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Abstract. It is well known that the full Navier-Stokes-Fourier system
does not possess a strong solution in three dimensions which causes prob-
lems in applications. However, when modeling the flow of a fluid in a thin
long pipe, the influence of the cross section can be neglected and the flow
is basically one-dimensional. This allows us to deal with strong solutions
which are more convenient for numerical computations. The goal of this
paper is to provide a rigorous justification of this approach. Namely,
we prove that any suitable weak solution to the three-dimensional NSF
system tends to a strong solution to the one-dimensional system as the
thickness of the pipe tends to zero.
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1. Introduction

As introduced in [8, Chapter 1], governing equations for a flow of a general
compressible viscous heat conducting fluid in a domain of R3 read as

Op +divy(pu) = 0, (1.1)
O¢(pu) + divy(pu @ u) + V,p(p, 0) — div,S(0,V,u) = 0,
Ot(ps(p,0)) + dive(ps(p, 0)u) + div, ((1((9,9%9)) = o, (13)

where (p,u,0) stand for the unknown fluid mass density, the velocity field
and the temperature respectively, p is the pressure, s is the entropy, q is the
heat flux, o is the entropy production rate and S represents the stress tensor.

0.K. acknowledges the support of the GACR (Czech Science Foundation) project GA13-
00522S in the general framework of RVO: 67985840. The research of V.M. has been sup-
ported by the grant NRF-20151009350.
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We consider a family of shrinking domains §2. of the form

Qs = Qs X (07 ]-)a Qs = EQa

where @ is an open rectangular domain in R? and ¢ > 0. Under suitable
conditions on the initial data it is natural to expect that weak solutions
(pe,uc, 6.) of (1.1)-(1.3) on Q. tend, as € — 0, to a classical solution (5, , 0)
of the one-dimensional system

Oip + 0y (p) =0, 1.4)
0 (pt) + 0, (pi®) + 9yp(p,0) — 0,[S(0,0,@)] = 0, 1.5)
Or(ps(p,6)) + 0, (ps(p, 6)@) + 9, ( (079@,9)) -
Vfas oo~ q(0,0,0)0,0
§(5(976yu)8y - ; ), (1.6)

where S (9, 0y1) is naturally related to the three-dimensional stress tensor S
and similarly ¢ to the heat flux vector q, see (2.19)—(2.21). Hereinafter we use
the notation z = (z5,,y) € R, 5 = (z1,22) € R?, y = 23 € R and denote
the derivative in x3 by 0,. In this paper we give a rigorous justification of
the convergence (pe, uc,8.) — (5, (0,0,4),6).

As far as we know, the limit passage for heat conductive fluids has not
yet been rigorously investigated and there is only a handful of results on re-
lated problems. Since incompressibility in one dimension does not allow any
movement, such limit makes a little sense for 1D incompressible flows. How-
ever, dimension reduction to 2D-planar flows was examined in [9], [12], [13],
[14] — see also references given therein. The case of a compressible barotropic
fluid was studied by Vodék [17] and later by Bella et. al. [2].

The paper is organized as follows. In Section 2 we introduce detailed
description of our problem. In Section 3 we present the concepts of a weak
and a classical solution for 3D and 1D system, respectively, and discuss their
existence. The main result is stated in Section 4. Section 5 contains prelimi-
nary calculations which are later used in Sections 6 and 7 in order to establish
the proof of the main theorem from Section 4.

2. Setting of the problem

2.1. Structural hypothesis for the 3D problem

For given € > 0 the system (1.1)—(1.3) on €. is complemented by the initial
conditions

pa(oa ) = P0,e, p5u6(07 ) = (pu)U,E and 95(07 ) = 90,57
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such that the integral averages over (). converge weakly (with respect to y) in
L(0,1) to some limit as ¢ — 0. For the precise conditions see the statement
of Theorem 4.1.

We suppose that the viscous stress tensor S is a linear function of the
velocity gradient and therefore described by the Newton’s law

S(0, V,u) = pu(6) <V$u +Via— gdivmuﬂ> + n(0)div,ul, (2.1)

with the shear viscosity coefficient 1(8) > 0 and the bulk viscosity coefficient
n(#) > 0 satisfying

w(0) = po + a6, n(0) =no+mb, po,pu1 >0, no,m > 0. (2.2)
The heat flux q satisfies the Fourier’s law
q(0,V.0) = —k(0)V.0, (2.3)

where we assume the following form of x(6)

K(0) = Ko + K20? + K30®, K; >0, i=0,2,3. (2.4)
The system of equations (1.1)—(1.3) with the constitutive relations (2.1)
and (2.3) is called the Navier-Stokes-Fourier system.

Equations (1.1)—(1.3) are supplemented with the conservative boundary
condition

q- n|BQE = 0) (25)
and the complete slip boundary conditions

u-njpo. =0, [S(Vzu)-n] xnlgg, =0, (2.6)
where the symbol n denotes the outer normal vector. It is worth pointing
out that the complete slip boundary conditions are suitable for a dimension-
reduction as the no-slip boundary conditions yield only a trivial solution in
the asymptotic limit € — 0.

The concept of a weak solution to the Navier-Stokes-Fourier system
based on the Second law of thermodynamics was introduced in [5]. The weak
solutions satisfy the field equations (1.1)—(1.3) in the sense of distributions
where the entropy production rate ¢ is a non-negative measure,

o> é <S(9,qu) :Vu— q(@,VgW) .

In order to compensate for the lack of information resulting from the inequal-
ity sign in (2.7) the system is supplemented with the total energy balance,

9 o,
2 /Qs (2p|u| + pelp, e)) dz = 0,

2.7)
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where e = e(p, ) is the (specific) internal energy. Under these circumstances
it can be shown (see [8, Chapter 3]) that any sufficiently smooth weak solution
of (1.1)—(1.3) satisfies the standard relation

0

The proof of our main theorem is based on the method of the relative
entropy (see [3], [4], [15]), represented by the quantity

o= 1 (S(H,un) :Vyu — (W) .

E(p,0Ir,©) = He(pv 0) — apHe(rv O)p—r)— H® (r,0), (2.8)
where H® (p, ) is the thermodynamic potential called the ballistic free energy

H®(p,0) = pe(p,0) — Ops(p,0),
introduced by Gibbs and discussed more recently by Ericksen [6].
We assume that the thermodynamic functions p, e and s are interrelated
through the Gibbs’ equation

0Ds(p,0) = De(p,0) + p(p,0)D (;) . (2.9)

The subsequent analysis leans essentially on the thermodynamic stabil-
ity of the fluid expressed through

9p(p, 0) de(p,9)
ap 00
Motivated by the existence theory developed in [8, Chapter 3] we assume
that the pressure p = p(p, ) can be written in the form

> 0, > 0 for all p,0 > 0. (2.10)

p(p,0) = 95 p <6p3) + %94, a >0, (2.11)

where

P € C'0,00), P(0) =0, P'(Z) >0 for all Z > 0. (2.12)

In agreement with Gibbs’ relation (2.9), the specific internal energy can
be taken as

363 p 64
0)=-—P| = —. 2.13
()= 3P (L) +a% (213)
Furthermore, by virtue of the second inequality in the thermodynamic

stability hypotheses (2.10), we have

SP(Z)—ZP'(Z)

0< 7 <¢, foral Z>0. (2.14)
In particular, (2.14) implies that the function Z — % is decreasing and
3

we suppose that
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Pz
lim Q =Py > 0. (2.15)
Z—oo [3
Finally, the formula for the (specific) entropy reads from the Gibbs’
equation (2.9) as

0 4a 63
0)=5(—= —_—— 2.16
s =5 (5) + 5. (2.16)

where, in accordance with the Third law of thermodynamics,
35P(2)-ZP'(Z)

! ——
5(2) = 2 72

<0. (2.17)

2.2. Structural hypothesis for the 1D problem

Since we are interested in smooth solutions of the 1D equations, we comple-
ment the system of equations (1.4)-(1.6) with the initial conditions

ﬁ(oa ) = ﬁ07 ﬁ(07 ) = 1y, 5(07 ) = 507 (218)
with pg > ¢ >0, 0y > ¢ > 0 and 7 being smooth functions.

The form of the stress tensor S and the heat flux q naturally yields their
one-dimensional counterparts, namely we expect that in the limit we recover

S(0,0,a) = (vo + 110)dy, (2.19)

with the viscosity coefficients

4
and
q(0,0,0) = —r(0)d,0. (2.21)

3. Concepts of solutions

3.1. Weak solutions to the 3D-system

Let T > 0 and © C R? be a bounded Lipschitz domain. We say that a triple
(p,u, ) is a weak solution to the Navier-Stokes-Fourier system (1.1)—(1.3)
with (2.1)-(2.7) in (0,T) x ©Q emanating from the initial data

p(07 ) = pPo, pu(ou ) = (Pu)07 pS(p, 9)(07 ) = POS(PO>90)a £o Z 07 90 > 03
if:
e the density and the absolute temperature satisfy p(t,z) > 0, 6(¢,x) >
0 for almost all (t,z) € (0,7) X €, p € Cuear([0,T]; L3(Q)), pu €
Cowear ([0, T); LT (Q;R?)), 0 € L>®(0,T; L*(Q)) N L2(0, T; W12(Q)) and
u e L2(0,T; WH2(Q; R3)), u - n|pg = 0;
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e equation (1.1) is replaced by a family of integral identities

/p(Tw)@(Tw)dw*/poso(Ow)dw:/ /(patso+pu'vz<p)dxdt7
Q Q o Ja
for any ¢ € C1([0,T] x Q) and any 7 € [0,7] ;

e the momentum equation (1.2) is satisfied in the sense of distributions,
specifically,

/Q pu(r, Yp(r, )i — / (pwop(0, -)dz

Q

= / / (pudip + puu: Voo + p(p, 0)divee — S(6, Veu) : Vep)dedt,
o Ja
for any p € C1([0,T] x Q;R3), ¢ -n|gqg = 0 and any 7 € [0, T);

e the entropy balance (1.3), (2.7) is replaced by a family of integral in-
equalities

/ pos(po. 80) (0, -)da — / ps(p.0)(7, Vo (r, e
Q Q

w5 (50,9 v - LETILTLY
0o Jat 0

0

for any p € C1([0,T] x Q), ¢ > 0 and almost all 7 € [0, 7T7;
e the total energy is conserved

/Q<;P|U|2+P€(P,6‘)) (T")dx/Q<2;0|(Pu)o|2+poe(po,00)) iz,

for almost all 7 € [0, 7.

T 0,V.0) -V,
< —/ / (pS(pﬁ)@t@ + ps(p,0)u- Vi + W) dxdt,
0 Q

The existence of global-in-time weak solutions to the three dimensional
Navier-Stokes-Fourier system was established in [8, Theorem 3.1]. It reads as
follows.

Theorem 3.1. Let Q C R® be a bounded domain of class C*V, v € (0,1).
Assume that py € L*3(Q), [,po = My > 0; (pu)o € LY(Q), (pu)y = 0
almost everywhere on the set {x € Q, po(x) = 0}; 6y > 0 a.e. in Q is such
that pos(po,fo) € L1 (Q) and the initial energy of the system satisfies

1
/Q <2p0|(011)0|2 + poe(po,90)> dr < oo.

Assume that the structural hypotheses (2.1)-(2.4), (2.7), (2.9)~(2.17) hold.
Then for any T > 0 the Navier-Stokes-Fourier system admits a weak solution
(pyu,0) on (0,T) x Q in the sense specified above.
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Moreover, the authors also proved that every weak solution satisfies the
total dissipation balance [8, Equation (2.51)], i.e.,

/Q (;P|u|2 +H(p, 9)) (r)da + B0 [[0,7] x O
= /Q (;Pt)lu(ﬂ + H@(poﬁo)) dz, (3.1)

for almost all 7 € [0, 7] and for every positive constant 6.

Remark 3.2. It may seem that Theorem 3.1 is not suitable for our problem
since the domain under consideration is of the form (a,b) x (¢,d) x (0,1) and
hence not of class C?¥. We overcome this issue by the following consideration.
The smoothness of the domain is used in the proof of the existence of weak
solutions to ensure the smoothness of Galerkin approximations. In our case
we may use the special structure of the spatial domain together with the
boundary conditions to extend any solution from 2 appropriately (as an even
or an odd function) to create a solution with periodic boundary conditions
on a larger box where no restrictions on the smoothness of the boundary are
necessary.

3.2. Classical solutions to the 1D-system

As € — 0 we observe that . — (0,1). Moreover, we expect the solutions
(pe,uc,2) of (1.1)~(1.3) on €. to converge to a classical solution (g, @, 6) of
(1.4)—(1.6). The boundary conditions (2.5) and (2.6) naturally lead to the
no-slip boundary conditions for the velocity and the heat flux, i.e.,

ﬂ(-, 0) = ﬂ(-, 1) =0, q(é, al/é>(a O) = Q(é’ ayé)(v 1) =0. (32)

There has been published a lot of papers about the one-dimensional
Navier-Stokes-Fourier system (1.4)-(1.6) with the no-slip boundary condi-
tions. We refer the reader to [1], [10] and [16] where the existence of solutions
was provided under more restrictive assumptions on the pressure, viscosity,
energy, etc. However, as far as we know, the global in time existence result
for the system in its full generality has not been proven yet. Nevertheless, the
local in time existence for any smooth initial data or global in time existence
for small data can be expected to hold from the classical results on the topic.
Since the existence of a classical one-dimensional solution is not a goal of
this paper, we simply assume its existence without any proof. Let T > 0. We
assume that there exists a trio

(p,@,0) : [0,T] x [0,1] — (0,00) x R x (0, 00),

of smooth functions that is the solution to (1.4)-(1.6) and (3.2) on [0, T x (0, 1)
satisfying

eyl

>c>0, 60>¢>0,
1

with the initial conditions (2.18).

—~
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4. Main Result
The main result of this paper reads as follows.

Theorem 4.1. Let Q C R? be an open rectangular domain and let Q. =
eQ x (0,1) for e > 0. Suppose that the structural hypotheses (2.1)-(2.4) and
(2.7) for the viscous stress tensor S and the heat flux q are satisfied together
with (2.9)—(2.17) for the thermodynamic functions p, e and s.

Assume that the initial data (poe,(pu)o.e,00,c) satisfy all the assump-
tions of Theorem 3.1 on domains €. and denote (p,u.,0.) the correspond-
ing sequence of weak solutions to the 3D Navier-Stokes-Fourier system on
(0,T) x Qc emanating from the initial data (po e, (pu)oe,60,c)-

Let (ﬁo,ﬂo,éo) be smooth functions such that there ezists the classical
solution (ﬁ,ﬂ,é) to the 1D Navier-Stokes-Fourier system on (0,T) x (0,1)
emanating from (po, o, 0o). Define g = [0,0, o] and @ = [0,0, ).

Let moreover

po.(xh, )dzn — po, (pu)o,e(zh, -)dzn, — polo,

1 1
1Qe] Jq. Qcl Ja.

1 o
— 00,e5(Pe,050=,0)dxn, — pos(po, 0o),
|Q6‘ Qe

weakly in L*(0,1) and let

1
Q

1
| / {on|(pu)0,a|2 + Pe,Oe(pE,anayo)] du
€ Qe €

1
1 o
%/ [2P0|U0|2+P0€(P0,90) dy. (4.2)
0

Then
5

1 ~
€S8SUDie(0,T) ‘Q I Hps - p“ -0,
€

L3 ()
1 3112

esssupte(oj)mnee - HHLQ(QS) =0,
e

and

0. ue = all7ro,7)x0.) = 0
for every r € [1,2) as e — 0.

Remark 4.2. Our result can be viewed as an extension of the dimension
reduction for the barotropic Navier-Stokes system achieved in [2] to the full
Navier-Stokes-Fourier system. The basic strategy of using the relative entropy
inequality is the same. However, the presence of the temperature raises new
obstacles.

In elasticity theory, the analysis of dimension reduction problems de-
pends on the use of Korn’s inequality which controls the gradient of velocity
by its symmetric part, i.e.,
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IVavlizzo.) < ce)[Vav + Vivllze.y, v-nlag. =0.
There are two problems that arise with respect to above inequality. Firstly,
validity even for a fixed € > 0 requires certain restrictions on the shape of
the cross-section ). Secondly, even ”properly” shaped @ might not stop the
constant ¢(¢) from blowing up as € — 0.

In [2] authors obtain their result for a regular planar domain @ since
they avoid the use of Korn’s inequality by exploring the structural stability
of the family of solutions of the barotropic Navier-Stokes system. In our case,
the approach of [2] is disrupted by the temperature.

Therefore our result leans on the validity of stronger Korn’s like inequal-
ity appropriate for compressible fluids, namely, we use

2

2
||vxv||2L2(QE) < Hvxv +Viv— gdivwvl[ , v-nlpg. =0.

L2(Qe)

To get that we assume that Q is an open rectangular domain in R2, i.e., Q
can be written as

Q= (a,b) x (¢,d), a<b, c<d, a,b,c,deR.

5. Preliminary calculations

In this section we introduce the estimates which will be used repeatedly in the
subsequent calculations. Hereinafter, we assume that (g, 4, é) and (pe, ue, 6:)
are a classical and a weak solution to the respective problem satisfying the
assumptions introduced in Theorem 4.1. For clarity, we omit the suffix ¢
where no confusion occurs and we write (p, u, 8) instead of (p., uc, 0;).
Following [8, Chapters 4,5] we introduce essential and residual com-
ponents based on p and 6. To begin, we choose positive constants p,p, 6,0
fulfilling B

1
— min o(T,y) < 2 max o(T,y) <,
2(T,y>e[0,T1x[0,1]p( ) <T,y)e[0,T]x[071]p( v <P

1 _ _ _
— min O(r,y) <2 max o(r,y) <86.
2 (7,9)€l0,T]x[0,1] ") (m)€[0,7]x[0,1] )

According to Lemma 5.1 in [8] there exists a constant ¢ > 0 such that

lp— P2+ 16— G2 if (p,0) € [p.7) x 0,7,

E(p,0|p,0) > ¢ - (5.1)
1+ |ps(p,0)| + pe(p,0) otherwise.
It is worth pointing out that ¢ is independent of ¢.
Each measurable function h can be written as
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h = hcss + hres;
where

h(t,x) if (p(t,2),0(t, =) € [p, p] < [0, 0],

hess (tv l‘) =
0 otherwise.

5.1. Estimates on p and 6
We immediately see from (5.1) that

||[(9— é}essl

iS(Qs) + ||[p - ﬁ]ess‘ ES(QE) < C/Q 8(,0,9‘5, é)dl‘, (52)

for s > 2. We show that similar estimates hold also for the residual parts.
Firstly,

pe(p,0) > c(p’ +0%).

P(z P(z
Since (5 ) is decreasing and lim (5 ) = P,, we obtain
Z3 2—00 3

P(z) > Pooz%.
Using the above estimate we get

pe(p,0) > %951:’00 (;) +ab* > c(p3 +6%).

2

Now we can estimate the residual parts. We have for 1 < g < 4 that

/ Ha - é]res‘qd‘r S C/ (|[0}res|q + ]-Tes)dxa
Qa

=

and by the use of Holder and Young inequalities together with (5.1) we obtain

3 1-4 )
<c (/ |[9}resl4dx) (/ 1mdx) + c/ E(p,0)p,0)dx
Qe Qe Qe

< C/ |[0]7‘65‘4d$+c/ g(p79|ﬁ’ é)
Q Q.

€

Thus
/ 1[0 — 0] es|9da < c/ E(p,0)p,0)de, (5.3)
QE Qa
where 1 < ¢ < 4. Combining (5.2) and (5.3) we obtain

100l << [ E(0.017.0)d (5.4)

As for the density, we get analogously as above that for 1 < p < % it
holds



Dimension Reduction for the Full System 11

/Q |[p - la}res|pdz < C/ (Hp]res|p + 17"63) dx

Qe

% -3
s«:< / |[p1m?dx) (/ lmdm> e / £(p. 017, 0)dz
Q. Q Q.

=

<o [ Nphulido e [ EGo.015.0)d
Q.

=

Hence, we have

| o=z < [ (o005 (5.5)
for1 <p< %

5.2. Korn and Poincaré inequalities

Although both inequalities are very well known, we need the estimates which
are independent of €. Note that this goal cannot be reached by a simple
rescaling argument as the domain shrinks only in two dimensions. For more
details see Remark 4.2.

For clarity, in this section we prefer the notation z3 and 9,, instead of
y and 0y.

Lemma 5.1. Let Q C R? be a rectangular domain, i.e., = (a1, b1) X (az, by) x
(as,b3) and u € W12(Q,R3) be such that u-n =0 on 9Q. Then

IVoulgq) < [[Vau+ VEull}a g,

2

)

2
V,u+ Via- S divoul )
L2(Q)

1Vl 2aey < \

2
\|un||2L2(Q) < /Q(Vzu—i— Via-— gdivzu]l) : Vyudz.

Proof. Since smooth functions are dense in W12(2, R?), we prove the lemma
only for u € C?(Q). Denote u = [u!, u?,u3]. We split 9 into three parts as
follows:

0 = {a1} X [ag, b2 x [a3,bs] U {b1} x [ag,b2] X [as, b3],
00y = [al,bl] X {CLQ} X [a37b3] U [al,bl] X {bz} X [a3,b3]7

893 = [al,bl] X [&Q,bg] X {a3} U [al,b1] X [GQ,bQ] X {bg}
Therefore, boundary conditions on u imply:

utlon, =0, u*on, =0, u®lsq, =0. (5.6)
Since
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20, ul Oyt + 0y, u?  Opyul + Oy, u’
(Vou+Via) = | 0,,u? + 0p,ut 20,,u? Ot + Op,u® |,
O u® + Oput Opyu® + Op,u 20, u3

we calculate
(Veu+Viu): (Veu+Viu) = [Voul® +3 [(axlul)Q + (Ouu®)® + (6963”3)2]

+4 [awzulﬁzluz + Opyut Oy, u® + 8$3u28m2u3} .
We integrate by parts to modify the last terms.
First, we integrate by parts in s,

b1 pbs
/8m2u1811u2dx:/ / [ulaxqu]’f dx3dx1—/u18x28mlu2dx.
Q al as 2 Q

From the boundary condition u?|5q, = 0 we get d,,u%|sn, = 0 and hence the
boundary term above disappears. Next, we integrate by parts in x1,

by pbs
—/ ulagglamquaj:/ / [u18w2u2]b1 dmgdxg—i—/ 8$1u18z2u2dx.
Q as as @ Q

The boundary term above disappears due to u!|sg, = 0 and we end up with

/8z2u18x1u2dx:/8I1u18z2u2dx.
Q Q

The rest of the terms is treated analogously and we get

/8x3u18x1u3dx:/aa.lul@%ugdx,
Q Q

and

/8w3u26$2u3dx:/8$2u28w3u3d33.
Q Q

Finally,
/(un + Vi) : (Vou+ Viu)de :/ |V, ul’de
Q Q
4 3/ [0, 0))? + (0ry12)? + (Oryu)?] d
Q

+ 4/ (02, 0" 0y, u® + Oy ' Opyu® + 0y 0y, ] da,
Q

and since
3
(divau)? = " (0e,u') + 2[00, u' Ony t® + O, ' 0yt + Dyt 0y,
=1
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we get that
/(V,;u +Viu): (Vou+ Via)de = / |V ul?de + 2/(diku)2dx
Q Q Q

+/ [0z, u")? + (00,u?)? + (0p,u®)?] da.
Q

Thus the first inequality is proven. The second inequality follows easily since

2 2
(Vou+ Vi - gdivxuﬂ) S(Vou+ Via - gdivxuﬂ)
4
= (Vou+ Via): (Vyu+ Vi) - g(divxu)Q.

We use the integration by parts in the same way as before in order to
get

2 1
/(un + VZu — Zdiv,ul) : Vyude = / |V ul?de + - / (div,u)?dr,
Q 3 Q 3 Ja

which directly implies the last desired inequality. O

We introduce the following notation. For a set M C R%, d € N and a
function f € L'(M) we denote by (f)as its integral average, i.e.,

1
D= o /M f(@)da

Lemma 5.2. There exists a constant ¢ > 0 independent of € such that for
every f € WH2(Q,) fulfilling f(-,0) = f(-,1) =0 on Q. it holds that

/O / F@ny) — (Do @) *dendy = 1 — (Fo. |5

Proof. From Ladyzhenskaya’s inequality (see [11]) we have

@) <V Tz

1f = (Na:llzq.) < elVa, fll2qllf = (Ha.llizq.)-

with the constant ¢ independent of €. Indeed, as this is a 2D inequality, the
independence can be shown by a simple rescaling argument. Further,

If = (Na. e, / 1f = (D e dy

<e / IV 1o I — (Fo2ady

<cllf - (f)Qs||2L°°((0,1),L2(Q5))||vf||L2(Q ) < C||vf||L2(Q )’
where we used the fact that, due to Holder inequality,
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2
dSCh

flzn) — f(zn)dzn

1
If = (Na.lia@.) < /Q 101 Jo

= /QE ‘$s| Q. |f(xh) (’zh)|2dzhdl‘h

<c $8| (/E/E |f(xh)2dxhd2h+/a/a |f(zh)2dmhdzh>

<l 2.
for a.a. y € (0,1) and thus by Sobolev-Poincaré inequality we finally obtain

1f = (DealEo.1),2(0.) < el Z<(0.1),2200.)
< el 0us 20,0 L2000 < VT2,

6. Relative entropy balance

Recall that we omit the index ¢ for the functions (p., uc, 6 ) and simply write
(p,u, 0) instead. Following the calculations in [7, Section 3] we obtain for each
€ > 0 the following relative entropy inequality satisfied by any weak solution
(p,u,0) to the Navier-Stokes-Fourier system on ). and any trio (r, U, ®) of
smooth functions, r and © bounded below away from zero in [0, 7] x Q. and
U - n|go. =0.

1 1
Q/Q (QPu -Up —|—5(p79|r,6)) (1, )dz

1 /T/ @< q(a,vxe).vm)
e 2 (s(6, V) : Vyu— X V2D Vol gy
Q] Jo Jo. 0 (B0 Ve) 0

1 1
<o | (|<pu>o,5 = 0 U0, + E(pe. e 0r(0, ), 000, ->>) s
Q| Q. 200,

\Qe\// )- V.U - (U = u)dadt

|Q6|// 5(r,©))(U — u) - V,Odxdt

/T/ (p(0:U+U-V,U)-(U—u)—p(p, 0)div,U+S(0, V,u) : V,U)dzdt

/ /Q ( — 5(r,©))(3,0 + U - V,0) + M ~Vz@> dndt

L1
Qe |

Q]
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e /0 / 3”’(7" ©) - *u Vap(r, @)) dxdt, (6.1)

for almost all 7 € [0, T], where £ was introduced in (2.8).
To prove Theorem 4.1 we take

0
r=pty), ©=0(ty), Uﬁ(t,y)[ 0 }

n (6.1) to obtain
(el o+ £010) (s
TA 1 a - ) ) Ty
Q-] Jo, \2” g
1 /T/ é< q(a,vxe).vxo)
+ — (S(6,Vou) : Vou — =22 220 dadt
Qo Jo o SOV 0
<7 o (g lomdo = ol + & e|~é>)d
S = - 1P1)o,e — Po,e W P0,e5Y0,e|P0, T
|Qs| o, 2P0,5 0 0 0 0 0 0, Y0

\QE\/ / plu’—il*|0, u|dxdt+‘QE|/ / (5,0))(ii—u®)-0, Bdadt

RO .
+|Qa|// (P(atu+u8yu)(u u’) p(p,a)ayu+s(97vzu),vmu)dxdt

IQsI/ / ( _5(p’9)>(89+ﬂ8y9)+(W~vwé) dzdt

\Qa\ / / (( > 0w (p.6) - %“ - Vap(p, 5)) dxdt, (6.2)

for almost all 7 € [0, T7.
In order to handle the integrals on the right-hand side of (6.2) we pro-
ceed in several steps:

Step 0 Observe that by (4.1) and (4.2) we get

|Q |/ <2p0 p05u0| +g(p05,00€|p0,00)) dac—>0, (63)

as ¢ — 0. From now on, we include this term in T'(¢) where I'(¢) — 0 as
e —0.

Step 1
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L3 -9
§p|u — a|*dx. (6.4)

Q

€

/ plu® — 2|8yl < 2||aya|\mo,1)/

Step 2
|u® — @|da

<1010 | [ |[s60:0) = s(5.0)]
QE €SS
lu® — ﬂ|d$] .

+ [ o (st0.0) = 55.)]
QE res
First, we estimate the essential part. Since
4a 63 p 4a 6°
03 3 p

p
S(H)+5=-5
[ («92 3p

p

<[l Gr) -+ @)

/Q P (s(p7 0) — s(p, 5)) (it — u?)d,0da

(

IENE
? - ? €ess

< CHp — ﬁ]ess‘ + C|[9 - é]ess‘v

)

4da

[s0,:0) = s(5.8)]
3

02
0 P 4a || 63 63
<161 5 - ] +3[p_ﬁ

thus,
|u® — a|da

[ Jswr-ea],
<KO) [ (Gl =3 + £005.) )

Here and hereafter, K(-) is a generic constant depending on p, @, 6, p, 0

through its respective norms. It is independent of e.
Next we treat the residual part. We compute

|t — u®|da

@ — (u®)q, |dx

TEeS

| {ptst0.0)=s6.0]
< [ {[ptst0.0) = s(5.90)]

=

+ / [os(0.0) — (5.0)]

€

|(u¥)g. — ud|de = T) + I,.

Tes

It holds
Iy < i — (u®)q. || 2= llo(s(p, 0) — s(B, 5))]res||Lg(Qs)IQe|Z~
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Further,

[o(s(p,0) — (5, 0)]res| < clp+ ps(p,0)]res
< clp+ 6%+ pllog 6] + p|log pllres, (6.5)

(cf. Equation (3.39) in [8]). Each term on the right hand side of (6.5) can be
estimated using (5.3) and (5.5) as follows:

7%‘68 — T%‘FG 6% g 707 84
(/er dx) <(/Qf dx) Q.7 (|Q|/ (0,017 )dx) Q.
1 NG,
04 E(p.Olp. 0)d el
(/ ) (|Q€/QE (0,017, >x) Q.|

(/5( UOge]res)sdx)i - c(/Q pige,isdx)i
Sc(/ presd$> (/ 0! d >230
= <|Qe /ng(P,emé)dx)i Q.13

Sc(/9<p3+p>dm)
1 ~ i 3

—_— E(p.Olp. 0)d el
s(@/@s (0,017, >x) Q.

From (3.1) and (4.1),(4.2) we deduce that

1 -
(/ S(p,9|ﬁ79)dx> € L>(0,T),
Qe Jo.
with a bound independent of € (cf. Equation (2.52) in [8]). Thus

o

N

3
1

(f 5<|plogp|res>%dx)

N 1 o \2
T < i - (@), li=(a) (Q| | e em) Q..

As far as W1(0,1) < L*°(0,1) we have

lla - (u?’)QEHLoomE) = [l — (v*)q. | L=(0.1) < 119y (ﬂ = ()l 0,

1
A7 l10y (@ = u)Lra.) <

— |9y o —u?)| 2

- IQsl
This implies
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_ 1 _ = H 1
I < ||ay(u_u3)||L2(Qs) (|Q|/Q E(p,9|p,9)dx) |Q:|?

< 8110y (@ — )22, + K (6) / £(p. 0], B)dr.

Summarizing the calculations above we get

. 1 _— 5 3
lols(p.0) = (30l < (7 | £6001.0000) " 1

and thus

o < o, — v l1sa ( [ €0 é)dm) Q.

2

< Q.11 Vul ) ( | ewop é)da:)

< el Vullia, +o | .00

where we used the result of Lemma 5.2.
We conclude that

/ p (s(p7 0) — s(p, é)) (it — u?)d,0da
Q.
<6810y (@ — u®)| 20y + el Vulliz .

+K(<S,-)/ (;p|u3—02+5(p,9|ﬁ,9~)> dz, (6.6

€

for any § > 0. Here and hereafter, K (d,-) is a generic constant depending on
9, p, U, 0, p, 8 through its respective norms. It is independent of e.

Step 3 Using (1.4) and (1.5) we get
/ p(Oit + @0y (@ — u®)dx
Qe

(@ = u?) (8, [(v0 + 110)0,] — ,p(5,0)) de

:/QE

- / %0’ = P~ ) (9,0 + 110)9,7) ~ 9,p(p.0)) da

™D

+ /QE (i~ ) (90 + 110)0,5) ~ p(p. ) der (6.7)
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Due to the regularity of (@, g, é) it follows that

/Qa %@ = )i~ ) (9, [(vo + 118)9, ) — 0,p(p.0)) da

< /Q (p— 5)(@ — u®)de.

To estimate [, |(p — p)(@ — u®)|dz we introduce the following proposition.

Proposition 6.1. There exists ¢ > 0 independent of p and 6 such that

E(p,015,0) > clp—pI*  for p € [p, 7,
5(p7 0|/~)7 q) > C|p - ﬁ| fOT p < P (68)
E(p,0|p,0) > cp for p>p.

Proof. We use the notation from the proof of Lemma 5.1 in [8], i.e.,

Flp) = H'(p,0) — 0,H°(5,0)(p — ) — H*(5.0),

and i i
G(p,0) = H(p,0) — H’(p,0).
According to Section 2.2.3 in [8] it holds

E(p,01p.0) = F(p) + G(p,0) > F(p) + G(p,0) > F(p),

and the function F(p) is strictly convex attaining its minimum 0 when p = p.
This immediately implies the first inequality in (6.8).
As far as 0,F (r) < —c < 0 for r € (0, 2p), we have

Fo) = 70) - 7 (30) + 7 (32) - 700

Since F(p) — F (%B) as well as F (%B) — F(p) are positive, we may proceed
as follows

Flp) = ‘}'(p) ~F (;p) ’ + ‘]—‘ (‘;’p> - ]—‘(ﬁ)’ >clp— gp‘ > |p—pl
2
3

Similarly, 9,F(r) > ¢ > 0 for r € (£p,00) and we deduce
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Now we estimate / l(p — p) (& — u®)|dx. First, we split it into three
Qe
parts:

| o=pa=e= [ Jp=p) - ulds

{p<p<p}

+/{p<p} | (P—ﬁ) (’a—u3)|d$—|—/{p>p} | (p_ﬁ) (ﬂ_u3)|dx

Second, using (6.8) we estimate each term as follows:

[ lo=p @) < Sl e, K6 [ E.015.0)da,
{p<p<p} Qe

[ - <s [ Ja-wPdos K6 [ o
{p<p} Q. {p<p}

< 6 — w3 e, + K(6.°) /{ o= plds
p<p

<l = + K [ €017 0)d.
for any 6 > 0 and
lp— Pl ~ 3 ~ 3|2 lp— ﬁ|2
\fp|u—u|da:§/ p|u—u|dx—|—/ ——dx
/{p>p} VP 0. {p>py P
< [ dla-atPar() [ pdo< [ pla-ufdosk() [ (o005
Q {p>7} Q. .

€

The second integral on the right-hand side of (6.7) is handled by inte-
gration by parts as

/ (i) (9, [0 + 110)0,5] — 9,p(p.0)) di
Qe
_ /Q (vo + 118)3, 0, (u® — @) + p(5, 60, (it — u®)da.

Thus we arrive at

/ p(Oi+ady ) (i—u?)dr < / (Vo +110)0, 10, (u® @) +p(p, 0)d, (1—u>)dx
QE

Qe

~ 1 o=
#0084 KG) [ (Gola— P+ .0030) ) dr (69)

€

for any § > 0.
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Step 4 We calculate

/Q p (s(p, 0) — s(p, 5)) (9,0 + 1d,0)dx

- /Q Ep{s(p,@)—s(ﬁ,é)}ess (0,0-+10,0)dz+ /Q p[s(p,a)—s(ﬁ,é)Les (9,0+10,0)dx.

e

By a combination of (5.1) and (5.5) we get

/Q ) [s(p, 0) — s(p, é)} . (9,0 + 10,0)dx

while

<KO) [ E(p.017.0)da.

/Q P {8(/% 0) — s(p, G)LSS (9,0+10,0)dz = /

(0—7) [s(p, 9) — s(p, é)} (0,0+110,0)dx
QE €ess

+ / F; [s(p, 0) — s(p, é)} (0,0 + 10, 0)dz,
QE €ss

where with the help of the Taylor-Lagrange formula and (5.2),

[ 0= [sl0.0) - 5(.8)]_ (05 + 10,0)d
Q.

€Ss

< sup  [Ops(p,0)| + sup  [9gs(p,0)| | 106 + @0, 0] L~ (0,1)
(p,0)€E[p,p]%[0,0] (p,0)€[p.p]%[0,0]

X/{zs (o= Aless|(|[p— Aless| + 110 — 0] ess|)da < K(~)/ﬂg€(p,9|ﬁ,9~)dx. (6.10)

Finally, we write

/Q p [s(p, 0) — s(p, é)} . (8,0 + 10, 0)dx

= [ 5 [s00.0) = 0,508 = ) = 20507000 = ) = s(5.5)]__ @i6+ii0, )

TES

—/Q p [aps(p, 0)(p— p) + es(p,0)(0 — é)} (0,0 + @0, 0)dx

+/ p (aps(p: 0)(p— p) + dos(p,0) (60 — é)) (9,0 + ud,0)dz,
Qe

where the first integral on the right-hand side can be estimated using the
Taylor-Lagrange formula of the second order and (5.2) (similarly to (6.10))
and the second integral on the right-hand side can be estimated by (5.3) and
(5.5).
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Thus we conclude that

_/Q o (s(0,0) = 5(5,8)) (@0 + @0,0)dz < K / E(p. 017, 0)dz

— [ (05000 )+ 20507000 = 0)) (@ + 0, ). (611)

Step 5 By the integration by parts

/QE <<1 - p> o (p,0) — %u - V.p(p, 9)) dz
- /Q ((1 - p) 0w (.9) ~ §u38yp<ﬁ, é)) dx

:/Qg(ﬁ p)= <8tp(p7 ) + w0yp(p, )) dm+/ p(ﬁ,é)ayu?’da:

QE

+ [ 5= p)50(5.0) (0 ~ i

e

where, by means of the same arguments as in Step 3,

| 5= 02060 - 2)ds
Q. P

- 1 - L=
<0l ~ e + KO [ (G =0 + £015.0))

€

for any 6 > 0. Using this estimate we get

/szs ((1 - ;) Orp(p,0) - %u - Vap(p, 5)) dx

< /QE (p— p)% (@p([), 0) + ud,p(p, é)) dx + / p(p, 0)d,uldx

Q.
3 ~112 1 3 ~12 ~ N
#0 = lfay + K0 [ (ol - i+ €.003.0)) do. (612
for any § > 0.

Step 6 Summing up the estimates (6.3), (6.4), (6.6), (6.9), (6.11) and (6.12)
we can rewrite the relative entropy inequality (6.2) in the form

|Qs\/ ( plu—af* +E(p,0lp, ))( ,)dx

/ / < 0,V u) : Vou — (v + 110)0,ad, (u® — @) — S(6, V,u) : V$ﬁ> dadt
Qe

e
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1 /7 q(0,V,0) - 0q(0,V,0)-V,0
+7// V) g g PAG VD) VeV ) gy < T(e
Q1 s Q< g N )
1 T 1 N
vigr |0 = ey + 6 [ (Golt a4 £G0.015.) ) ] at
1Qel Jo ‘ . \2

1 T
+—= 8110, (u® — a)||? +¢||Vul? dxdt
a1 ) | (106 = Dl + el 0l

! ICL\ / / (Wv 0) — plp.0)) 0, idadt

|Q5‘ / / 3fp(p7 )Jr U0y p(p, é)) dxdt
_@ /OT /S2 7 (955(5,0)(p = 5) + 905(5.0)(60 — 8)) (9,0 + 70, 0)dwat,

(6.13)
for almost all 7 € [0, T] and any ¢ > 0. Recall that I'(¢) — 0 as ¢ — 0.

Step 7 Our next goal is to control the last three integrals on the right-hand
side of (6.13). To this end, we recall a useful identity that follows directly
from the Gibbs’ equation (2.9):

rd,s(r, ©) = —%89]9(7“,@). (6.14)

Using (6.14) we obtain

/Q (p— p)% (@p(fn 0) + udyp(p, )) dx
- /Q 5 (8,5(5.0) (0 — 7) + Bos(p. )0 — 1)) (040 + 1, da

e PPN S - 1 iAo~ en <
:/ p(9*9)395(079)(3t9+u3y9)dx+/ (p*p)zﬁpp(p,f))(atp+u3yp)dx
QE Qs

Since p and @ satisfy the equation of continuity (1.4) we get

| 5= 03050005 + 10,5)dz = - [ (5= p)o,p(7.0)0,1ds.
Q. P

Qe

By using (6.14) and (1.4) once more, followed by the use of the entropy
equation (1.6) we deduce that

/ 56— 0)09s(5, 6)(0,6 + @0, 8)dr
Q.
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/95 p(6—0) [&s(ﬁ, 0) + wdys(p, é)} da — /

i (0 — 0)9p(p, 0)d,uda
/ 6 —0) [{ ((Vo + ulé)(ayﬁ)Q - 7(](&’ &ié)ayé) — 0y (q(é, @é))] dx
o 0 0

- / (0 — 0)yp(p, 0)dyudz.
Qe

We use the Taylor-Lagrange formula together with (5.2) on the essential
part; (5.1) with p(p,0) < cpe(p,d) and (5.3), (5.5) on the residual part to
obtain

| (0.0 = 200(6.0)(5 = ) = 4(5.8)3 = 0) = (. 0)) 0,

< K() / £(p.615.0)dx

e

Finally, the integration by parts with (3.2) allows us to rewrite (6.13)
in the form

IQe\ (P“ a” + £(p, 07, >)< )dz

Q] / / < (6, Vou) : Vou — (1o +1160)8,a0, (u® — @) — S(6, V,u) : V0
€ Qe

_~ 0 (1/0 + Vlé)(aya)2> dxdt
L / / q(6,V.0) - V.0 6q(0,V.0)- V.0
Q| Jo Ja: 0 0 0

+(0 — 9)% +0,(0 — é)‘W> dzdt

1 T 1 ~
" ol K00 [ (Gola® =l + 0.015.0)) | a
1Q:] Jo o, \2

1 T
+ 51|10y (u — @)]|? + || Vul|2 dxdt
a1 ) ] (100 = Dl + el Tl

for almost all 7 € [0,7] and any § > 0.

(6.15)
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7. Dissipative terms

The goal of this section is to show that the ”dissipative” terms on the left-
hand side of (6.15) containing V,u are strong enough to control the velocity
terms on the right-hand side.

7.1. Viscosity
In accordance with hypotheses (2.1) and (2.2) we have

S(0,V,v) = S°(V,v) + 6SH(V,v),
with

) 2
S (Vav) = pi(Vav + ng — gdivwvl[) + mdivevlI, i =0,1.
Using Lemma 5.1 we immediately obtain

/ SY(V,v): Vyvdr > / i |Vav)® + i |divev|® da, (7.1)
Q.

€

fori=0,1.

7.2. Viscosity terms
The terms to be dealt with are

/ (ZS(H, V) : Vou — (v 4 110)9,ad, (u® — @)
Qe

0—0 .
— S(0,Vzu) : Vyu — i (vo + V19)(8y&)2> dx.
First we deal with the ”6S*(V,u)” part:

gosl (Veu) : Vou—60SH (Vi) : (Vou—V,a)—6SH(V,eu) @ Vi b~ 051 (Vi) : Vi

=0 (S"(V,u) — SY(V,1)) : (Vou—-V,a)+(0-0) (SH(V,u) — SH(V,1)) : Vi
Using (7.1) we obtain
/ 0 (S'(Vyu) — SH(V,1)) : (Vou — V,i)de > mg/ |V, (u—1)2dz.
Q. Qe
Since

u?(-y) = a(-,y) = 0 for y = 0,1,

we see that
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/Q 0 (S'(V,yu) —SY(V,)) : (Vou— V,a)de

> ¢ (I = lle(q.) + [ Volu = @)]Fa,))

Similarly using (5.4) we can show that

/Q (6 —6) (S'(V,u) — S (V1)) : Voide

<6 (10,0 = @) 320+ Idiva(a = @) [Fagq,) ) + K0 = 0132,
(7.2)
for any § > 0.
Since
SY(V.1) : V. = 1;(0,a)?, i =0,1, (7.3)
we have that

ee%eéSl(vmﬁ) V= 0 ; eylé(aya)Q.

Finally, we estimate the difference
/ (ésl(mﬁ) L (Vou — Vait) — 1100,00, (u® — a)) dz.
QE
Proceeding with the integration by parts

i 0SH (V) : (Vou — Vyi)de = — /Q div,[#S' (V,0)] - (u — &)dz

+ 6S*(V,0)(u — @)nds.
00
Since

— / div,[#S' (V,0)] - (u — @)dz = — / 0y (0110, 1) (u® — ) dx
Q. Qe
= 010,10, (u* — @)dx,
Qs

is is only left to estimate the boundary integral. By the same arguments that
lead to (7.5) later, we see that

/ S (V,1)(u — i)ndS = 0.
00

Thus we get
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/ OSH(V,11) : (Vyu — V,i)de = / 100,10, (u* — @)dzx.
Qe

=

Now we treat the ”S°(V,u)” part: We first suppose that § > 6 and
calculate

ng(vzu) :Veu—SY(V,a) : (Veu— Vi) —S%(V,eu) @ Vi

0
0 g aso(vmﬁ) SV, > Z(SO(Vmu) —S%V,1)) : V,(u—1u)
+0 <; — ;) SY(V,1) : Vy(u—1a) + #(So(vzu) —s%(V,n)) : V,u.

Since the function 6 +— % is Lipschitz on the set # > 6, we conclude that

/{929}

16l = (0.1)
92

dx

0 (; - ;) SYV,1) : V. (u— 1)

< K()19yull>=(0.1) / 10— 0119y (u® — )| + |diva (u — @)])dz

=

<6 (10,0 = @) 320 + Iiv (0 = D)3 2a, ) + KO, )0 = O3z,
(7.4)
for any § > 0. Analogously, we obtain a similar estimate for the last term,

/{ezé}

<6 (110, (w* = DIl Fldiva (0 = D)2y ) + K60 = 01320,

gi(so(vmu) —S%V,n)): V,a

0 dzx

for any § > 0. .
Next, if 0 < 6 < 0, we have

gSO(VIu) . V,u—S%(V,a) : (Veu—V,i)-S2(V,u) Vzﬁ—e ; GSO(Vwﬁ) : Vi

> (S°(V,u)-S%(V,1)) : Vz(u—ﬁ)—ké ; o [S°(V,u) : V,u-S*(V,a): Vi,

using (6 — 9~)2 > 0 and whence, by means of convexity of the function V,u —
SY(Vzu) : Vou we get
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%[SO(qu) Vo —SO(V, i) vwam%w(vma) Vo (u — 1),

where similarly as in (7.4), we can estimate

/ b- GSO(Vxﬁ) 'V (u—)de
Qo 0

<6 (10,0 — )32y + v (0 — D)3 ) + KO8~ 30, -
for any § > 0.
Finally, we estimate the “extra terms”. Thanks to (7.3) we immediately
get that

o- GSO(VIﬁ) LVl = %uo(aya)?

Using the integration by parts we calculate

SY(V,1) : (Veu — V,i)de =

Qe
- / div,S°(V,a) - (u — a)dx + / S%(V,1)(u — @)ndS.
Qe 00,
Since
| (= 3t \ (! !
(u—u)-S"(Vou)n =9ya | (ni — Sps)n® |- u? , withn= | n?
v;n3 ud—a n3
for ¢ = 0,1 and the fact that
0
n= 0 ,
n3
on Q. x {0} and Q. x {1} and
nl
n=| n? |,
0

on 0Q. x (0,1), we get from the boundary conditions u - n|pg, = 0 and
a(-,0) = a(-,1) = 0 that

SY(V,@)(u — @)ndS = 0. (7.5)
00,
Finally, it is straightforward to see that
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7/ divaO(Vzﬁ)(ufﬁ)dx:—/ V()@iﬂ(u‘g—ﬂ)dx:/ 0y 10, (u—it)da.
Qe Qe Qe

Hence,

SY (Vi) : (Veu — V,i)de = / o0y 0y (u® — )dz.

Qe Qe

Summing up the results of this section together with (5.4) we can rewrite
the relation (6.15) as

1 1 )
|Q/Q <2pu —al* +&(p, 015, 9)) (r,-)dz

1 T - -
o / (le? = a3z, + V(0 = @)[32a,) ) dt
g

L / / q(6,V.0) - Va0  6q(0,V.0) - Vab
Q:l Jo Joe 0 0 0

(- 9)%& +0,(0— é)q(e,ay9)> dudt

+c

1
|Qe|

<@+ [ [ (1 =l + 19200 - Do)

1 . N
sl Vol + KG) | (Qphﬁ — a4+ E(p. 01, e)) dz] at,  (7.6)
Q

e

for almost all 7 € [0,7] and any § > 0. At this moment we also point out
that due to (3.1) and (4.1), (4.2) we have that
dt <ec,

1 T
[oX / L)

with ¢ independent of ¢ and thus by Lemma 5.1 the term

2

Vu+ Vfu — %divxu}l

1 /T
ET— ||Va;u||L2 Q. dt,
|Qs| 0 (@)

can be included in I'(e) (cf. Equation (2.54) in [8]).
Now we may choose § > 0 so small that the inequality (7.6) takes the
form

1
Qe Jo.

1 // a(6,Vab) - V.0  6q(6,V.0) - V.0
Qe Jo Jae 0 0 o

1 ~
(3ol -+ £010.0)) (7)o

+
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(- e)q(e’agﬂ +0,(0 é)q(a,ay9)> dadt

+C|Qe\/ / ( plu® —a|* + E(p, 0], )) dxdt, (7.7)

for almost all 7 € [0, 7.

7.3. Heat conductivity
In accordance with hypotheses (2.3) and (2.4)

a(0,V.0) = —koV,0 — k20°V 0 — K303V .0,
and thus

q(9~7 ayé) = —,'»4308.,,9~ — f<;29~2(9?’,9~ — Iﬁgé?’ayé.
The terms to be dealt with are

q(0,V.0)- V.0 0q(0,Vah) Vb = q(0,0,0)0,0
7 7 7 +(0 0)752

We compute

+0,(0-0)20-20)

9/430 0 — 0:‘{0

5|V 0> — |a 0> + Payéay(é—o)

= o [0, 108 (6)? — 0, 105(9)2, 0s(8) + (6 — §)[0, 1os(d)]* + 0, lo(#)2, (7 — 6)]
= Ko [5|Vx log(6) — V. log(6)|* + (0 — 0)|0, 1og(0)|* + 9, log(6) - 9, (0 — 0)
+60, 10g(6) (9, log(6) — 9, log(é))}

= 1o [019108(0) — V. 1og(8)* + (0 — 0)10, o () + (0 — )0, 108 (0)), lox(0)]

= ko [ém log(6) — V. log(8)|? + (6 — 6)3, log(6), (1og(é) - log(ﬂ)ﬂ .
(7.8)
Similarly, we get

k20|V 10| — k200,00,0 + ko (0 — 0)|8,0) + k200,00, (0 — 0)

2 |01V.0 — V.01 — (6 — 6)d,00, (0 — é)} . (7.9)
Finally,
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k300|V 0% — k36%0,00,0 + k3(0 — 0)0]0,0)% + £30%9,00,(0 — 0)
— ks [éevw (Vb — Vo0) + 000,00,0 — 620,00,0 + (0 — 6)0|0,0/* + 620,00, — 9)}

— ks [éame — V.0 + 2000,00,0 — 620,00,0 — 6°0,00,0

= 1300|V .0 — V0> — k3(6 — 0)%0,00,0, (7.10)

where

r3(0 — 0)%0,00,0 = £3]0,0)*(0 — 0) + k30, (0 — 0)0,0(0 — 6)>.

We conclude by observing that the terms on the right-hand side of (7.8)—
(7.10) have either ”good” sign or they can be ”absorbed” by the remaining
integrals in (7.7). Therefore, using (7.8)—(7.10) we can rewrite the inequality
(7.7) in the form!

1 1 ) o
|Q/Q (QPuE u2+5(p5,95|p79)) (r,)da

1 T 1 -
<rE e [ (Gold P+ £6n015.0)) e
1Qcl Jo Ja. \2

for almost all 7 € [0,T] with I'(e) — 0 as € — 0.
The Gronwall inequality yields

1
|Qel Ja.

where I'(e,T) — 0 as ¢ — 0. Consequently, the main theorem is proven.

1 -
(3o 5 + £00-.0.05.0) ) (o < T(e, ),
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