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Abstract

We introduce a dissipative measure-valued solution to the full compressible Navier- Stokes- Fourier system. We
derive a relative entropy inequality for measure-valued solution as a generalization of the ”classical” entropy
inequality introduced by Dafermos [2], Mellet-Vasseur [11], and Feireisl-Novotný [5].

Résumé

Nous considérons des solutions dissipatives à valeurs mesure du système de Navier-Stokes-Fourier compressible.
Nous nous intéressons particulièrement à une inégalité d’entropie généralisant l’inégalité d’entropie “classique”
introduite par Dafermos [2], Mellet, Vasseur [11] et Feireisl-Novotný [5].
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1. Introduction

We consider measure-valued solutions of the compressible Navier-Stokes-Fourier system. The advantage
of measure-valued solutions is the property that in many cases, the solutions can be obtained from weakly
convergent sequences of approximate solutions.

Measure-valued solutions for systems of hyperbolic conservations laws were initially introduced by
DiPerna [3]. He used Young measures to pass to limit in the artificial viscosity term. In the case of the
incompressible Euler equations, DiPerna and Majda [4] also proved global existence of measure-valued
solutions for any initial data with finite energy. They introduced generalized Young measures to take into
account oscillation and concentration phenomena. Thereafter the existence of measure-valued solutions
was finally shown for further models of fluids, e.g. compressible Euler and Navier-Stokes equations [13],[12].

Recently, weak-strong uniqueness for measure-valued solutions of isentropic Euler equations were proved
in [9]. Inspired by previous results, the concept of dissipative measure-valued solution was finally applied
to the barotropic compressible Navier-Stokes system [10].

In this note we introduce a dissipative measure-valued solution for the full Navier-Stokes-Fourier system
and derive a relative entropy inequality in term of measure-valued solutions.

The motion of the fluid is governed by the standard field equations of classical continuum fluid mechanics
describing the evolution of the mass density ρ, the velocity field u, and the absolute temperature θ as
functions of the time t ∈ R+ and the Eulerian spatial coordinate x ∈ Ω, where Ω is a bounded region of
R3. The evolution of the compressible viscous heat conductive flow equation reads

∂tρ+ div(ρu) = 0 in (0, T )× Ω, (1)

∂t(ρu) + div(ρu⊗ u) +∇p = divS in (0, T )× Ω, (2)

∂t

(
1
2
ρ|u|2 + ρe(ρ, θ)

)
+ div

((
1
2
ρ|u|2 + ρe(ρ, θ) + p

)
u + q − Su

)
= 0 (3)

The symbol p = p(ρ, θ) denotes the thermodynamic pressure and e = e(ρ, θ) is the specific internal energy,
related through Maxwell’s equation

∂e

∂ρ
=

1
ρ2

(
p(ρ, θ)− θ

∂p

∂θ

)
. (4)

Furthermore, S is the viscous stress tensor determined by

S = µ

(
∇u +∇tu− 2

3
divu

)
+ ν divuI, (5)

where µ is the shear viscosity coefficient and ν the bulk viscosity coefficient and both are effective functions
of the temperature, q is the heat flux given by Fourier’s law

q = −κ∇θ, (6)

with the heat conductivity coefficient κ = κ(θ) > 0.

1.1. Hypotheses

We consider the pressure in the form

p(ρ, θ) = θ5/2P
( ρ

θ3/2

)
+
a

3
θ4, a > 0, (7)
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where P : [0,∞) → [0,∞) is a given function with the following properties :

P ∈ C1[0,∞), P (0) = 0, P ′(Z) > 0, for all Z ≥ 0, (8)

0 <
5
3P (Z)− P ′(Z)Z

Z
< c for all Z ≥ 0, (9)

lim
Z→∞

P (Z)
Z5/3

= p∞ > 0. (10)

After Maxwell’s equation (4), the specific internal energy e is

e(ρ, θ) =
3
2

(
θ5/2

ρ

)
P

( ρ

θ3/2

)
+ a

θ4

ρ
, (11)

and the associated specific entropy reads

E(ρ, θ) = M
( ρ

θ3/2

)
+

4a
3
θ3

ρ
with M ′(Z) = −3

2

5
3P (Z)− P ′(Z)Z

Z2
< 0. (12)

The transport coefficients µ, η, and κ are continuously differentiable functions of the absolute temperature
such that

0 < c1(1 + θ) ≤ µ(θ), µ′(θ) < c2, 0 ≤ η(θ) ≤ c(1 + θ), (13)

0 < c1(1 + θ3) ≤ κ(θ) ≤ c2(1 + θ3) (14)

for any θ ≥ 0. As the term Su in the total energy balance (3) is not controlled on the (hypothetical)
vacuum zones of vanishing density, we will replace (3) by the internal energy equation

∂t(ρe) + divx(ρeu) + divxq = S : ∇xu− pdivxu, (15)

moreover, dividing (15) on θ and using Maxwell’s relation (4), we may rewrite (15) as the entropy equation

∂t (ρE) + divx (ρEu) + divx

(q

θ

)
=

1
θ

(
S : ∇xu− q · ∇xθ

θ

)
=: ς, (16)

where ς := 1
θ

(
S : ∇xu− q·∇xθ

θ

)
is the (positive) matter entropy production.

1.2. Dissipative measure-valued solutions to the compressible Navier-Stokes-Fourier system

We introduce the concept of dissipative measure-valued solution to the full system of compressible
Navier-Stokes-Fourier equations (in the spirit of [10,9])
Definition 1 We say that a parameterized measure {νt,x}(t,x)∈(0,T )×Ω,

ν ∈ L∞weak

(
(0, T )× Ω;P

(
[0,∞)× RN

))
, 〈νt,x; s〉 ≡ %, 〈νt,x;v〉 ≡ u

〈νt,x; η〉 ≡ θ

is a dissipative measure-valued solution of the Navier-Stokes-Fourier system (1) - (3) in (0, T )×Ω, with
the initial conditions ν0 and dissipation defect D,

D ∈ L∞ (0, T ) , D ≥ 0,

if the following holds.

(i) Continuity equation : There exist a measure rC ∈ L1
(
[0, T ] ,M

(
Ω

))
and χ ∈ L1 (0, T ) such that

for a.a. τ ∈ (0, T ) and every ψ ∈ C1
(
[0, T ]× Ω

)
,
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∣∣〈rC (τ) ;∇xψ
〉∣∣ ≤ χ (τ)D (τ) ‖ψ‖C1(Ω) (17)

and ∫
Ω

〈νt,x; s〉ψ (τ, ·) dx−
∫

Ω

〈ν0; s〉ψ (0, ·) dx

=
∫ τ

0

∫
Ω

[〈νt,x; s〉 ∂tψ + 〈νt,x; sv〉 · ∇xψ] dxdt+
∫ τ

0

〈
rC ;∇xψ

〉
dt. (18)

(ii) Momentum equation : Velocity u = 〈νt,x;v〉 ∈ L2
(
0, T ;W 1,2

0

(
Ω; RN

))
, and there exists a mea-

sure rM ∈ L1
(
[0, T ] ,M

(
Ω

))
and ξ ∈ L1 (0, T ) such that for a.a. τ ∈ (0, T ) and every ϕ ∈

C1
(
[0, T ]× Ω; RN

)
, ϕ|∂Ω = 0,∣∣〈rM (τ) ;∇xϕ

〉∣∣ ≤ ξ (τ)D (τ) ‖ϕ‖C1(Ω) (19)

and ∫
Ω

〈νt,x; sv〉ϕ (τ, ·) dx−
∫

Ω

〈ν0; sv〉ϕ (0, ·) dx

=
∫ τ

0

∫
Ω

[〈νt,x; sv〉 ∂tϕ+ 〈νt,x; s (v ⊗ v)〉 : ∇xϕ+ 〈νt,x; p(s, η)〉 divxϕ] dxdt

−
∫ τ

0

∫
Ω

S (η,∇xu) : ∇xϕdxdt+
∫ τ

0

〈
rM ;∇xϕ

〉
dt. (20)

(iii) Entropy inequality : Temperature θ = 〈νt,x; η〉 ∈ L2
(
0, T ;W 1,2

(
Ω; RN

))
and there exists a measure

rξ ∈ L1
(
[0, T ] ,M

(
Ω

))
,and Ψ ∈ L1(0, T ) such that for a.a. τ ∈ (0, T ) and any σ ∈ C1(([0, T ] ×

Ω), ∂σ
∂n = 0 ∣∣〈rξ (τ) ;∇xσ

〉∣∣ ≤ Ψ(τ)D (τ) ‖σ‖C1(Ω) (21)

and

−
∫

Ω

〈νt,x; sE(s, η)〉σ (τ, ·) dx+
∫

Ω

〈ν0; sE(s, η)〉σ (0, ·) dx (22)

+
∫ τ

0

∫
Ω

〈
νt,x,

1
η

〉
σ

[
S(η,∇u) : ∇u− q(η,∇η)∇η

η

]
dx dt

≤ −
∫ τ

0

∫
Ω

[
〈νt,x; sE(s, η)〉 ∂tσ + 〈νt,x; sE(s, η)v〉∇σ +

〈
νt,x,

1
η

〉
q(η,∇η)∇σ

]
dx dt

+
∫ τ

0

〈
rξ;∇xσ

〉
dt

(iv) Balance of total energy :∫
Ω

〈
νt,x;

(
s|v|2 + se(s, η)

)〉
dx =

∫
Ω

〈
ν0;

(
s|v|2 + se(s, η)

)〉
dx,

for a.a. τ ∈ (0, T ). In addition, the following version of Poincaré’s inequality holds for a.a. τ ∈
(0, T ) : ∫ T

0

∫
Ω

〈
νt,x; |v − u|2

〉
dxdt ≤ cpD(τ). (23)
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2. Relative entropy inequality

We introduce the relative entropy functional

E (%,u, ϑ | r,U,Θ) =
∫

Ω

1
2
% |u−U|2 +HΘ(%, ϑ)− ∂%HΘ(r,Θ)(%− r)−HΘ(r,Θ)dx,

HΘ(%, ϑ) = % [e(%, ϑ)−Θs(%, ϑ)] ,
where %,u, ϑ is a weak solution and r,U,Θ are arbitrary ”test” functions satisfying the basic properties
of %,u, ϑ, specially r , Θ is positive, U , Θ satisfy the relevant boundary conditions ( see Feireisl et al.
[5], Germain [8], Mellet and Vasseur [11], Dafermos [2]).

In fact it is shown in [6] that any finite energy weak solution (%,u) to the compressible barotropic
Navier-Stokes system satisfies the relative entropy inequality for any pair (r,U) of sufficiently smooth
test functions such that r > 0 and U|∂Ω = 0 and this inequality is an essential tool in order to prove the
convergence to a target system. For other details see [7].

In the framework of dissipative measure-valued solution (in the spirit of [10]-[9]) we define the functional

Emv (%,u, ϑ | r,U,Θ) ≡
∫

Ω

〈
νt,x;

1
2
s |v −U|2 +HΘ(s, η)− ∂%HΘ(r,Θ)(s− r)−HΘ(r,Θ)

〉
dx.

Theorem 2.1 Let the parameterized measure {νt,x}(t,x)∈(0,T )×Ω, with

ν ∈ L∞weak

(
(0, T )× Ω;P

(
[0,∞)× RN

))
, 〈νt,x; s〉 ≡ %, 〈νt,x;v〉 ≡ u, 〈νt,x; η〉 ≡ θ,

be a dissipative measure-valued solution of the Navier-Stokes-Fourier system (1) - (3) in (0, T )×Ω, with
the initial conditions ν0 and dissipation defect D.

Then (s,v, θ) satisfies the following relative entropy inequality∫
Ω

〈
νt,x;

(
1
2
s |v −U|2 +HΘ(s, η)− ∂%HΘ(r,Θ)(s− r)−HΘ(r,Θ)

)
(τ, ·)

〉
dx

+
∫ τ

0

∫
Ω

〈
νt,x;

1
η

〉
Θ

(
S(η,∇xu) : ∇xu−

q(η,∇xη) · ∇xη

η

)
dx dt

≤
∫

Ω

〈
ν0,x;

(
1
2
s |v −U(0, ·)|2 + HΘ(0,·)(s, η)− ∂%HΘ(0,·)(r(0, ·),Θ(0, ·))(s− r(0, ·))−HΘ(0,·)(r(0, ·),Θ(0, ·))

)〉
dx

+
∫ τ

0

R(s,v, θ, r,U,Θ)(t)dt (24)

for a.a. τ ∈ (0, T ) and any pair of test functions (r,U,Θ) such that U ∈ C1([0, T ] × Ω̄, Rn),U|∂Ω = 0,
r ∈ C∞c (QT ), r > 0, Θ > 0.

The remainder in the right hand side of (24) is given by∫ τ

0

R(s,v, θ, r,U,Θ)(t) dt =
∫ τ

0

∫
Ω

(〈νt,x; s〉 ∂tU · (U− u) + 〈νt,x; sv〉 · ∇xU · (U− u)) dx dt∫ τ

0

∫
Ω

(〈νt,x;−p(s, η)〉 divxU + S(η,∇xu) : ∇xU) dx dt

−
∫ τ

0

∫
Ω

(〈νt,x; s〉 (E(s, η)− E(r,Θ)) ∂tΘ) + (〈νt,x; sv〉 (E(s, η)− E(r,Θ))u · ∇xΘ) dxdt

−
∫ τ

0

∫
Ω

〈
νt,x;

1
η

〉
q(η,∇xη) · ∇xΘdxdt+

∫ τ

0

∫
Ω

((
1− 1

r
〈νt,x; s〉

)
∂tp(r,Θ)

)
−1
r
〈νt,x; sv〉u·∇xp(r,Θ)dxdt

+
∫ τ

0

〈
rM ;∇xU

〉
dt+

∫ τ

0

∫
Ω

〈
rC ;

1
2
∇x |U|2

〉
dxdt+

∫ τ

0

〈
rξ;∇xΘ

〉
dt. (25)
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The proof follows the method used in the analysis of relative entropy for the full system [5] together with
the new concept of dissipative measure-valued solution [10]. More details will be found in [1].
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