition.

6. The functor of r-order frames F" is a natural lift functor of order
r. For any M € ObM,,, we define F"M = invJJ(R™, M) and, for any
f € MorM,,,, F" f is defined as in Example 1.8.5. The values of the functor
F" are in the category PB,,(G%,).

7. The functor Cla of classical (linear) connections on a given manifold
is a natural lift functor of order two with values in the category AB,,. Its
standard fiber is R*™ ® R™ ® R™* on which G2, acts via the well known
transformation relations of the Christoffel symbols

A A A p ~O~T ~p
Aty = ay(M"ra0a, +al,) -

The natural fibred coordinate chart on Cla M will be denoted by (z*, A,*,).
By Cla, will be denoted the functor of torsion free linear connections. In
natural fibred coordinates Cla, is characterized by A,*, = A,*,.
8. Let F be a natural lift functor of order » and J*° be the functor of
s-jet prolongation, [79]. Then J*F = J®o F is a natural lift functor of order
(r+s). If Fy is the standard fiber of F', then the standard fiber of J°F is
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(J*F)o = T5F, and the action of GI'F* on (J*F)g is obtained by the jet
prolongation of the action of G}, on Fj.

1.9. The bundle structure. In the theory of natural lift functors the func-
tor of r-order frames, defined in Example 1.8.6, plays a fundamental role.
Namely, we have the following theorem, [60, 63, 85].

Theorem 1.4. Any natural lift functor F' of order r, with the standard fiber
Fy, is canonically represented by
FM =[F"M,Fy], Ff=[F"fidg)],

where M € ObM,,, f € MorM,,, and [F"M, Fy| = (F"M, Fy)/G?, is the
bundle associated with "M . O

This theorem implies that there is the one-to—one correspondence be-
tween r—order natural lift functors and left G},—manifolds.

Now we shall generalize Theorem 1.4 to prolongation functors, [1]. Let
us define the category L". Ob L" is the set of natural numbers 1, 2, 3,...,
Mor L™ (m,n) = L"(m,n) = J5(R™,R™)q and the composition in L" is given
by the composition of jets. If F' is an r-th order prolongation functor, we
shall denote by S = {S1, Sa, ...}, S; = FyR’. Then we have the action A
of the category L" on S defined by a system of maps

Amon t L' (m,mn) x Sy — Sy
given by
Amn(4,s) = F[(s)
for any A = j§f € JJ(R™,R™)g, s € FyR™. It is easy to see that A satisfies
the condition
(1.1) Amp(Bo A, s) = Ay p(B, Am.n(4,9)),

AeL"(m,n), Be L (n,p), s € Sp. On the other hand if an action A\ of
L" on S with the property (1.1) is given, then we define FM = (F"M, S,,)
with the equivalence

(u,8) ~ (w0 A, A\ (A1, 5))
and
Ff(u,s) = (v, Amn(v ™' o Aou,s)),
where u € Fy M, v € F;N, A€ J;(M,N),. It is easy to see that ['(go f) =

(Fg) o (Ff) and F is a prolongation functor of order r. So we have a
generalization of Theorem 1.4

Theorem 1.5. ([1]) There is a bijective correspondence between r-th order
prolongation functors and actions of the category L™ on S. O
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1.10. Natural operator. Let F be a natural lift functor, f : M — M be
a mapping in MorM,, and o : M — F'M be a section. Then we define the
section f*o: M — FM by f*o = Ffooo f L

Definition 1.6. A natural differential operator D from a natural lift functor
F to a natural lift functor F5 is a family of differential operators

{D(M) . COO(FlM) — COO(FQM>}M€Ome

such that

(i) D(M)(f*o) = f*D(M)(o) for every section o € C°°(F; M) and every
f: M — M in MorM,y,,

(ii) Dy(o|U) = (Dpo)|U for every section o € C°(F1M) and every
open submanifold U C M,

(iii) every smoothly parameterized family of sections of FyM is trans-
formed into a smoothly parametrized family of sections of Fo M. |

1.11. Order of natural differential operator. A natural differential op-
erator is of order k, 0 < k < oo, if all D(M), M € ObM,,, are of order k.
Thus, a k-order natural differential operator D from F; to F; is character-
ized by the associated fibred manifold morphisms D(M) : JEFFy M — Fy M,
over M, according to the formula D(M)(j¥0) = D(M)(o)(x). The fam-
ily D = {D(M)}rmeobm,, defines a natural transformation of the functors
JkFl and FQ.

1.12. Equivariant mappings given by natural operators. Coordinate
independent geometrical constructions are in fact natural differential oper-
ators between natural lift functors. The study of natural differential oper-
ators is based on relations between natural differential operators and equi-
variant mappings. The basic tool is the following theorem, [16, 60, 85],

Theorem 1.7. There is a bijective correspondence between the set of k-
order natural differential operators from a natural lift functor Fy to a natural
lift functor Fy and equivariant mappings from the standard fiber of J*Fy to
the standard fiber of Fs. O

Theorem 1.7 can be generalized to prolongation functors as follows

Theorem 1.8. ([1]) There is a bijective correspondence between the set of
natural transformations of two r-th order prolongation functors and the set
of covariant maps of actions of L" given by these prolongation functors. [

1.13. Examples. 1. The exterior derivative d is a first order natural op-
erator from APT*, p > 0, to APY1T*. The corresponding G2-equivariant
mapping from JY(APT*)g = TH(APR™) to (APFIT*)y = APTIR™* is given,
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in the canonical coordinate chart (wx,..,), 1 < A1 < ... < A, < m, on
(APR™), by
WA1Aprs ©d = Wy A s 0

where [...] denotes the antisymmetrization. For p > 1, the naturality de-
termines d up to a constant multiple, [16, 58], while in classical proofs the
linearity was supposed.

2. The Levi-Civita connection is a first order natural differential opera-
tor from pRm to Cla,. The corresponding G2, -equivariant mapping from
JY(pRm)g to Clag is given by the formal Christoffel symbols

Ap/\u = 7%g>\p(gpp,u + gpu,u - g;w,p)a

where (g*) is the inverse matrix of (gy,). The uniqueness of the Levi-
Civita connection is the classical geometrical problem. The proof of the
uniqueness by using natural technics can be found in [16, 64, 84].

3. The curvature tensor of a classical connection is a first order natural
differential operator from Cla to T* ® T ® (A*T*). The corresponding G2 -
equivariant mapping from J! Clag to (T* @ T ® (A*T*))p = R*™ @ R™ @
(A’R™*) is given by

K _ K K K P K
Wy xp =AM = AT A AN — ApTAN

The curvature tensor is not unique operator of this type and plays an im-
portant role in classification of natural operators defined on classical con-
nections, see Section 2.5 and [10], [58, 60, 80].

1.14. Infinitesimal properties of natural lift functors. The regularity
property of lift functors allows us to lift vector fields on a manifold M to
projectable vector fields on the natural bundle F'M by using flows. Namely
if exp(t€) is the flow of a vector field £ on M then

F(exp(t§)) = exp(tF¢)

is the flow of the vector field F¢ on FM which is said the flow lift of €.
Moreover, if F' is of order r, then F¢ depends on r-jets of £. Properties of the
flow lift are used in [3] to define on a fibred manifold p : E — M infinitesimal
natural structure of order r by a rule transforming vector fields on M into
projectable vector fields on E. This transformation can be described by
using the notion of systems, see [3] and [71]. Let us recall that a projectable,
linear, regular system of vector fields on a fibred manifold F is a pair (H,n),
where g : H — M is a vector bundle, called the space of the system,
and n : H x)y F — TFE is a linear fibred morphism over FE, called the
evaluation morphism of the system, which is projectable over a linear fibred
morphism over M, of maximum rank, 77 : H — TM. Any (local) section
h : M — H induces the distinguished vector field 7j(h) on E by 7j(h)(y) =
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n(h(p(y)),y), y € E. The system is monic if the construction h +— 7(h) is
injective and is almost involutive if on H there is a bracket [,] such that
7([k, k]) = [7i(h), 77(k)]. A projectable, linear, regular, canonical, monic and
almost involutive system is called strong. If (H,n) be a projectable, linear
and regular system of vector fields on F, we can define the Lie derivative
of sections ¢ € C*(F) with respect to sections h € C*(H) by Lo =
Toofj(h)—n(h)oo: M — VE.

Definition 1.9. ([3]) An infinitesimal natural lift of order r is a fibred
manifold p : E — M together with a system (J"TM, p) of vector fields of
LI which is linear, regular, canonical, projectable over ng : J"TM — TM
and almost involutive with respect to the subsheaf of integrable sections of
J'TM — TM. The system (J"T'M, p1) is called the natural system. O

1.15. Infinitesimal properties of natural operators. If 0 : M — FFM
is a section of an r-th order natural bundle (a field of geometrical objects)
then we can define the Lie derivative of o with respect to a vector field &
by the formula

d R
Leo = %|0{exp(—t§) o}.
L¢o is a section of VFM. Natural differential operators D from a natural

lift functor F' to a natural lift functor G are infinitesimally characterized by
the commutativity with the Lie derivatives, [56], in the sense that

LeD(M)(0) = TD(M)(Leo) ,

for any vector field £ on M and any section o € C°°(FM). This property
can be used to define natural operators between infinitesimal natural lifts
defined by Definition 1.9.

Definition 1.10. ([3]) Let E;, E; be two fibred manifolds over M and
assume that a structure of infinitesimal r-order natural lift is given on Fj
by a natural system (J"TM, ;) and a structure of infinitesimal s-order
natural lift is given on Es by a natural system (J*TM, us). A k-order
operator D from C*°(E;) to C*°(E») is said to be (infinitesimally) natural
if
TD(Ljreo) = LjeD(0),

for any section o : M — FE7 and any vector field £ : M — T M. O

2. APPLICATIONS OF NATURAL OPERATORS ON NATURAL BUNDLES

In this Section we shall mention some applications of natural operators
on natural bundles. First, we shall classify the Frolicher-Nijenhuis bracket
of projectable tangent valued forms, Section 2.1 and [2], the relations be-
tween linear connections on a fibred manifold and connections on the 1st
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jet prolongation of this fibred manifold are studied in Section 2.2 and [5],
higher order valued reduction theorems are studied in Section 2.5 and [10].
As application in classical field theories we study natural symplectic and
Poisson structures on the tangent bundle of a pseudo-Riemannian manifold
given by a metric and a linear connection, see Section 2.3 and [4, 6], and
natural cosymplectic structures on the phase space of the Galilei spacetime
given by a vertical metric and a phase connection, see Section 2.4 and [4].
For other examples of natural operators see [16, 60].

2.1. Natural operations with tangent valued forms. Frolicher and Ni-
jenhuis (F-N), [46, 74], introduced a bracket [, ] in the sheaf Q(M,TM) =

® Q' (M, TM), m =dim M, of (local) tangent valued differential forms
0<r<m

on a manifold M and proved that it gives rise to a graded Lie algebra (F-N
algebra), i.e., the bracket is R-bilinear and satisfies the graded anticom-
mutativity and the graded Jacobi identity. This algebra has been widely
applied to the study of complex, almost complex, almost tangent and other
structures on a manifold, see [39, 47, 75]. The F-N algebra can be linked
with the theory of connections, [38, 40, 51, 72], in the sense that the dif-
ferential calculus associated with a classical connection can be expressed in
terms of the F-N algebra. Mangiarotti and Modugno, [68], showed that the

F-NalgebraP(E) = @& P"(E), m+n = dim E, of projectable tangent
0<r<m+4n

valued forms on a fibred manifold p: E — M is the natural framework for
the study of (general) Ehresmann connections on fibred manifolds and that
the F-N bracket yields a generalization of the standard differential calculus
associated with general connections. In particular the exterior covariant
differential, the curvature tensor and the Bianchi identity can be expressed
by the F-N bracket.

The F-N bracket on Q(M,TM) satisfy the naturality condition, [48].
Koléf and Michor, [59], gave the full classification of natural R-bilinear nat-
ural operators Q7 (M, TM) x Q*(M,TM) — Q"t(M,TM). They proved
that, for r,s > 2,7 +s < dim M — 1, there exists a ten parameter family of
such operators.

In [2] all R-bilinear natural operators P"(E) x P5(E) — P""5(E) are
classified. We have

Theorem 2.1. ([2]) All natural R-bilinear operators
P"(E) x P*(E) — P"5(E), dimM >r+s,rs>1,
form a vector space over R generated by the following three operators

(¢, 9], p*dCoN, ¢GNP dCY,
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where C' is the contracting operator, d is the exterior derivative and A is the
exterior product of base differential forms with tangent valued forms on E.

It is easy to see that only scalar multiples of the F-N bracket satisfy the
graded anticommutativity and the graded Jacobi identity. So we have

Corollary 2.2. ([2]) The F-N bracket is the only (up to a multiplicative
constant) natural graded R-bilinear operator P(E) x P(E) — P(E). O

The Theorem 2.1 has direct consequences for the theory of general con-
nections on a fibred manifold. Namely we have

Theorem 2.3. ([2]) Let T be a general connection on E. Then, (exterior)
covariant differential Dr = [T, .] is the only (up to a multiplicative constant)
derivation Dp : P(E) — P(E) of degree 1 which satisfies the naturality
condition f*(Dr@) = Dy+r(f*¢). O

Theorem 2.4. ([2]) The curvature tensor is the only (up to a multiplicative
constant) vertical valued 2-form associated naturally with a given connection

. (]

2.2. Relations between classical connections on the tangent bundle
and connections on the 1-jet bundle of a fibred manifold. In general
relativistic theories over spacetime with absolute time (the Galilei space-
time, see Section 2.4) there is the bijective relation between time preserving
linear connections on spacetime and affine connections on 1-jet bundle of
spacetime (phase space), [35]. This result can be generalized for a general
fibred manifold and so we classify all natural operations transforming clas-
sical connections on the tangent bundle of a fibred manifold to connections
on the 1-jet bundle.

Let p: Y — M be a fibred manifold with a local fibred coordinate chart
(2 2%) = (29, A =1,...,dimM =m, i = 1,...,dimY — dim M = n,
a=1,...,dimY =n+ m. A classical (linear) connection A on the bundle
7wy 2 TM — M and a classical (linear) connection K on the bundle 7y :
TY — Y can be expressed by the vertical projections vy : TTM — TM
and vi : TTY — TY, respectively. a pair of classical connections (K, A) is
said to be fibre preserving if I'povg =TTpo vy.

Let us consider the complementary contact maps of 1-jet prolongation of
Y

1:JY s T*MeTY, 9:J%Y -T'YQVY.
Y Y
Then we have

Theorem 2.5. ([5]) Let A be a classical connection on M and K a classical
connection on Y. The map

vp = 19OV(K®A*) OTI[
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turns out to be a connection on the bundle 7} : J'Y — Y. Moreover, we
have the coordinate expression
ag\ - Kaijl'&. + Kai)\ - xﬁt(Kanwi + Kau)\) 5
i.e., the connection I is independent of A.
Thus, we have obtained a natural operator

x:K—T
transforming classical connections on TY into connections on J'Y . (]
The connection x(K) is not generally affine. We have

Lemma 2.6. ([5]) If (K, A) are fibre preserving, then the induced connec-
tion x(K) on JY is affine. O

The connection y(K) is not unique connection on J'Y constructed nat-
urally from K. We have the following classification theorem

Theorem 2.7. ([5]) All natural operations transforming a classical con-
nection K on'Y into connections on J'Y form the following 2-parameter
family

Y(K) + (id® x* @ 9) (ki T + kol @ Ti)

where k1,ke € R, Tk is the torsion tensor of K, denotes the contraction
and I is the identity tensor on TY . O

Corollary 2.8. ([5]) For a torsion free connection K the connection x(K)
is the unique natural connection on J'Y given by K. |

2.3. Natural symplectic and Poisson structures on the tangent
bundle of a pseudo-Riemannian manifold. Let (M, g) be a pseudo-
Riemannian manifold and h(u) = 2g(u,u), w € TM. If dimM = 4 and g
is a Lorentzian metric (M, g) is said to be the Einstein spacetime. Then
Q(g) = dyh, d, being the vertical differential, is the canonical natural metric
symplectic 2-form on TM. From the point of view of natural geometry Q(g)
is a natural operator J'(pRmM) x; TM — A?T*(TM) over the identity
of TM. Let us note that £2(g) can be defined as the lift of the metric g with
respect to the Levi Civita connection K (g) as Q(g, K(g)) = vk AY, where A
is the wedge product followed by the contraction through the metric g and
¥ = d* ® 0y is the identity form on TM. The following natural question
arises: to classify all natural operators of the above type. This problem was
solved for symmetric (0, 2)-tensor fields on T'M by Kowalski and Sekizawa,
[62], and for natural 2-forms in [19]. The classification, in both symmet-
ric and antisymmetric situations, is based on the classification of natural
F-metrics on TM. We have, see [62] for Riemannian metrics and [19] for
pseudo-Riemannian metrics,
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Lemma 2.9. Let (M, g) be a pseudo-Riemannian manifold of dimension
> 3. Then all natural F-metrics on M derived from g are symmetric and
are of the form

(2.1)  Bulg)(&m) = p(h(u))g:(&n) + v(h(w))gz (8, w)gz(n, )

where p, v are arbitrary smooth functions of one real variable and u,&,m €
T.M. |

Now, by using the natural F-metrics (2.1), we have

Theorem 2.10. ([19]) All natural operators from J*(pRmM) x TM to
N2T*(TM) over the identity of TM are lifts Q(8,K) of natural F-metrics
with respect to the Levi-Civita connection K(g). O

The result of Theorem 2.10 can be generalized for any classical connection
K and we obtain natural 2-form Q(3, K) on TM. We have

Theorem 2.11. ([19]) All natural operators pRmM x ClaM x TM —
N2T*(TM) over the identity of TM are lifts of natural F-metrics with re-
spect to classical connections. O

If (M,g) is a Lorentz manifold (the Einstein spacetime) then natural
2-forms on T'M plays the fundamental role for geometrical quantisation,
[91]. So it is very important to know under which conditions Q(3, K) is
symplectic, [65]. We have

Theorem 2.12. ([4]) Let K be a classical connection on M. Then Q(0, K)
is a symplectic 2-form on T M if and only if

Bu(9) (&) = p(h(u))ga((&,m) + W

u,&,m € T, M, where the real smooth function p satisfies

ut) £0, () + 2 g

for allt € R. Moreover g and K have to satisfy
(B) g® Vg s the symmetric (0,5)-tensor field,

9 (& u)gz(n, 1),

where dg g is the exterior covariant differential defined in [60]. (|

Remark 2.13. In [32] conditions for Q(g, K) to be symplectic was found
for a general (non linear) connection on T'M. O

The geometric quantization on T'M can be considered also with respect
to a Poisson structure, [89], given by a natural 2-vector field A on TM such
that the Schouten-Nijenhius bracket satisfies [A, A] = 0. First, for a classical
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connection K on M and the metric g, we have the canonical 2-vector field
A(g, K) given in coordinates by

(2.2) Mg, K) = g™ (9 + Kx"5i70,) A D, .

Then we have the following classification theorem given by a natural F-
metric y

Theorem 2.14. ([6]) Let (M,g) (dimM > 3) be an oriented pseudo-
Riemannian manifold endowed with a symmetric classical connection K.
Then all natural 2-vector fields on TM are of the form

Aly, K) = 71(h(u) Mg, K) + v2(h(w)) u' A

where v1,7v2 are smooth real functions defined on R and u™ or vV are hor-
izontal or vertical lifts, respectively. O

Lemma 2.15. ([6]) The 2-vector field A(vy, K) is of mazimal rank if and
only if y1(t) # 0 and v, (t) + 2ty2(t) # 0 for any t € R. O

Theorem 2.16. ([6]) The nondegenerate 2-vector field A(vy, K) defines a
Poisson structure on TM if and only if the conditions (A), (B) and

(€) Y1 (E)72(t) = (¥ (1) = 2ty2() (1) =0
are satisfied for any t € R. (]

\%4

Let us note that the conditions of Theorem 2.16 for nondegenerate nat-
ural Poisson structures are equivalent with conditions for natural symplec-
tic structures given by Theorem 2.12, i.e., the Poisson structure given by
A(7, K) is dual to the symplectic structure given by Q(3, K).

2.4. Natural cosymplectic structures on the phase space of the
Galilei spacetime. The Galilei spacetime is assumed to be a 4-dimensional
manifold ¢t : E — B fibred over 1-dimensional affine orientable manifold B
(time) and endowed with a vertical Riemannian metric g. Typical fibred
coordinate charts will be denoted by (z°,y%). In what follows the index 0
will refer to the base space and Latin indices 4, j, k, ... = 1,2, 3 will refer to
the fibres, while Greek indices , 1, ... = 0,1, 2,3 will refer both to the base
space and the fibres.

On the Galilei background a motion is defined to be a section of t : £ —
B. This implies that the 1-jet bundle of motions (the Galilei phase bundle)
is the usual 1-jet bundle 7} : J'E — E.

We consider the 1-jet bundle J!' E as the affine subbundle J'E C T*B®g
TFE which is constituted by the vectors which project on 1 € T*B ®p T'B.
The induced fibred coordinate charts on J'E will be denoted (z°, 4%, yd).
The canonical local bases of the modules of vector fields and forms on J!'E
will be denoted by (9,,9¢) and (d?, d})).



16 APPLICATIONS OF NATURAL OPERATORS

A (phase) connection on J'E — FE is defined to be a tangent valued

lform T : J'E — T*E ® TJ'E, which projectson 1g : E — T*E®pTE.
JE
Its coordinate expression is

I'=d?®(0,+T0,0)), Ti,e€C (J'E).

The connection I is said to be affine if I}, =T%\yd +T9,, T%, € C=(E).
In [54] it is proved

Theorem 2.17. There is a canonical bijection between time-preserving con-
nections on TE — E and affine phase connections on J'E — E. In coor-
dinates this bijection reads as K,'y — Ly O

According to Theorem 2.17 a spacetime connection is a torsion free time-
preserving connection on T'E or equivalently an affine torsion free phase
connection on J'E — E.

The spacetime connection I' can be characterized by the associated verti-
cal-valued 1-form vr : J'E — T*J'EQp(T*B®V E) with the coordinate
expression

vr = (df — (M} +T,)d?) ® d° © 0.
The contact 2-form on J'E derived from g and T is then the T* B-valued
2-form
Qg,0)=wvpA9: J'E - T*B @ A*T*J'E,
JIE

where A denotes the wedge product followed by the contraction through the
metric g. In coordinates we have

Qg,T) = gijd° ® (dj — (Thyt + Th,)d?) A (d — ydd°).
In [54] it is proved that the contact 2-form €(g,I") is a non-degenerate

2-form in the sense that dt AQ A QA Q is a volume form on J1E.
Moreover we have the following, [54],

Theorem 2.18. The contact 2-form Q(g,T') is closed if and only if R' ;7 =
ijiv, and Vg =0, where g is the contravariant metric. (Il

Remark 2.19. The closed contact 2-form 2[g, '] plays a distinguished role
in the theory built by Jadczyk and Modugno, [54], and is used for geometric
quantization in the Galilei background. (]

Let us denote by Q,(J'E) — E the bundle of space-time connections.
From the viewpoint of natural geometry (g, I") is a natural operator from
S?2V*E xg Q. (J'E) xg J'E to T*B ® i g A’T*J'E over the identity of
J'E.
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Theorem 2.20. ([4]) All natural operators from S*V*E xg Q,(J'E) xg
J'E to T*B ® gy N2°T*J'E over the identity of J'E are scalar multiples
of the contact 2-form Q(g,T"). O

Remark 2.21. According to Theorem 2.20 dt and Q(g, ") define the unique
(up to a constant multiple) cosymplectic structure on the Galilei phase
space. O

2.5. Higher order valued reduction theorems for classical connec-
tions. It is well known that natural operators of linear symmetric con-
nections on manifolds and of tensor fields which have values in bundles of
geometrical objects of order one can be factorized through the curvature
tensors, the tensor fields and their covariant differentials. These results are
known as the first (the operators of connections only) and the second re-
duction theorems (RT). The history of the first RT goes back to the paper
by Christoffel, [37], and the history of the second RT goes back to the paper
by Ricci and Levi Civita, [78]. For further references see [60, 66, 80, 87].
In [80] the proof for algebraic operators (concomitants) is given. In [60]
the first and the second RT's are proved for all natural differential operators
by using the modern approach of natural bundles and natural differential
operators, [60, 16, 76, 85]. The local version of the first RT is known also
as the replacement theorem, [86, 87]. The RTs play very important role in
theoretical physics. Namely, if we represent linear connections on manifolds
as principal connections on the principal bundles of first order frames, then
the RTs are in fact higher order versions of the Utiyama’s theorem (the first
RT) and Utiyama’s invariant interaction (the second RT), [88].

In [10] we generalize the RTs for natural operators which have values
in higher order natural bundles. For these theorems we shall use the name
higher order valued reduction theorems for classical symmetric connections.
Let us denote by V*7) & < 7 the sequence of operators (V¥ ... V")
and by C’ék’T)M the (k,r)-order curvature bundle of classical symmetric
connections obtained as the image of the operator V*") R on Cla, M. Then
we obtain the first k-order valued reduction theorem for classical symmetric
connections.

Theorem 2.22. ([10]) Let F' be a natural bundle functor of order k > 1 and
let r+2 > k. All natural differential operators f : C*(Cla, M) — C*(FM)
which are of order v are of the form

FGTA) = g(j* 2N, VE2 D RIA])
where g is a unique natural operator

g:J*2Cla, M x 2"V — FM. O
M
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Similarly, we define the (k,r)-order Ricci bundle Z*")M as the image
of the pair of the operators (V(k_Q”'_Q)R, V(k”')) applied on classical sym-
metric connections and sections of a 1st order natural bundle VM. Then
the second k-order valued reduction theorem can be formulated as follows.

Theorem 2.23. ([10]) Let F be a natural bundle of order k > 1 and let
r+1 > k. All natural differential operators f : C*(Cla, M x VM) —
M

C™®(FM) of order r with respect sections of VM are of the form
f(jr_lA,jr(I)) — g(jk_QA,jk_lq), v(k—Q,'r*—2)R[A]’ V(k,r)q))
where g is a unique natural operator

g:J"2Cla, M x J*'VM x Z*"M — FM . O
M M

Remark 2.24. The order (r — 1) of the above operators with respect to
classical symmetric connections is the minimal order we have to use. The
second reduction theorem can be easily generalized for any operator of order
s > r — 1 with respect to connections. Then

FGEA, @) = g(5*2A, jF 1o, V2= D R[A VI @) . 0

Remark 2.25. If A is a linear non-symmetric connection on M, then there
exists its splitting A = A+ T, where A is the classical connection obtained
by the symmetrization of A and T is the torsion tensor of A. Then all
natural operators of order r defined on A are of the form

f(]TA) _ f(]rx,er) _ g(jk_QK,jk_lT, %(k—lr—l)R[KL %(k,r)T) ) 0

Remark 2.26. If g is a metric field on M, then there exists the unique
classical Levi Civita connection A given by the metric field g. Then, apply-
ing the second reduction theorem, we get that all natural operators of order
r > 1 defined on g are of the form

f("g) = F(" A, §"g) = h(5* A, j5 g, VE2T 2 RIA])
= h(j*"1g, V=22 R[A]). 0

Typical applications of of higher order valued reduction theorems are
classifications of natural tensor fields on the tangent (or cotangent) bundle
of a manifold endowed with a classical connection or lifts of tensor fields to
the tangent (or cotangent) bundle by means of a classical connection, see
[22, 24, 62, 82, 83]. As a concrete example let us classify all (0,2)-tensor
fields on T*M given by a linear (non-symmetric) connection A.

Theorem 2.27. ([10]) Let (M,A) be a manifold endowed with a linear
(non-symmetric) connection A. Then all finite order natural (0,2)-tensor
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fields on T*M are of the mazimal order one and they form a 14-parameter
family of operators with coordinate expression

b= (Ax',\a'cu +CLanT, ), +Cok, TN+ C3a, Tn
+ R TP AT+ B TP\ T, + F3 T, 5 10,
+ Gy Tpp)\;u + G2 Tppu;A +Gs TAPMP + H, Rpp)\u + H R/\pw)d)\ ® d*
+Bd* @ (dy + Ay iy d') + O (dy + ANy iy d") @ d*,

where A, B,C,C;, F;,G;, Hj, 1 =1,2,3, j = 1,2, are real constants. ([l

3. GAUGE-NATURAL BUNDLES

In this Section we recall basic definitions and properties of gauge—natural
bundle functors, [42, 58], and infinitesimal gauge—natural structures, [3].

3.1. Gauge—natural bundle functors. Gauge—natural bundle functors
was introduced by D. Eck, [42]. We recall here the definition of [60]. Let us
recall that B is the base functor from the category M to the category M.

Definition 3.1. A gauge—natural bundle over m-dimensional manifolds is
a functor F : PB,,(G) — FM such that

(a) every PB,,(G)-object m : P — BP is transformed into a fibered
manifold gp : FP — BP over BP,

(b) every PB,,(G)-morphism f : P — P is transformed into a fibered
morphism Ff : FP — FP over Bf,

(c) for every open subset U C BP, the inclusion i : 7= 1(U) — P is
transformed into the inclusion F' : qgl(U) — FP. ]

A gauge—natural bundle is then a quadruple (FP,np, M, 7 : P — BP).

Later (Theorem 3.3) we shall see that F'P is actually a bundle.

In the original definition, [42], there is one more continuity condition
which says that a smoothly parametrized family of diffeomorphisms of P
is ”transformed” into a smoothly parameterized family of isomorphisms of
FP. But this condition is a consequence of 1), ii) and iii), [60].

3.2. Functor W". Let (v : P — M) € Ob?B,,(G), let W"P be the space
of all r-jets jf, . ¢, where ¢ : R™ x G — P is in Mor PB..(G), 0€ R™ and
e is the unity in G. The space W" P is a principal fibre bundle over M with
structure group W,, G = J(ro’e) (R™x G,R™x Q) of all r-jets of principal fibre
bundle isomorphisms ¥ : R™ x G — R™ x G covering the diffeomorphisms
¥ : R™ — R™ such that ¢(0) = 0. The group W/ G is the semidirect
product G;, x T G of G7, and T, G with respect to the action of G}, on
Tr G given by the jet composition. Let (¢ : P — P) € Mor PB,,(G), then
we can define the principal bundle morphism W7y : W™P — W7 P by the
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jet composition. The rule transforming any P € ObPB,,(G) into W"P €
Ob PB,, (W, G) and any ¢ € Mor PB,,,(G) into W"¢p € Mor PB,,,(W/,G) is
a gauge-natural bundle functor, [58].

Let us note that the first prolongation W}, G can be expressed as the
product GL, x G x (§® R™*) with the following composition, [58],

(X,9,2)(X,5,7) = (XX, gg,ad(g” ") ZX + Z).

3.3. Bundle structure. The gaugenatural bundle functor W” described
in Paragraph 3.2 plays a fundamental role in the theory of gauge—natural
bundle functors. We have, [42, 58],

Theorem 3.2. Fvery gauge—natural bundle F'P is a fibred bundle associated
with the gauge—natural bundle W™ P for a certain order r. O

3.4. Order of gauge—natural bundle functors. The number r from
Theorem 3.2 is called order of the gauge—natural bundle functor F. So
if F'is an r-order gauge—natural bundle functor then

FpP= [erv FO]a Fo = [Wr@aidFo]a
where Fp is a W), G-manifold called the standard fibre of F.

3.5. Gauge and total order of gauge—natural functors. Let F' be an
s-order gauge—natural bundle functor and let r < s be the minimal number
such that the action of W’ G = G}, x T G on Fy can be factorized through
the canonical projection 7} : 1,5 G — 1), G, s > r. Then s is said to be the
total order of F, r is the gauge order and we say that F' is of order (s,r).
In what follows we shall denote by wire = G5, x T G and by W*"P
the corresponding principal bundle.

3.6. Gauge—natural fibred coordinate chart. A local fibred coordinate
chart (z*,p%) on P and a coordinate chart (y?) on F, induce a fibred co-
ordinate chart (z*,y?) on FP, which is said to be the gauge-natural fibred
coordinate chart.

3.7. Examples. 1. Any r-order natural lift functor in the sense of Defi-
nition 1.1 is the (r,0)-order gauge—natural bundle functor with the trivial
gauge action, i.e., the action (G, X G) x Fy — Fy does not depend on G.

2. Let (r : P - M) € ObP?B,,(G) and let us denote by PriP — M
the bundle of principal connections on P. Then Pri is a (1,1)-order gauge—
natural bundle functor with the standard fibre G ® R™* and with the action
of WG given by, [58],

(X,9,2)(Y) = ad(g)(Y +Z2)X .
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In particular, let G = Gj,, then PriP can be viewed as the bundle
Lin E of linear connections on an associated vector bundle ¥ — M with
n-dimensional fibres. The standard fibre of Lin is Ling = R** @ R™ @ R™*
with coordinates (K;'y), 4,j = 1,..,n, A = 1,..,m, and the action of
WG = GL % TLGL on Ling is given, in the canonical coordinates
(aﬁ,aé,ah) on G x TLGL by

Kj'x = a, K,*palal +ay,af af
where tilde refers to the inverse element.
3. Let Fy be a left G—manifold. The associated gauge—natural bundle
functor is defined by

asSr, (P) = [P7 F0]7 assr, (90) = [@aidFo]a

where P € ObPB,,(G), ¢ € MorPB,,(G), is a 0-order gauge—natural bun-
dle. Especially the adjoint bundle ad P is the 0-order gauge—natural bundle
given by the adjoint action of G on its Lie algebra G.

4. If F is a gauge natural bundle functor of order (s,r) then J¥F is a
gauge—natural bundle functor of order at most (s + k,r + k). The number
(s + k) is exact, but (r + k) may be too big. For instance if F is an s-
order natural lift functor, i.e., an (s,0)-order gauge—natural bundle functor,
then J*F is an (s 4 k)-order natural lift functor, i.e., an (s + k,0)-order
gauge-natural bundle functor.

5. ad P ® (APT*M) is a (1,0)-order gauge-natural bundle functor.

3.8. Gauge—natural operators. Let (¢, f) € Mor PB,,(G), ¢ : P — P,
f: M — M, F be a gaugenatural bundle functor and o : M — FP be a
section. Then we define the section ¢*o : M — FP by ¢*c = Fpooo f~L

Definition 3.3. A natural differential operator D from a gauge—natural
bundle functor F} to a gauge—natural bundle functor Fy is a family of dif-
ferential operators

{D(P) : C*(F1P) — C*(FyP)} peobes,, (@)

such that

(i) D(P)(¢*c) = p*D(P)(0) for every section o € C(F,P) and every
(o, f) € MorPB,,,(G), p: P — Pover f: M — M,

(ii) Dr—1(vy(o|U) = (Dpo)|U for every section o € C*°(Fy P) and every
open subset U C M,

(iii) every smoothly parameterized family of sections of FyP is trans-

formed into a smoothly parameterized family of sections of F5P. ([l
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Definition 3.4. A differential operator D from a gauge-natural bundle
functor F; to a gauge—natural bundle functor F5 is said to be gauge—natural
if

D(P)(Fip o o) = Fypo D(P)(0)
for any ¢ € MorPB,,,(G), over the identity, and any section o € C*°(F;P).

3.9. Order of natural operators. A natural differential operator D from
F} to Fy is of a finite order k if all D(P), (7 : P — M) €ObPB,,,(G), depend
on k-order jets of sections of F} P. Thus, a k-order natural operator from Fj
to Fy is characterized by the associated fibred manifold morphism D(P) :
J*F P — FyP, over M, such that the family D = {D(P)} peobps,. () is a
natural transformation of J*F; to Fs.

Theorem 3.5. Let Fy and F be gauge—natural bundle functors of order
< r. Then we have a one-to-one correspondence between natural differential
operators of order k from Fy to Fy and W kG -equivariant mappings from
(JkFl)o to (Fg)o. J

This theorem is due to Eck, [42], see also [60].

Remark 3.6. For the case of gauge—natural operators of order k we obtain
that the corresponding equivariant mappings are equivariant with respect
to the actions of the group T/HFG ~ {JFT*id} x TG,

3.10. Curvature operator. The curvature operator of principal connec-
tions is a 1-order natural operator from Pri to & (A2T™*) with the associated

W,(,? 2) G-equivariant morphism
(us\p) o R=T"5 , =T x + iy PbA Fd# )

where ¢}, are the structure constants of G.

3.11. Infinitesimal properties of gauge—matural bundle functors.
The continuity property of gauge—natural bundle functors allows to trans-
form G-invariant vector fields on a principal G-bundle P to projectable
vector fields on the gauge—natural bundle F'M by using flows. Namely if
exp(tZ) is the flow of a G invariant vector field = on P, projectable on the
vector field € on M, then F(exp(tE)) = exp(tFE) is the flow of the vector
field F= on F' P which is said the flow transformation of =. Moreover, if F’
is of order r, then F= depends on r-jets of =. Properties of the flow trans-
formation are used in [3] to define on a fibred manifold E — M infinitesimal
gauge—natural structure of order r by a rule transforming a strong system
of vector fields into projectable vector fields on E. This transformation can
be described by using the notion of systems, see [3] and [71].
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Definition 3.7. ([3]) Let (H,n) be a strong system on p : E — M. An
infinitesimal gauge—natural transformation of order r is a fibred manifold p :
E — M together with a system (J" H, u) which is linear, regular, canonical,
projectable over (o J"7) : JTH — TM and almost involutive with respect
to the subsheaf of integrable sections of J"H — M. O

We say that the system (J"H,n) defines a structure of an infinitesimal
gauge—natural bundle of order r on E. The system (J"H,n) is called the
gauge—natural system.

3.12. Infinitesimal properties of natural operators. If 0 : M — FP
is a section of an r-th order gauge—natural bundle then we can define the
Lie derivative of o with respect to a G-invariant vector field = on P, over
the vector field € on M, by the formula

d
Lzo = £|0{exp(—tE)*J} .

Leo is a section of VFP. Natural differential operators D from a gauge-
natural bundle functor F to a gauge—natural functor functor G are infinites-
imally characterized by the commutativity with the Lie derivatives, [3], in
the sense that
L=D(P)(a) = TD(P)(Lz0),

for any G-invariant vector field = on P and any section o € C*(FP).
This property can be used to define natural operators between infinitesimal
gauge—natural transformations defined by Definition 3.7.

Definition 3.8. ([3]) Let Ey, E5 be two fibred manifolds over M and let
a structure of r-order infinitesimal gauge—natural transformation be given
on F; by a gauge—natural system (J"H, 1) and a structure of s-order in-
finitesimal gauge—natural transformation is given on Es by a gauge—natural
system (J®H, us). A k-order operator D from C*°(E;) to C*°(Es) is said
to be (infinitesimally) natural if

TD(erhO') = EjshD(O') 5
for any section o : M — FE; and any vector field h: M — H. O

4. APPLICATIONS OF NATURAL OPERATORS ON GAUGE—NATURAL
BUNDLES

As applications of natural operators on gauge-natural bundles we shall
study natural quantum Lagrangians and natural Schédinger operators on
the quantum bundle over the Galilei spacetime, [7], we shall generalize the
Utiyama’s reduction method for the gauge group Gl(n,R), [8, 9], and for a
general Lie group G, [11].
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4.1. Natural operators on the quantum bundle over Galilei space-
time. In Galilei covariant classical and quantum mechanics studied in [7]
and [21, 25, 26, 27, 28, 53, 54] all objects have their physical dimensions
expressed by the fact that they have values in unit spaces. Moreover, the
theory is covariant with respect to changes of bases of units. We assume the
following fundamental unit spaces, which are positive 1-dimensional “semi—
vector spaces” over RT: the space T of time intervals, the space L of lengths
and the space M of masses. a time unit of measurement is defined to be
an element ug € T, or its dual u® € T*. Moreover, we assume the Planck
constant to be an element A € T* ® LZ @ M. We refer to a particle with
mass m € M and charge ¢ € T* @ L3/2 @ M'/2, where LP/9 = @PL @ QIL*.

We assume the classical (Galilei) spacetime to be a 4-dimensional ori-
entable manifold F, the absolute time to be a 1-dimensional oriented affine
space B associated with the vector space T ® R and the time map to
be a surjective map t : E — B of rank 1. Moreover, we assume the
fibres of spacetime to be equipped with a “scaled” Riemannian metric
g:E—1L2® (V*E®g V*E) or its inverse §: E —» L*? ® (VE ®p VE).

Thus, we have the time-form dt : E — T @ T*E. Given a mass m € M,
it is convenient to introduce the “normalized” metric G = g : £ —
T® (V*E @ V*E) or its inverse G = Lg: E — T*® (VE ®p VE). We
stress that the normalized metric and all objects which will be derived from
it incorporate the chosen mass and the Planck constant.

We choose an orientation of spacetime. We shall refer to spacetime charts
(), which are adapted to the fibring ¢ and to the chosen orientation of
E, and such that 2° is a Cartesian chart of B associated with a time unit
of measurement ug. The index 0 will refer to the base space, Latin indices
1,7, - = 1,2 3 will refer to the fibres, while Greek indices A\, i, --- =0,1,2,3
will refer both to the base space and the fibres.

We have the coordinate expressions dt = uo®d° and G = G?j up@di @d7.

The metric g and the spacetime orientation yield the space-like vertical
volume formn: E — L3 ® A>V*E and spacetime volume formv =dt An:
E — (T®L?) @ AYT*E, respectively.

The classical phase space is defined to be the first jet space t§ : JE =
J1E — E of sections.

The spacetime connection is defined to be a torsion free linear connection
K of the bundle TE — F such that Vdt = 0 and Vg = 0. Such connection
is characterized by K,°,, = 0, the vertical restriction of K is the Levi-Civita
connection s given by g and gp; Ko?; + gpi Ko?; = —%80gij. Let us note that
the operator x, [5], identifies spacetime connections with affine connections
on the phase space.
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We assume the quantum bundle to be a Hermitian line bundle over space-
time 7: Q — F, i.e., m: Q — F is a Hermitian complex vector bundle with
one-dimensional fibres. Let us denote by h : Q xgp Q@ — C ® A3V*E the
Hermitian product with values in vertical volume forms. Let b : E — @Q
be a (local) base of @ such that h(b,b) = 1. Such a local base is said to
be normal and the fibred coordinate chart (20,27, 2), z € F(Q, C ® L*3/?),
induced by a normal base of @ is said to be a normal coordinate chart on
Q. In any fibred normal coordinate chart h(¥, V) = 1)y for every section
U =1yb e S(Q).

A linear connection Y on @ is said to be Hermitian if it preserves the
Hermitian fibred product A. In a normal fibred coordinate chart Hermitian
connections are expressed in the form

U=d"® (0 +iUdyD), Y, € F(E,R),

where I = z ® b is the Liouville vector field on Q.

Let us consider the pullback bundle 7! : Q' := JE xg Q — JE of the
quantum bundle 7 : Q — E, with respect to t} : JE — E. Let us recall that
a connection U : QT — T*JE® ;5 TQ! is said to be the universal connection
of the system of connections £ : JEXp@Q — T*E®gpTQ if, for every section
0: E — JE, the associated connection £(0) : Q@ — T* EQgTQ of the system
is obtained from Y by pullback according to the formula (o) = 0* Y.

A connection U: Q' — T*JE® ;5 TQ" is said to be a quantum connection
if, [53], Q1) Y is Hermitian, Q2) Y is a universal connection, Q3) the
curvature of Y is given by R[U] = iQ ® I, where Q = Q[g, x(K)] is the
cosymplectic 2-form studied in Section 2.4. Let us note that the coefficients
of the quantum connections are in fact quantum potentials of the quantum
theory.

Let us consider a section ¥ € §(Q), its pullback on JE (denoted by the
same symbol) and a quantum connection Y. The covariant differential of W
with respect to Y is a fibred morphism over E

VY|P : JE%T*E%Q, Va=0 —i Yy,
and the time-like and the space-like covariant differentials of ¥ are

VU = 1,V : JE - T ®Q, VU JE-VERQ.
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Then, for any section ¥ € §(Q), we obtain the following invariant fibred
morphisms over F

L(V) = %dt A <h(xp,z’%\11) RV, @)) L JE — MT°E

< 1 _ . .
L(V) = 5dt A (G M) (VE,VE): JE — A'T°E,

and the canonical quantum Lagrangian is a unique (up to a multiplicative
factor) linear combination of the above morphisms which projects on E,
namely

Ecan(\p) = Z(\Ij) - ‘Cv(\p)

with coordinate expression
I = S
Lean(¥) =5 (i@ Vot = wVo0) = GEIV,0V,0) °,

where v = v(u’) = \/gd® Ad' Ad* N d3.

The canonical quantum Lagrangian is a natural operator transforming
vertical metrics, sections of the quantum bundle and quantum connections
into volume forms on E. This operator is of order one with respect to
sections of the quantum bundle. Now we shall discuss the classification
of natural quantum Lagrangians under the additional condition that they
depend on spacetime connections (up to finite order k).

Theorem 4.1. ([7]) All 1st order (with respect to sections of the quan-
tum bundle) natural quantum Lagrangians induced by the gravitational and
quantum structure of spacetime are of the form

h
v) = can V) —b— \IJ)\II 3
L(¥) = a Loan(V) = by Rt A (¥, )

where Legn (V) is the canonical quantum Lagrangian, R is the scalar curva-
ture of the vertical metric connection » and a, b are real numbers. O

The Schridinger operator associated with a natural quantum Lagrangian
L is then the sheaf morphism

Osen(L) = (T:FE(L)) : S(Q) — S(T* ® Q) ,

where 1€(L) : JoQ — L3®Q®A*T*E is the Euler-Lagrange morphism, i.e.,
for any section ¥ € S(Q), we have the Euler-Lagrange operator *€(L)(¥) =
#€(L) o j2V associated with L.

Let us consider a section (an observer) o: E — JE — T* ® TE and let
us define the divergence of o as a T*-valued function given by

Lon=div(o)n: E— T*@L*® A’V*E
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which, in coordinates adapted to o, has a coordinate expression div(o) =
ao—\/‘gg . Further we have the (observed) Laplacian

o

AW) = (g: Vo9 & K|V[o"U) : E — Q,

where the second order covariant differential is considered with respect to
the tensor product linear connection 0*UY® K. Then the Schodinger operator
associated with the natural quantum Lagrangian of Theorem 4.1 can be
expressed as

hao ©

2731A) - bﬁR) ().

(A1) Osen(L(T)) =10 ® <a(i (Vo + %div(o)) +
Let us note that even if the operators Vg, div(o) and ﬁ depend on an
observer o, the Schrédinger operator (4.1) is observer independent.

Now we shall classify all natural operators Ogep, : S(Q) — S(T* ® Q)
of the Schrodinger type, i.e., we shall classify all second order operators
depending on the vertical metric field, the spacetime connection and its
derivatives of finite order k£ and the quantum connection and its first order
derivatives.

Theorem 4.2. ([7]) All 2nd order natural operators of Schridinger type
are of the form
Osen (W) =u® @ (a(i (Vo + 1div(o)) + @ﬁ) _plo g ()
2 2m 2m ’
where R is the scalar curvature of the vertical metric connection, o is an
observer and a, b are complex numbers. (Il

In Theorem 4.1 we have classified all 1st order natural quantum La-
grangians. Naturally, there is a question if higher order natural quantum
Lagrangians exist. The answer is positive, at least in the second order. If we
consider the Schrodinger operator Ogepn(Lean ) associated with the canonical
quantum Lagrangian L., then it is easy to see that

Lon(T) = %(dt A (T, Osen(Loan(T))) + dt A h(Osen(Loan(T)), T))

is the 2nd order natural quantum Lagrangian. Moreover, we can classify all
2nd order Lagrangians and we get.

Theorem 4.3. ([7]) All 2nd order (with respect to sections of the quan-
tum bundle) natural quantum Lagrangians induced by the gravitational and
quantum structure of spacetime are of the form

L(W) = @ Laan (V) — o Rt AR(Y, W) + ¢ L (V)
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where a, b, ¢ are real numbers. O

Remark 4.4. Let us note that the Schrodinger operator associated with
the 2nd order natural quantum Lagrangians from Theorem 4.3 is

Osen(L(T)) = (a + )Osen(Leoan(¥)) — b R(T),

2m

so the second order part of the above quantum Lagrangian does not give
new physical information. O

4.2. Reduction theorems for general linear connections. In Section
4.1 we have studied second order natural quantum Lagrangians and second
order Schrédinger operators. In both situations such operators are factor-
ized through the covariant differentials of sections of the quantum bundle
where the first order covariant differentials are given by the quantum connec-
tion but the second order covariant differentials are given by both quantum
and spacetime connections. This fact was a motivation how to generalize
the reduction theorems for general linear connections on vector bundles.

Let F — M be a vector bundle with a m-dimensional base and n-
dimensional fibres. Local linear fiber coordinate charts on F will be denoted
by (2%, ).

We define a linear connection on E to be a linear splitting K : £ — J'E .
Considering the contact morphism J'E — T*M ® TE over the identity of
TM, a linear connection can be regarded as a T E-valued 1-form K : £ —
T*M ® TFE projecting into the identity of TM. The coordinate expression
of a linear connection K is of the type

K=d"® (0r+K;"\y'0;), with K;'\ € C®(M,R).
Linear connections can be regarded as sections of a (1,1)-order G =

Gl(n,R)-gauge-natural bundle Lin F — M described in Example 3.7.2.
The curvature of a linear connection K on E turns out to be the vertical

valued 2-form R[K] = —[K,K] : E — VE ® A?2T*M , where [,] is the
Froelicher-Nijenhuis bracket. If we consider the identification VE = F x E
M

and linearity of R[K], the curvature R[K] can be considered as the curvature
tensor field R[K]: M — E* ® E® A*T*M and
RIK]: C®(LinE) — C*(E* ® E® A*T*M)
is a natural operator which is of order one.
Let us set El'f = @'E @ @1E* @ @ TM @ @*T*M. Then a classical

connection A on M and a linear connection K on E induce the linear tensor
product connection K7 ® A7 = @PK ® @1K* @ @A @ ®*A* on EL{

KP@T7: EPT — T°M @ TER]
, ©TEY
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which can be considered as a linear splitting K? @ A7 : EPT — J'EPT . Let
® € O°(EPT). We define the covariant differential of ® with respect to the
pair of connections (K, A) as a section of Bl @ T*M defined by

VEND = j1o — (KE® AT) 0 ®.

The iterated rth order covariant differential applied on the curvature ten-
sor of a linear connection is a natural operator which is of order (r —1) with
respect to classical connection and of order (r+1) with respect to linear con-
nections. Let us denote by C'7 I/ the image of this operator and by C’g ) M x M

C’g)E the (s,7)-order curvature bundle of classical and linear connections
given as the image of the pair of the operators (V(SH)R, V(”l)R), s>r—2,
V) = (id,V,...,V?*), defined on Cla, M x Lin E. Let us assume a (1,0)-
order Gl(n,R)-gauge natural bundle F'E, then the first reduction theorem
for linear and classical connections can be formulated as follows.

Theorem 4.5. ([8]) Let s > r—2, r > 0. All natural differential operators
f:C®(Cla; M x LinF) — C*(FE)
M

which are of order s with respect to classical connections and of order r with
respect to linear connections are of the form

PN GTK) = g(VETDRIAL VOV RIK])
where g 1s a zero order natural operator

g:C=CE™Mm x c"VE) - C>=(FE). O

Let us assume the kth order covariant differential of sections of EZI:P2.
It is a natural operator of order k with respect to sections of EF!'P2 and
of order (k — 1) with respect to classical and linear connections. Let us
define the k-th order Ricci bundle Z(*) E as the image of the triplet of the
operators (V*=2 R V=2 R VK)) defined on Cla, M x Lin E x EP1P2.
Then the second reduction theorem for linear and classical connections can

be formulated as follows.

Theorem 4.6. ([8]) Let s, > k—1, s > r — 2. All natural differential
operators
f:C®(Cla, M x LinE x EPVP2) — O (FE)
M Mo
which are of order s with respect to classical connections, of order r with

respect to linear connections and of order k with respect to sections of E¥l:P2
are of the form

FGA K, j*®) = g(VEYRIA], VOV R[K], VIV @)
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where g is a zero order natural operator

g:C™((Ch™ 1M c““ ) x Z®WE) - Cc>(FE). O
cE Do E
M

4.3. Higher order valued reduction theorems for general linear
connections. In Section 2.5 we have generalized the classical RTs for
higher order valued natural operators. The similar generalization can be
done also for reduction Theorems 4.5 and 4.6 of general linear connections.

Let us denote by C'(Ck’s)M X Cék’r)E the (k, s, r)-order curvature bundle of
M

classical and linear connections given as the image of the pair of the oper-
ators (V#SI R, V*IR) s > — 2, defined on Cla, M x Lin E. Then the
first k-th order valued reduction theorem for linear and classical connections
can be formulated as follows.

Theorem 4.7. ([9]) Let s > r—2, r+1,s+2 >k > 1. Let F be a
Gl(n,R)-gauge-natural bundle of order k. All natural differential operators
f:C®(Cla, M x LinE) — C*(FE)

M
which are of order s with respect to classical connections and of order r with
respect to linear connections are of the form
f(]SA,jTK) — g(jk_2A,jk_1K, V(k_2’3_1)R[A], V(k—l,r—l)R[K])
where g is a unique natural operator

g: 757 Clar M x J*' Lin B x ck=2 =y 5 ¢k VE L FE. O
M

Let us denote by Z(*") E the (k,r)-order Ricci bundle defined as the im-
age of the triplet of the operators (V(#=27=2 R V(k=27-2) g (k1)) defined
on Cla; M x Lin £ x EPUP2. Then the second k-th order valued reduction
theorem for linear and classzcal connections can be formulated as follows.

Theorem 4.8. ([9]) Let F be a Gl(n,R)-gauge-natural bundle of order
k>1andletr+1 > k. All natural differential operators

f:C(Clar M x Lin E x Ept2) — C™(FE)

q1,92

of order r with respect sections of El’;ll;é’; are of the form

PG, ) = g TN TR T,
v(k‘72,T72)R[A]’ v(k72,’r72)R[K]7 v(k,’l“)q))
where g is a unique natural operator

g:J"2Cla, M x J*?LinE x J*'ER 2> x Z00E  FE. O
M M M
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Remark 4.9. The order (r—1) of the operator of Theorem 4.8 with respect
to linear and classical connections is the minimal order we have to use. The
second reduction theorem can be easily generalized for any operators of
orders s; or sy with respect to connections A or K, respectively, where
S1 Z S9 —2, S1,82 Z r — 1. Then

O G2 K57 ®) = g(5 %A, ¥ 2K, j e,
vik=2a U R[N, V22D R(K], VD). O

Remark 4.10. The above higher order valued valued reduction theorems
deal with symmetric classical connections on the base manifolds. If A is a
non-symmetric classical connection, then there is its unique splitting A =
A+ T, where A is the symmetric classical connection obtained from A by
symmetrization, i.e., /~\u>‘,, =1 (A +A,), and T s the torsion (1,2)-
tensor, i.e., TH’\,, = % (Au’\,,—Al,)‘M). Then any finite order natural operator
for A and K is of the form, s > r — 2,

FUSAGTE) = f(5°A 7K, §°T) =
= g(" PN PR AT VIR D RIAL VR RIK] VIRIT)
where ~ refers to A. 0

As applications of higher order valued reduction theorems we shall clas-
sify all classical connections on the total space of a vector bundle and all
connections on the 1st jet prolongation of a vector bundle given naturally
by a general linear connection K and a classical connection A on the base,
[30]. We have an induced natural classical connection D(A, K) on E given
by, [49, 60],

Proposition 4.11. There exists a unique classical connection D = D(A, K)
on the total space E with the following properties

thK(X)hK(Y) = hK(V[)‘(Y), VSK(X)SV = (V§3)V7
VERE(X)=0, VBV =0,
for all vector fields X,Y on M and all sections s,o of E, where h* is
the horizontal lift with respect to K, VX, VA, VP are covariant differentials

with respect to K, A, D, respectively, and sV ,cV denote the vertical lifts of
the sections s, o, respectively. (I

Remark 4.12. The gauge-natural bundle Cla E is a Gl(n, R)-gauge-natural
bundle of order (2,2) and D(A, K) defines the natural operator D from
C>(ClaM o Lin E) to C*°(Cla E) which is of order zero with respect to A

and of order one with respect to K. (I
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The difference of any two classical connections on E is a tensor field
on E of the type (1,2). So, having the connection D(A, K), all classical
connections on E naturally given by K and A are of the type D(A, K) +
®(A, K), where ®(A, K) is a natural (1,2)-tensor field on E. Hence, the
problem of classification of natural classical connections on E is reduced to
the problem of classification of natural tensor fields on E. any tensor field
on E is a section of a Gi(n,R)-gauge-natural bundle of order (1,1). Then,
by Theorem 4.8 and Remark 4.10, we get

Corollary 4.13. ([30]) Let ® be a tensor field on E naturally given by a
classical connection A on M (in order s) and by a general linear connection
K on E (in orderr, s > 1 —2). Then

®(u, j°A, " K) = U(u, VOT, VD R[A], K, VUV R[K])
where uw € E and ™ refers to the classical symmetrized connection A. |

Now we can use the above Corollary 4.13 to classify (1,2)-tensor fields on
E. We have the following families of natural operators given by A and K.

A) A gives 3-parameter family of (1,2)-tensor fields on M, [60], given by
SA)=a1 T+ aplpp @T + a3 T @ I,

where T is the torsion tensor of A, T is its contraction and Iy M —
TM ® T*M is the identity tensor.

B) A and K define naturally the following 9-parameter family of (0,2)
tensor fields on M, [60], given by

GIMK)=0CEA(TRT) +by C33(TRT) +b3CL3(T @ T)

+ ¢, CINT 4 ¢, CINT + ¢5 CANT
+dy CYR[A] + dy CAR[A] + €1 CIR[K],

where C’,?l is the contraction with respect to indicated indices and C} VT
denotes the conjugated tensor obtained by the exchange of subindices.

C) The value of the curvature tensor R[K] applied on the Liouville vector
field LisinT"M @ VE@T*M.

D) Finally, if we consider vi as the vertical valued 1-form vg : E —
T*FE ® VE with coordinate expression

Vg = (dl — KjiA yj d)\) X &,
we have 2-parameter family of operator obtained by applying the morphism
tr+pm @ tvg ® idr-g on
H(AK) —hivg @T +he T @ vk .
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Summarizing the above constructions we get

Theorem 4.14. ([30]) All classical connections on E naturally given by A
(in order s) and by K (in order r, s > r —2) are of the mazimal order one
and are of the form

D(A,K) = D(A,K) + h¥(S(A)) + L® G(A, K) + R[K|(L) + H(A, K),
i.e. form a 15-parameter family of connections. O

Remark 4.15. In [50, 60] the same result was obtained by direct calcula-
tions without using the reduction theorems. Our result coincides with the
result of [50, 60] but our base of the 15-parameter family of operators differ
from the base used in [50, 60]. O

In Section 2.2 (see [5]), we have described a natural operator x trans-
forming a classical connection on the total space of a fibered manifold and
a classical connection on the base manifold into a connection on the 1st jet
prolongation of the fibered manifold. Applying this operator on a classical
connection D(A, K) on the total space of a vector bundle E — M we get

Theorem 4.16. A general linear connection K on E and a classical con-
nection A on M give naturally the connection I'(A, K) = x(D(A, K)) on
J'E. a

Any natural connection on J'E is then of the form I'(A, K) = D'(A, K) +
U (A, K), where U(A, K) is a natural section of T*E @ T*M ® VE. Then
we have

Theorem 4.17. ([30]) All connections on J'E naturally given by A (in
order s) and by K (in order r, s > r—2) are of the mazimal order one and
are of the form

T(A, K) =T(A, K) + 001" (S(A) + L® G(A, K) + RIK|(L) + vk @ T,
i.e. form a 14-parameter family of connections. O

Remark 4.18. Let us note that ['(A, K) = X(B(A, K)). O

4.4. Higher order Utiyama’s theorem. One of the most famous results
in gauge invariant theories is the Utiyama’s theorem, [88], that classifies
those Lagrangians for gauge fields (principal connections on principal bun-
dles) which are (locally) gauge invariant. In his original paper, [88], Utiyama
considered his theorem only locally with specific gauge transformations.
Later the Utiyama’s theorem was reproved by many authors also globally,
see for instance [36, 42, 69]. The Utiyama’s theorem can be formulated glob-
ally as follows: given a principal connection I then any gauge invariant first
order Lagrangian is given by a gauge invariant Lagrangian of the curvature
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tensor R[], i.e. Q('T) = Q(R[I]). The Utiyama’s theorem can be very
simply generalized for operators with values in a gauge-natural bundle of
order (1,0). In this case we shall use the term Utiyama-like theorem instead
of the Utiyama’s theorem. The Utiyama-like theorem was proved (in order
1) in [60).

Higher order local version of the Utiyama-like theorem was studied in [52]
where the author generalized the replacement theorem for gauge fields. The
results obtained in [52] are local and not complete since only concomitants
obtained from the covariant differentials of the curvature tensor of the gauge
field are assumed, while concomitants obtained from classical connections
on the base are not considered. By using the methods of gauge-natural
bundles we obtain complete and global coordinate free description of higher
order Utiyama-like theorem.

Let G be an n-dimensional Lie group, P € Ob?3,,(G), I' a principal
connection on P and ad P the adjoint vector bundle associated with the
principal bundle P. Then we have the induced adjoint linear connection
ad(T") on ad P.

The curvature tensor of a principal connection is a 1-order natural op-
erator from Pri P into ad P ® /\2 T*M. The covariant differential of the
curvature tensor R[I'] with respect to T and a classical connection A on the
base M is then defined as the covariant differential with respect to ad(I")
and A, see Section 4.2. Then the iterated rth order covariant differential
V7" R[I'] is a natural operator on Cla M x Pri P which is of order (r —1) with
respect to classical connections and of order (r+1) with respect to principal
connections. Let us denote by C(CS)M X Cg)P, s >r—2,(s,r)-order cur-
vature bundle for classical and principal connections obtained as the image
of the pair of the operators (V(*)R, V(") R) defined on Cla, x Pri P. Then
higher order Utiyama-like theorem for principal and classical connections
can be formulated as follows.

Theorem 4.19. ([11]) Let s > r—2, r > 0, and let F be a (1,0)-order
G-gauge-natural bundle functor. All natural differential operators

f:C®(Cla, M x Pri P) — C*°(FP)
M
which are of order s with respect to classical connections and of order r with
respect to principal connections are of the form
F(E°AGT) = g(VETYRIAL VOV RD))
where g is a zero order natural operator

g:Cc=CE M x cl=Vp) — c=(FP). O
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Remark 4.20. The curvature bundle of classical and principal connections
is given by identities depending on the structure constants of the group G.
So all natural operators defined on the curvature bundle depend also on the
structure constants, i.e.,

(A 5'T) = gle, VOV RIAL VOV RITT)
For instance ¢, V, ...V, R, is an example of a natural tensor field of
the type (0,7+2) on M given by A (in order (r—1)) and I" (in order (r+1)).
In the case of (general) linear connections the structure constants are given

by the Kronecker deltas and they contract with the curvature tensor fields,
i.e., they are not ”visible”. O



36

REFERENCES

The DSc. dissertation consists of the set of 11 research papers [1] — [11].

[12] — [34] are other papers of the author concerning natural operators. The
others references [35] — [92] have been used in the text.

1
2
[3
[4

5

6

[7
8
[9
[10

[11

[12

[13

[14

[15

[16

[17

18

19

REFERENCES

] J. JANYSKA: Geometrical properties of prolongation functors, Cas. pést. mat. 110
(1985) 77-86.

] J. JANYSKA: Natural operations with projectable tangent valued forms on a fibred
manifold, Annali di Matematica Pura ed Applicata (IV), Vol. CLIX (1991) 171-187.

] J. JANYSKA AND M. MODUGNO: Infinitesimal natural and gauge-natural lifts, Diff.
Geom. and its Appl. 2 (1992) 99-121.

] J. JANYSKA: Remarks on symplectic and contact 2-forms in relativistic theories,
Bollettino U. M. L. (7) 9-B (1995) 587-616.

] J. JANYSKA AND M. MODUGNO: Relations between linear connections on the tangent

bundle and connections on the jet bundle of a fibred manifold, arch. Math. (Brno)

32 (1996) 281-288, in honour of I. KolaF.

J. JANYSKA: Natural Poisson and Jacobi structures on the tangent bundle of a

pseudo-Riemannian manifold, Contemporary Mathematics 288, Global Diff. Geom.:

The Math. Legacy of alfred Gray, eds. M. Fernandes and J. A. Wolf, 343-347.

] J. JANYSKA AND M. MobpucNo: Covariant Schroedinger operator, J. Phys. A: Math.
Gen. 35 (2002) 8407-8434.

] J. JANYSKA: Reduction theorems for general linear connections, Diff. Geom. and its

Appl. 20 (2004) 177-196.

J. JANYSKA: Higher order valued reduction theorems for general linear connections,

Note di Matematica 23(2) (2004) 75-97.

| J. JANYSKA: Higher order valued reduction theorems for classical connections, Cen-
tral European Journal of Mathematics 3(2) (2005) 294-308.

| J. JANYSKA: Higher order Utiyama-like theorem, to appear in Rep. Math. Phys..

Other papers of the author concerning natural operators.

| J. JANYSKA: Natural prolongations of linear connections, in: Proc. Conf. Diff. Geom.
and Its Appl. (Nové Mésto na Moravé, 1983), Part 2, Published by J. E. Purkyné
University, 1084, 129-134.

| J. JANYSKA: On natural operations with linear connections, Czechoslovak Math. J.
35 (110) (1985) 106-115.

] J. JANYSKA AND I. KOLAR: On the connections naturally induced on the second
order frame bundle, Arch. Math. (Brno) 22 (1986) 21-28.

| J. JANYSKA: Connections naturally induced from the metric tensor and its deriva-
tives of finite order, in: Proc. Conf. Diff. Geom. and its Appl. (communications),
Brno 1986, Published by J. E. Purkyné University 1987, 143-156.

] D. KRUPKA AND J. JANYSKA: Lectures on Differential Invariants, Folia Fac. Sci. Nat.
Univ. Purkynianae Brunensis, Brno 1990.

] J. JANYSKA: Natural and gauge-natural operators on the space of linear connections
on a vector bundle, in: Proc. Conf. Diff. Geom. and its Appl., Brno 1989, World
Scientific, Singapore 1990, 58—68.

| J. JANYSKA: Remarks on the Nijenhuis tensor and almost complex connections,
Arch. Math. (Brno) 26 (1990) 229-240.

| J. JANYSKA: Natural 2-forms on the tangent bundle of a Riemannian manifold,
in: The Proceedings of the Winter School Geometry and Topology (Srni, 1992),



[20]
(21]

(22]

23]
24]

[25]

[26]

27]

28]

29]

(30]

(31]
(32]

(33]
(34]

(35]

(36]

REFERENCES 37

Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II — No. 32
(1993) 165-174.

J. JANYSKA: Lie algebra structures on QY (M) and QY (T M) for a Riemannian man-
ifold, Rendiconti di Matematica, Serie VII, 13, Roma (1993) 573-593.

J. JANYSKA: Natural quantum Lagrangians in Galilei quantum mechanics, Rendi-
conti di Matematica (Roma), Serie VII, 15, Roma (1995) 457-468.

J. JANYSKA: Natural symplectic structures on the tangent bundle of a space—time,
in: The Proceedings of the Winter School Geometry and Topology (Srni, 1995),
Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II — No. 43
(1996) 153-162.

J. JANYSKA: Natural Lagrangians for quantum structures over 4-dimensional space-
time, Rendiconti di Matematica, Serie VII, 18, Roma (1998) 623-648.

J. JANYSKA: Natural vector fields and 2-vector fields on the tangent bundle of a
pseudo-Riemannian manifold, Arch. Math. (Brno) 37 (2001) 143-160.

J. JANYSKA: A remark on natural quantum Lagrangians and matural generalized
Schrodinger operators in Galilei quantum mechanics, in: The Proceedings of the
Winter School Geometry and Topology (Srni, 2000), Supplemento ai Rendiconti del
Circolo Matematico di Palermo, Serie II — No. 66 (2001) 117-128.

J. JANYSKA, M. MODUGNO AND D. SALLER: Cowariant quantum mechanics and
quantum symmetries, in: Recent Developments in General Relativity, proc. Internat.
Conf. (Genoa 2000), eds. R. Cianci, R. Collina, M. Francaviglia and P. Fre, Springer-
Verlag (2002) 179-201.

J. JANYSKA AND M. MobpucNo: Cowvariant pre-quantum operators, in: Differential
Geometry and Its Applications, proc. 8th Internat. Conf. Diff. Geom. Appl. (Opava
2001), eds. O. Kowalski, D. Krupka and J. Slovék, Silesian University 2001, 285-308.
J. JANYSKA AND M. MODUGNO: Uniqueness results by covariance in covariant quan-
tum mechanics, in: Proc. of the 2nd Internat. Symp. ”Quantum Theory and Symme-
tries” (Cracow 2001), eds. E. Kapuscik, A. Horzela, World Scientific 2002, 404-411.
J. JANYSKA: On the curvature of tensor product connections and covariant differ-
entials, in: The Proceedings of the 23rd Winter School Geometry and Physics (Srnf,
2003), Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II -
Numero 72 (2004) 135-143.

J. JANYSKA: Natural connections given by general linear and classical connections,
in: Diff. Geom. and its Appl., Proc. Conf., Prague 2004 (Czech Rep.), Charles
University (2005) 285-299.

A. CaABRAS, J. JANYSKA AND I. KOLAR: Functorial prolongations of some functional
bundles, Ann. Acad. Paed. Cracoviensis, Folia 23, Studia Math. IV (2004) 19-30.
J. JANYSKA: Geometric structures on the tangent bundle of the Einstein spacetime,
to appear in Arch. Math. (Brno) 2006.

J. JANYSKA: Higher order Utiyama’s invariant interaction, preprint 2006.

A. CaBRAS, J. JANYSKA AND I. KOLAR: On the geometry of variational calculus on
some functional bundles, to appear in Note di Matematica.

The others references [35] — [92] have been used in the text.

D. Canarutto, A. Jadczyk and M. Modugno: Quantum mechanics of a spin particle
in a curved spacetime with absolute time, Rep. on Math. Phys. 36 (1995) 95-140.
M. Castrillén Lépez, J. Munoz Masqué and T. Ratiu: Gauge invariance and vari-
ational trivial problems on the bundle of connection, Diff. Geom. and its Appl. 19
(2003) 127-145.



38

37)

(38]
(39]
[40]
[41]
[42]
[43]
[44]

[45]

[46]

(47)

(48]

[49]

(50]
[51]
(52]

(53]

[54]
[55]
[56]

[57)

REFERENCES

E. B. Christoffel: Ueber die Transformation der homogenen Differentialausdiicke
zweiten Grades, Journal fiir die reine und angewandte Mathematik, Crelles’s Jour-
nals 70 (1869) 46-70.

M. Crampin: Generalized Bianchi identities for horizontal distributions, Math.
Proc. Camb. Phil. Soc. 94 (1983) 125-132.

M. Crampin and L. A. Ibort: Graded Lie algebras of derivations and Ehresmann
connections, J. Math. Pures et Appl. 66 (1987) 113-125.

T. V. Duc: Sur la géométrie differentielle des fibrés vectoriels, Kodai Math. Sem.
Rep. 26 (1975) 349-408.

W. Drechsler and M. E. Mayer: Fibre Bundle Techniques in Gauge Theories,
Springer-Verlag, New York, 1977.

D. E. Eck: Gauge—natural bundles and generalized gauge theories, Mem. Amer.
Math. Soc. 33, No. 247, 1981.

D. E. Eck: Product—-preserving functors on smooth manifolds, J. Pure Appl. Algebra
42 (1986) 133-140.

D. B. A. Epstein and W. P. Thurston: Transformation groups and natural bundles,
Proc. London Math. Soc. (3) 38 (1979) 219-236.

L. Fatibene and M. Francaviglia: Natural and Gauge Natural Formalism for Classi-
cal Field Theories, a Geometric Perspective including Spinors and Gauge Theories,
Kluwer Academic Pub. 2003.

A. Frolicher and A. Nijenhuis: Theory of vector valued differential forms, Part
1, Derivations in the graded ring of differential forms, Kon. Ned. Akad. Wet.-
Amsterdam, Proc. A 59, Indag. math. 18 (1956) 338—-359.

A. Frolicher and A. Nijenhuis: Theory of vector valued differential forms, Part 1,
Almost complex structures, Kon. Ned. Akad. Wet.-Amsterdam, Proc. A 61, Indag.
math. 20 (1958) 414-429.

A. Frolicher and A. Nijenhuis: Invariance of vector form operations under mappings,
Comm. Math. Hel. 34 (1960) 227-248.

J. Gancarzewicz: Horizontal lifts of linear connections to the natural vector bundle,
in: Proc. Inter. Coll. Diff. Geometry, Santiago de Compostela (Spain), Research
Notes in Math. 121, Boston: Pitman. 1985, 318-324.

J. Gancarzewicz and I. Kolaf: Some gauge-natural operators on linear connections,
Mh. Math. 111 (1991) 23-33.

J. Grifone: Structure presque tangent et connexions, I, Ann. Inst. Fourier 22
(1972) 287-334.

G. W. Horndeski: Replacement Theorems for Concomitants of Gauge Fields, Utili-
tas Math. 19 (1981) 215-146.

A. Jadczyk and M. Modugno: a scheme for Galilei general relativistic quantum
mechanics, in: General Relativity and Gravitational Physics, Proc. XXI Conv. Naz.
Rel. Gen. Fiz. Grav., Bardonecchia (1992), World Scientific 1994, 319-337.

A. Jadczyk and M. Modugno: Galilei General Relativistic Quantum Mechanics,
Florence University 1993.

G. Kainz and P. W. Michor: Natural transformations in differential geometry,
Czechoslovak Math. J. 37 (112) (1987) 584-607.

A. A. Kirillov: Invariant operators over geometric quantities, (Russian), Current
problems in mathematics, Vol 16, VINITI, Moscow (1980) 3-29.

I. Kolaf: Prolongations of generalized connections, Math. Soc. Janos Bolyai, 31.
Diff. Geom. (Budapest (Hungary)), North Holland (1979) 317-325.



(58]
[59]
[60]
[61]

(62]

[63]
(64]
[65]

(6]
[67]

[68]
[69]
[70]

[71]

[72]
(73]

[74]

[75]
[76]
[77)
(78]
[79]

(80]
(81]

REFERENCES 39

I. Kolai: Some natural operators in differential geometry, in: Proc. Conf. Diff.
Geom. and Its Appl., Brno 1986, D. Reidel (1987) 91-110.

I. Kolaf and P. W. Michor: All natural concomitants of vector-valued differential
forms, Suppl. Rend. Circ. Mat. Palermo, Serie IT - N. 16 (1987) 101-108.

I. Kolar, P. W. Michor and J. Slovdk: Natural Operations in Differential Geometry,
Springer—Verlag, 1993.

I. Kolar and J. Slovék: On the geometric functors on manifolds, Suppl. Rend. Circ.
Mat. Palermo 21 (1989) 223-233.

O. Kowalski and M. Sekizawa: Natural transformations of Riemannian metrics on
manifolds to metrics on tangent bundles - a classification, Bull. Tokyo Gakugei
Univ., Sect.IV, 40 (1988) 1-29.

D. Krupka: Elementary theory of differential invariants, Arch. Math. 4, Scripta Fac.
Sci. Nat. UJEP Brunensis, XIV: 207-214 (1978).

D. Krupka and V. Mikolasova: On the uniqueness of some differential invariants:
d, {,}, V, Czechoslovak Math. J. 34 (1984) 588-597.

P. Libermann and CH. M. Marle: Symplectic Geometry and analytical Mechanics,
Reidel Publ., Dordrecht, 1987.

G. Lubczonok: On reduction theorems, Ann. Polon. Math. 26 (1972) 125-133.

O. O. Luciano: Categories of multiplicative functors and Morimoto’s conjecture,
Preprint 46, Inst. Fourier, Laboratoire des Mathématiques, Grenoble, 1986.

L. Mangiarotti and M. Modugno: Graded Lie algebras and connections on fibred
spaces, J. Math. Pures et Appl. 63 (1984) 111-120.

L. Mangiarotti and M. Modugno: On the geometric structure of gauge theories, J.
Math. Phys 26 (1985) 1373-1379.

W. Mikulski: There ezists a prolongation functor of infinite order, Cas. pést. mat.
114 (1989) 57-59.

M. Modugno: Systems of vector valued forms on a fibred manifold and applications
to gauge theories, in: Proc. Conf. Diff. Geom. Meth. in Math. Phys. Salamanca,
1985, Lect. Not. Math. 1251, Springer (1987) 238-264.

H. K. Nickerson: On differential operators and connections, Trans. Amer. Math.
Soc. 99 (1961) 509-539.

A. Nijenhuis: Theory of the geometric object, Thesis, University of Amsterdam,
1952.

A. Nijenhuis: Jacobi-types identities for bilinear differential concomitants of cer-
tain tensor fields, Kon. Ned. Akad. Wet.-Amsterdam, Proc. A 58, Indag. Math. 17
(1955) 390-403.

A. Nijenhuis: Vector form methods and deformations of complex structures, Proc.
Symp. in Pure Math. 3, Diff. Geom., Am. Math. Soc., 1961, 87-93.

A. Nijenhuis: Natural bundles and their general properties, Diff. Geom., in honour
of K. Yano, Kinokuniya, Tokyo (1972) 317-334.

R. S. Palais and C. L. Terng: Natural bundles have finite order, Topology 16
(1977) 271-277.

G. Ricci and T. Levi Civita: Méthodes de calcul différentiel absolu et leurs applica-
tions, Math. Ann. 54 (1901) 125-201.

D. J. Saunders: The Geometry of Jet Bundles, London Math. Soc., Lecture Note
Series 142, Cambridge University Press, 1986.

J. A. Schouten: Ricci calculus, Berlin-Gottingen, 1954.

J. A. Schounten and J. Haantjes: On the theory of the geometric object, Proc.
London Math. Soc. 42 (1937) 356-376.



40

(82]

(83]
(84]
(85]
(86]
(87]
(88]
(89]
[90]
[91]

(92]

REFERENCES

M. Sekizawa: Natural transformations of affine connections on manifolds to metrics
on cotangent bundles, in: Proc. of the 14th Winter School on abstract analysis,
Srni (Czech Republic) 1986, Supplemento ai Rendiconti del Circolo Matematico di
Palermo, Serie II, 14 (1987) 129-142.

M. Sekizawa: Natural transformations of vector fields on manifolds to vector fields
on tangent bundles, Tsukuba J. Math. 12 (1988) 115-128.

J. Slovék: On natural connections on Riemannian manifolds, Comment. Math.
Univ. Carolinae 30 (1989) 389-393.

C. L. Terng: Natural vector bundles and natural differential operators, Am. J. Math.
100 (1978) 775-828.

T. Y. Thomas: Differential invariants of generalized spaces, Cambridge University
Press, Cambridge, 1934.

T.Y. Thomas, A. D. Michal: Differential invariants of affinely connected manifolds,
Ann. Math. 28 (1927) 196-236.

R. Utiyama: Invariant theoretical interpretation of interaction, Phys. Rev. 101
(1956) 1597-1607.

I. Vaisman: Lectures on the Geometry of Poisson Manifolds, Birkh&user, Verlag
1994.

H. Weyl: Raum - Zeit - Materie (Space - Time - Matter), 1918, translated from the
4th German Edition, London: Methuen 1922.

N. M. J. Woodhouse: Geometric Quantization, (second edition), Clarendon Press,
Oxford, 1992.

A. Zajtz: The sharp upper bound on the order of natural bundles of given dimen-
sions, Bull. Soc. Math. Belgique 3 (1987) 347-357.



