The ALMA Observing Tool

Andy Biggs
ALMA Regional Centre, ESO

Introduction/Concepts

Phases of Proposal Submission

- Requesting ALMA time has two phases
 - Phase I: Proposal submission
 - Phase II: Submission of observing program
- Observing Tool (OT) is used for both
 - Fill in usual PI/co-I, etc. information
 - Attach scientific/technical justification (single PDF)
 - Define <u>Science Goals</u>
 - Submit!
 - If awarded time, generate <u>Scheduling Blocks</u> from Science Goals and submit

What is a Science Goal?

- Scientific requirements of the observations
- A user must enter:
 - Science targets (including mapping area, velocities)
 - Spectral line and/or continuum frequencies
 - Angular resolution, largest source angular scale
 - Required sensitivity (NOT TIME!)
- SBs are generated from the above information
 - Contain the technical details required to operate the array
 - This is done automatically no user input required

What is a Science Goal?

- Scientific requirements of the observations
- A user must enter:

No detailed knowledge of radio astronomy or interferometry should be necessary!

- Array configurations
- Time on source
- Calibration sources and strategy

What is a Scheduling Block?

- A self-contained definition of an observation
 - SBs are what are executed at the telescope
- It contains:
 - Information from the Science Goal
 - positions, frequencies, σ, angular resolution
 - Enormous amounts of technical information
 - e.g. correlator and backend parameters
 - Approximate time on source
 - Each SB will last ~1 hour
 - Dynamic scheduler will execute SB till σ is achieved

What is a Scheduling Block?

- A self-contained definition of an observation
 - Generated from the Science Goal automatically
 - Each will last 30-40 minutes i.e. repeated if necessary
- "Phase2Group" currently responsible for ensuring that
 - all SBs meet the Pl's needs
 - The name of an observing script
 - This actually runs the observation!
- A user will not normally interact with an SB!

Time Estimates

- Time on source is only an estimate
 - Scheduler will run an SB in appropriate weather conditions
 - These may differ from those assumed by the OT
 - ALMA is still being characterised
 - Observations will proceed until sensitivity is reached
- Additional time can be requested
 - (u,v) coverage may be insufficient
 - Must justify in proposal
 - Almost never necessary 32 12-m antennas at Cycle 1!

Calibration

- The observatory will provide all necessary calibration
 - Choose "system-defined" calibration (the default)
 - Sources will eventually be selected at run time
 - Cycle 0: selected by Phase2Group
- Specific calibrators can be requested
 - Must justify in proposal
 - Almost never necessary
- Observation/calibration sequence not chosen by PI
 - An observing script (Python) actually controls ALMA
 - Observing sequence is largely determined by this

Implementation

- The OT is a Java application
 - Java 6 must be installed on your computer
 - Version with built-in Java now available (Linux only)
- Download and run locally
 - Web Start (recommended) and tarball versions
- Internet connection required intermittently
 - PI/co-I information from user database
 - Source catalogues and image servers
 - Spectral line catalogues
 - Submission

Layout of the OT

Project navigation

 Navigate through project using the Project Tree

Content of Editor panel will change depending

on which "node" you are in

- Two tabs
 - Proposal (Phase I)
 - No SBs here, only Science Goals
 - Program (Phase II)
 - Not available at Phase I
 - SBs are generated here

Tools

Editors

- Three kinds of editor are available
 - Forms
 - Basic textual input always available
 - Name reflects which node in the Project Tree is currently selected
 - Spectral
 - Visualiser tool only available with Spectral Setup
 - Also includes Forms editor
 - Spatial
 - Visualiser tool only available with Spatial Setup
 - Also includes Forms editor

Spatial Visual Editor

- Downloads and displays an image of the sky
 - Image servers include DSS, 2MASS, NVSS, FIRST...
 - Local image files (FITS) can also be displayed
- Rectangular mapping regions can be defined
 - Mosaic patterns are calculated and displayed
 - Maximum 150 mosaic pointings for Cycle 1
 - ALMA and ACA pointings are shown

Spatial Visual Editor

Spectral Visual Editor

- Gives overview of spectral setup
 - User defines spectral windows
 - OT calculates a tuning solution automatically
- Spectral Visual Editor displays:
 - Spectral windows
 - Sidebands
 - LO1
 - Atmospheric transmission
 - Other spectral lines...

Spectral Visual Editor

Spectral Line Picker

- The OT's interface to NRAO's Splatalogue
 - Online search of 5.8 million lines
 - The OT has a smaller internal version
- Lines can be filtered and sorted e.g. by
 - Name (text search with wildcards)
 - Strength
 - Maximum upper state energy
 - Location (hot cores, comets, dark clouds, etc.)
 - Sideband (do the lines all fit?)

Spectral Line Picker

ALMA Sensitivity Calculator

- Available for experimentation
 - Both in OT and in Science Portal
- Calculates $\sigma(t)$ or $t(\sigma)$
 - Standard inputs:
 - Frequency
 - Bandwidth
 - Angular resolution (only for brightness temperatures)
 - Number of antennas
 - Source declination (transit assumed)
 - Precipitable Water Vapour (PWV)
- Details can be found in document in Science Portal

ALMA Sensitivity Calculator

Science Goal Sections

General

- Space for textual input
 - Optional description of Science Goal

Field Setup

- Telescope pointing parameters
 - Positions
 - Proper motions
 - Mapping areas
- Radial velocities
 - OT will Doppler shift spectral lines
- Fluxes and line widths
 - Currently only used for Technical Assessment
 - Might be used at Cycle 1 for imaging requirements

Field Setup

Spectral Setup

ALMA Band

- ALMA bands have two sidebands (telescope output)
 - Widths and separations are band-dependent
 - Bands 3 and 7: each is 4 GHz wide
- Basebands sample the sideband signals
 - Each is 2-GHz wide and has two polarizations (X and Y)
- Spectral windows sample the baseband signals

Spectral Setup

- Each baseband can support one correlator mode
 - Centre frequency, bandwidth, channel spacing & pol.
 - 14 modes are available at Cycle 1
 - [6 high-resolution (FDM) and 1 low-resolution (TDM)] x 2 pol.
 - OT will only let you choose a valid mode
- Basebands are independent
 - Different correlator modes in each (FDM or TDM)
- OT will try and calculate tuning solution
 - Errors will be reported
 - Spectral Visual Editor very useful for identifying problems

Multiple Region Modes

- FDM correlator modes can be split into >1 spws
 - Each is made up of multiple 62.5-MHz wide filters
 - Use the "fraction" parameter (½, ¼, ¼, etc.)
 - Spectral resolution in each must be the same

Representative Frequency

- User must select one of the spws
 - Centre frequency becomes Representative Frequency
 - This default can be changed (within spw)
- RF has two purposes
 - Frequency used in sensitivity calculation
 - Determines PWV user does not choose this
 - Sets field of view displayed in Spatial Visual Editor

Calibration Setup

As already explained, almost always not necessary

Control and Performance

- Most important user inputs
 - Angular resolution (Θ)
 - Largest Source Angular Scale (LAS)
 - Required sensitivity (σ)
 - Bandwidth used for sensitivity
- ACA requirement will be based on Θ and LAS
 - User can override (must be justified)
- Time Estimate button gives detailed breakdown
 - Includes calibration overheads

Control and Performance

Control and Performance	
	?
Representative Frequency	212.91835 GHz 🔻
Antenna Beamsize (λ/D)	12m24.2 arcsec
Early Science Extended Configuration: Max Baseline(L) and corresponding beam size(λ/	400.0 m 0.7 arcsec
Early Science Compact Configuration:	125.0 m 2.2 presses
Max Baseline(L) and corresponding beam size(λ/	
Desired Angular Resolution	0.7 ■ arcsec
Largest Angular Scale of source	Point Source Extended Source
Desired Sensitivity per Pointing	1.00000 mJy ▼ equivalent to 60.68906 mK ▼
Bandwidth used for Sensitivity	FinestResolution Frequency Width 15.625 MHz
	Sensitivity Calculator Time Estimate
Does your setup need more time than is indicated by the time estimate?	○ Yes ● No
Is this observing time constrained (occultations, coordinated observing,)?	○ Yes ® No
ACA Use: (ACA Not yet available)	

Proposal Submission

- When ready, validate your proposal
 - OT will check that all necessary information is present
 - Errors will appear in Feedback panel
 - A project cannot submit with validation errors
- Submit
 - Project code assigned at this point
- For your records...
 - Email will acknowledge submission
 - Printable summary of proposal can be produced
 - OT will ask you to save to disk at this point DO IT!

Proposal Resubmission

- Resubmission is possible up to the deadline
 - Previous submission is overwritten
 - You can change almost every detail still overwrites
 - Please save a local copy each time you submit
- Older (local) versions can now be resubmitted
 - This wasn't possible at Cycle 0

Submission Dangers

- Using an old proposal as a template
 - This is very bad with an already submitted proposal
 - Other project will be overwritten
 - Read old proposal with "Use Project as Template"
- Resubmitting a locally-saved project that wasn't saved after submission
 - This will be a new submission i.e. new project code
- OT shows a project's submission status

Usage tips

- The OT shows a <u>lot</u> of information
 - Running it in full-screen mode is recommended
 - Panels can be hidden (e.g. Overview panel)
- Various default settings can be changed
 - Preferences dialogue is available through the File menu
- Extensive built-in help is available
 - Help menu (User Manual and Reference Manual)
 - Contextual help (Question Mark buttons)
 - Plus external videos and Quickstart guide (Science Portal)

Happy proposal writing for Cycle 1!