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ONE PROBLEM OF THE NAVIER TYPE FOR THE STOKES
SYSTEM IN PLANAR DOMAINS

DAGMAR MEDKOVÁ

Abstract. We study the problem −∆u +∇ρ = F, ∇ · u = G in Ω, u · τ =

g, ρ = h on ∂Ω, for a bounded simply connected Lipschitz domain in the
plane. For F = 0, G = 0, g ∈ Lp(∂Ω), h ∈ Lq(∂Ω) we study a solution in

the sense of a nontangential limit. For F ∈ W s−1,q(Ω, R2), G ∈ W s,q(Ω),

g ∈ W t−1/p,p(∂Ω), h ∈ W s−1/q,q(∂Ω) with t ≤ s + 1 we prove the existence
of a unique solution (u, ρ) ∈ W t,p(Ω, R2) × W s,q(Ω). For F ∈ Bq,r

s−1(Ω, R2),

G ∈ Bq,r
s (Ω), g ∈ Bp,β

t−1/p
(∂Ω), h ∈ Bq,r

s−1/q
(∂Ω) with t ≤ s + 1 we prove

the existence of a unique solution (u, ρ) ∈ Bp,β
t (Ω, R2) × Bq,r

s (Ω). For F ∈
Ck−1,γ(Ω, R2), G ∈ Ck,γ(Ω), h ∈ Ck,γ(∂Ω), g ∈ Ck+1,γ(∂Ω) we prove the

existence of a unique solution (u, ρ) ∈ Ck+1,γ(Ω, R2)× Ck,γ(Ω).

1. Introduction

Boundary value problems of Navier’s type for the Stokes system are very inter-
esting problems. This paper is devoted to one problem of this type. Let us suppose
that Ω ⊂ Rm is a bounded domain with connected Lipschitz boundary. We denote
by n = nΩ the outward unit normal vector of Ω. If v is a vector, then vn = (v ·n)n
is the normal part of v, and vτ = v−vn is the tangential part of v. There are two
types of Navier’s problem: I. It is given the normal part of the Dirichlet condition
and the tangential part of the Neumann condition (or a corresponding Robin con-
dition). II. It is given the tangential part of the Dirichlet condition and the normal
part of the Neumann condition (or a corresponding Robin condition). Since the
Stokes system has many Neumann conditions there are many Navier’s problems.

The Navier problems corresponding to the Neumann condition ∂u/∂n−ρn (and
the Robin condition ∂u/∂n− ρn + cu) are

−∆u +∇ρ = f , ∇ · u = χ in Ω, uτ = gτ , [∂u/∂n]n − ρn + cnn = hn on ∂Ω

and

−∆u +∇ρ = f , ∇ · u = χ in Ω, un = gn, [∂u/∂n]τ + cnτ = hτ on ∂Ω

(studied in [56]).
The Navier problems corresponding to the Neumann condition T (u, ρ)n = [∇u+

(∇u)T − ρI]n (and the Robin condition T (u, ρ)n + cu) are

−∆u +∇ρ = f , ∇ · u = χ in Ω, uτ = gτ , [T (u, p)n + cu]n = hn on ∂Ω,

−∆u +∇ρ = f , ∇ · u = χ in Ω, un = gn, [T (u, p)n + cu]τ = hτ on ∂Ω
(studied in [7], [14], [39], [42], [43], [57], [62]), [69]).
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In R3 we have ∆u = ∇(∇·u)−∇×(∇×∇u). This gives the Neumann condition
for the Stokes system

n× (∇× u) + ρn.

Remark that n× (∇× u) is the tangential part of the Neumann condition and ρn
is the normal part of the Neumann condition. The corresponding Navier problems
are

(1.1) −∆u +∇ρ = f , ∇ · u = χ in Ω, uτ = gτ , ρ = h on ∂Ω,

and

−∆u +∇ρ = f , ∇ · u = χ in Ω, un = gn, n× (∇× u) = n× h on ∂Ω.

The corresponding Navier problems are also studied in planar domains. These
problems were studied in [1], [2], [5], [6], [8], [9], [13], [15], [18], [40], [52] from
theoretical and numerical point of view.

We gather what is known about the problem (1.1). J. M. Bernard studied in 2002
this problem in a bounded domain Ω ⊂ R3 with boundary of class C1,1 (see [13]).
J. M. Bernard proved that for f ∈ L2(Ω,R3), χ = 0 and g,h ∈ H1/2(∂Ω,R3) there
exists a unique solution (u, ρ) ∈ H1(Ω,R3) × H1(Ω). This result was generalized
by Ch. Amrouche, P. Penel, N. Seloula in 2013 ([6]). For the same domains and
g,h ∈ W 1−1/p,p(∂Ω,R3), χ ∈ W 1,p(Ω), f ∈ [Hp′

τ (curl,Ω)]′ they proved that there
exists a unique solution (u, p) ∈ W 1,p(Ω,R3) ×W 1,p(Ω). Moreover, they proved
that for Ω with boundary of class C2,1, f ∈ Lp(Ω,R3) and g ∈W 2−1/p,p(∂Ω,R3) the
velocity u ∈ W 2,p(Ω,R3). The problem (1.1) for planar domains has been studied
in literature only from the numerical point of view. So, the goal of this paper is to
study the Navier problem (1.1) on planar domains from theoretical point of view -
i.e. to study the existence, uniqueness and regularity of solutions.

We can rewrite the planar problem (1.1) as

−∆u +∇ρ = F, ∇ · u = G in Ω,

u · τ = g, ρ = h on ∂Ω.

We study solutions of the problem in the scales of Sobolev spaces W t,p(Ω,R2) ×
W s,q(Ω) with t > 1/p, s > 1/q and in the scale of Besov spaces Bp,β

t (Ω,R2) ×
Bq,r

s (Ω) with t > 1/p, s > 1/q. We also study classical solutions in spaces
Ck,α(Ω,R2) × Cl,β(Ω). To do so, we begin with study the problem for the ho-
mogeneous equations, i.e. for F = 0, G = 0. We study the weakest possible
solutions of the problem - Lp-Lq-solutions, i.e. solutions of the Stokes system such
that the maximal function of the velocity u is in Lp(∂Ω), the maximal function
of the pressure ρ is in Lq(∂Ω), and the boundary conditions are fulfilled in the
sense of nontangential limits. (Classical solutions of the problem are clearly Lp-
Lq-solutions for arbitrary p and q. We shall see that solutions of the problem in
W t,p(Ω,R2) ×W s,q(Ω) or in Bp,β

t (Ω,R2) × Bq,r
s (Ω) with t > 1/p, s > 1/q are Lp-

Lq-solutions.) For Lp-solutions of the Dirichlet, Neumann or transmission problem
for the Stokes system see for example [21], [35], [44], [58], [51], for the Brinkman
system see for example [16], [37], [49], [60], for the Laplace equation see for example
[17], [20], [30], [33], [34], [36], [45], [48], [59], [68].

The proofs in this paper are totally different than the proofs in [6] or in [51].
Using methods of complex analysis we reduce the original problem to two problems
for Laplace equation: the Dirichlet problem and the Neumann problem. We gather
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known results about these problems (and prove missing) and then we prove the
unique solvability of the Navier problem for the Stokes system and regularity results.

2. Formulation of the problem

In the whole paper we assume that Ω ⊂ R2 is a bounded domain with connected
Lipschitz boundary. We denote by n = nΩ the outward unit normal vector of Ω,
and by τ = τΩ = (−nΩ

2 , n
Ω
1 ) the unit tangential vector of ∂Ω.

First we remember the definition of an Lp-solution of the Dirichlet and the
Neumann problem for the Laplace equation.

If x ∈ ∂Ω, a > 0 denote the nontangential approach regions of opening a at the
point x by

Γa(x) = {y ∈ Ω; |x− y| < (1 + a) dist(y, ∂Ω)}.
If now v is a vector function defined in Ω, we denote the nontangential maximal
function of v on ∂Ω by

Ma(v)(x) = MΩ
a (v)(x) = sup{|v(y)|;y ∈ Γa(x)}.

It is well known that there exists c > 0 such that for a, b > c and 1 ≤ q <∞ there
exist C1, C2 > 0 such that

‖Mav‖Lq(∂Ω) ≤ C1‖Mbv‖Lq(∂Ω) ≤ C2‖Mav‖Lq(∂Ω)

for any measurable function v in Ω. (See, e.g. [33] and [61, p. 62].) We shall
suppose that a > c and write Γ(x) instead of Γa(x). Next, define the nontangential
limit of v at x ∈ ∂Ω

v(x) = lim
Γ(x)3y→x

v(y)

whenever the limit exists.
Let h ∈ Lp(∂Ω), 1 < p < ∞. We say that ρ is an Lp-solution of the Dirichlet

problem for the Laplace equation

(2.1) ∆ρ = 0 in Ω, ρ = h on ∂Ω

if ρ ∈ C2(Ω), ∆ρ = 0 in Ω, MΩ
a ρ ∈ Lp(∂Ω) and h(x) is the nontangential limit of

ρ at almost all x ∈ ∂Ω.
Let f ∈ Lp(∂Ω), 1 < p < ∞. We say that ϕ is an Lp-solution of the Neumann

problem for the Laplace equation

(2.2) ∆ϕ = 0 in Ω,
∂ϕ

∂n
= f on ∂Ω

if ϕ ∈ C2(Ω), ∆ϕ = 0 in Ω, MΩ
a (∇ϕ) ∈ Lp(∂Ω), at almost all x ∈ ∂Ω there exists

a nontangential limit of ∇ϕ and n(x) · ∇ϕ(x) = f(x).

We now define Lp-Lq-solution of our problem. Let 1 < p, q < ∞, g ∈ Lp(∂Ω),
h ∈ Lq(∂Ω). We say that (u, ρ) is an Lp-Lq-solution of the problem

(2.3a) −∆u +∇ρ = 0, ∇ · u = 0 in Ω,

(2.3b) u · τ = g, ρ = h on ∂Ω,

if u = (u1, u2) ∈ C2(Ω,R2), ρ ∈ C1(Ω) solve (2.3a), Ma(u) ∈ Lp(∂Ω), Ma(ρ) ∈
Lq(∂Ω), there exist nontangential limits of u and ρ at almost all points of ∂Ω, and
these limits satisfy the boundary conditions (2.3b).
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3. Boundary value problems for the Laplace equation

We reduce the problem (2.3) to the Dirichlet problem and the Neumann problem
for the Laplace equation. So, we gather some results about these problems.

We need several function spaces. Let 1 < p, q <∞. If k is a nonnegative integer
then W k,p(Ω) = {f ∈ Lp(Ω); ∂αf ∈ Lp(Ω) ∀|α| ≤ k} is the classical Sobolev space.
If 0 < λ < 1 and s = k+λ, then W s,p(Ω) = {u ∈W k,p(Ω); ‖u‖W s,p(Ω) <∞} where

‖u‖W s,p(Ω) =

‖u‖p
W k,p(Ω)

+
∑
|α|=k

∫
Ω

∫
Ω

|∂αu(x)− ∂αu(y)|p

|x− y|m+pλ
dx dy

1/p

.

If s ∈ R then Bp,q
s (R2) is a Besov space. (For the definition see for example

[67].) Denote by Bp,q
s (Ω) the set of all distribution f on Ω for which there exists

F ∈ Bp,q
s (R2) such that f = F on Ω, and define the norm

‖f‖Bp,q
s (Ω) = inf{‖F‖Bp,q

s (R2); f = F on Ω}.
If k is a nonnegative integer, 0 < λ < 1 and s = k + λ, then W s,p(Ω) = Bp,p

s (Ω)
(see [63, Lemma 36.1] and [46, Proposition 7.6]). If ε > 0 and 1 < r < ∞, then
W s+ε,p(Ω) ↪→W s,p(Ω), Bp,q

s+ε(Ω) ↪→ Bp,r
s (Ω).

First we realize how smooth Lp-solutions of boundary value problems for the
Laplace equation are:

Proposition 3.1. Let 1 < p < ∞. If u ∈ C∞(Ω), ∆u = 0 and Ma(u) ∈ Lp(∂Ω),
then u ∈ Bp,q

1/p(Ω) with q = max(p, 2).

(See [47], Corollary 4.4.)

Now we recall results about solvability of the Neumann problem and the Dirichlet
problem for the Laplace equation:

Proposition 3.2. Let 1 < q <∞, h ∈ Lq(∂Ω). Suppose that one of the following
conditions is satisfied:

• q ≥ 2,
• ∂Ω is of class C1,
• Ω is convex.

Then there exists a unique Lq-solution ρ of the Dirichlet problem for the Laplace
equation (2.1). Moreover,

‖Ma(ρ)‖Lq(∂Ω) + ‖ρ‖
B

q,max(q,2)
1/q

(Ω)
≤ C‖h‖Lq(∂Ω)

with a constant C that does not depend on h.

Proof. According to [50, Theorem 5.1], [29, Theorem 2], [31, Theorem 5.8] and [47,
Theorem 3.10] there exists a unique Lq-solution ρh of the Dirichlet problem for the
Laplace equation (2.1), and

‖Ma(ρh)‖Lq(∂Ω) ≤ C1‖h‖Lq(∂Ω)

with a constant C1 that does not depend on h. This inequality and Proposition 3.1
give that the mapping Q1 : h 7→ ρh is a closed linear operator from Lq(∂Ω) to
B

q,max(2,q)
1/q (Ω). According to the Closed graph theorem [19, Korollar 3.8] there

exists a positive constant C2 independent of h such that

‖ρh‖B
q,max(2,q)
1/q

(Ω)
≤ C2‖h‖Lq(∂Ω).
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�

Proposition 3.3. Let 1 < q <∞, h ∈W 1,q(∂Ω). Suppose that one of the following
conditions is satisfied:

• q ≤ 2,
• ∂Ω is of class C1,
• Ω is convex.

Then there exists a unique Lq-solution ρ of the Dirichlet problem for the Laplace
equation (2.1) such that Ma(∇ρ) ∈ Lq(∂Ω). Moreover,

‖Ma(ρ)‖Lq(∂Ω) + ‖Ma(∇ρ)‖Lq(∂Ω) + ‖ρ‖
B

q,max(q,2)
1+1/q

(Ω)
≤ C‖h‖W 1,q(∂Ω)

with a constant C that does not depend on h.

Proof. According to [47, Theorem 3.11], [31, Theorem 5.8] and [50, Theorem 5.1]
there exists a unique Lq-solution ρh of the Dirichlet problem for the Laplace equa-
tion (2.1) such that Ma(∇ρ) ∈ Lq(∂Ω). Moreover,

‖Ma(ρh)‖Lq(∂Ω) + ‖Ma(∇ρh)‖Lq(∂Ω) ≤ C1‖h‖Lq(∂Ω)

with a constant C1 that does not depend on h. This inequality and Proposition 3.1
give that the mapping Q1 : h 7→ ρh is a closed linear operator from W 1,q(∂Ω)
to Bq,max(2,q)

1+1/q (Ω). According to the Closed graph theorem [19, Korollar 3.8] there
exists a positive constant C2 independent of h such that

‖ρh‖B
q,max(2,q)
1+1/q

(Ω)
≤ C2‖h‖W 1,q(∂Ω).

�

Proposition 3.4. Let 0 ≤ α < 1, h ∈ C0,α(∂Ω). Suppose that one of the following
assumptions holds:

• α ≤ 1/2.
• ∂Ω is of class C1,
• Ω is convex.

Then there exists a unique solution ρ ∈ C0,α(Ω) of the Dirichlet problem for the
Laplace equation (2.1). Moreover,

‖ρ‖C0,α(Ω) ≤ ‖h‖C0,α(∂Ω)

where a constant C does not depend on h.

(See [10, Lemma 6.6.14 and Theorem 1.2.4], [31, Theorem 5.2], [47, Theorem
4.6], [65, §2.5.7, Theorem] and [4, Remark 2].)

Proposition 3.5. Let 0 < α < 1 and k ∈ N . Suppose that ∂Ω is of class Ck,α.
If h ∈ Ck,α(∂Ω), then there exist a unique solution ρ ∈ Ck,α(Ω) of the Dirichlet
problem for the Laplace equation (2.1).

(See [26, Theorem 8.34, Lemma 6.38, Theorem 6.14 and Theorem 6.19].)

Proposition 3.6. Let 1 < q, r < ∞, 1/q < s < 1 + 1/q. Suppose that one of the
following conditions is satisfied:

• q = 2,
• ∂Ω is of class C1,
• Ω is convex.
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Then the following holds:
(1) There exists a solution ρ ∈ Bq,r

s (Ω) of the Dirichlet problem for the Laplace
equation (2.1) (i.e. boundary condition is fulfilled in the sense of traces) if
and only if h ∈ Bq,r

s−1/q(∂Ω). This solution is unique and

‖ρ‖Bq,r
s (Ω) ≤ C‖h‖Bq,r

s−1/q
(∂Ω)

with a constant C that does not depend on h. The function ρ is an Lq-
solution of the problem.

(2) There exists a solution ρ ∈W s,q(Ω) of the Dirichlet problem for the Laplace
equation (2.1) (i.e. boundary condition is fulfilled in the sense of traces) if
and only if h ∈W s−1/q,q(∂Ω). This solution is unique and

‖ρ‖W s,q(Ω) ≤ C‖h‖W s−1/q,q(∂Ω)

with a constant C that does not depend on h. The function ρ is an Lq-
solution of the problem.

Proof. For Ω convex see [47, Theorem 4.5]. The rest cases we obtain by the same
way - i.e. by the interpolation:
Bq,r

s−1/q(∂Ω) is the space of traces of Bq,r
s (Ω) by [51, Theorem 2.5.2]. The unique-

ness of a solution of the Dirichlet problem in Bq,r
s (Ω) we get by [31, Proposition

5.17]. If h ∈ Lq(∂Ω) then there exists a unique Lq-solution Lh of the Dirichlet
problem (2.1). The operators L : Lq(∂Ω) → B

q,max(q,2)
1/q (Ω), L : W 1,q(∂Ω) →

B
q,max(q,2)
1+1/q (Ω) are bounded. (See Proposition 3.2 and Proposition 3.3.) Using real

interpolation we deduce that the operator L : Bq,r
s−1/q(∂Ω) → Bq,r

s (Ω) is bounded.
(See [63, Lemma 22.3], [54, Chapter 3, Corollary 3] and [67, Corollary 1.111].) If
h ∈ C∞(∂Ω) then h is the trace of Lh by Proposition 3.4. Continuity of the trace
operator gives that h is the trace of Lh for arbitrary h ∈ Bq,r

s−1/q(∂Ω).
We now show the second part of the proposition. For s 6= 1 the proposition

follows from the fact that W s,q(Ω) = Bq,q
s (Ω) and W s−1/q,q(∂Ω) = Bq,q

s−1/q(∂Ω).
Let now s = 1. Since {ρ ∈ W 1,q(Ω);∆ρ = 0} = {ρ ∈ Bq,q

1 (Ω);∆ρ = 0} by
[31, Theorem 4.1, Theorem 4.2], L is a closed linear operator from W 1−1/q(∂Ω) =
Bq,q

1−1/q(∂Ω) to W 1,q(Ω). Therefore L : W 1−1/q(∂Ω) → W 1,q(Ω) is a bounded
operator by the Closed graph theorem ([19, Korollar 3.8]). �

Proposition 3.7. Let ∂Ω be of class Ck,1(∂Ω) where k ∈ N, 1 < q < ∞. If
h ∈ W k+1−1/q,q(∂Ω) then there exists a unique solution ρ ∈ W k+1,q(Ω) of the
Dirichlet problem for the Laplace equation (2.1). Moreover,

‖ρ‖W k+1,q(Ω) ≤ C‖h‖W k+1−1/q,q(∂Ω),

where a constant C does not depend on h.

(See [27, Theorem 2.4.2.5 and Theorem 2.5.1.1].)

Proposition 3.8. Let ∂Ω be of class Ck,1(∂Ω) where k ∈ N, 1 < q, r < ∞, 1 <
s < k+1. If h ∈ Bq,r

s−1/q(∂Ω) then there exists a unique solution ρ ∈ Bq,r
s (Ω) of the

Dirichlet problem for the Laplace equation (2.1). Moreover,

‖ρ‖Bq,r
s (Ω) ≤ C‖h‖Bq,r

s−1/q
(∂Ω),

where a constant C does not depend on h.
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Proof. For h ∈ W 1−1/q,q(∂Ω) denote by ρh a solution of the Dirichlet problem
for the Laplace equation (2.1). Then the mapping h 7→ ρh is a bounded linear
mapping from W 1−1/q,q(∂Ω) to W 1,q(Ω), and from W k+1−1/q,q(∂Ω) to W k+1,q(Ω).
(See Proposition 3.6 and Proposition 3.7). Using a real interpolation we deduce that
h 7→ ρh is a bounded linear mapping from Bq,r

s−1/q(∂Ω) to Bq,r
s (Ω). (See [63, Lemma

22.3], [65, §2.4.2, Theorem] and [67, Corollary 1.111].) Since Bp,q
s (Ω) ↪→ Bp,q

1 (Ω)
by [67, Theorem 1.97], Proposition 3.6 gives that a solution of the problem (2.1) in
Bp,q

s (Ω) is unique and it is also an Lq-solution of the problem (2.1). �

Proposition 3.9. Let 1 < p <∞. Suppose that one of the following conditions is
satisfied:

• 1 < p ≤ 2,
• ∂Ω is of class C1,
• Ω is convex.

If f ∈ Lp(∂Ω), then there exists an Lp-solution of the Neumann problem for the
Laplace equation (2.2) if and only if

(3.1)
∫

∂Ω

f dσ = 0.

The solution is unique up to an additive constant. If ϕ is an Lp-solution of the
problem (2.2) then

(3.2) ‖Ma(∇ϕ)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω)

with a constant C that does not depend on f .

(See [50, Theorem 5.1], [36, Theorem 1.2], [33, Corollary 2.1.11], [33, Corol-
lary 2.2.14] and [25, Theorem 1.1].)

Proposition 3.10. Let k ∈ N, 1 < p, r < ∞, ∂Ω be of class Ck, f ∈ Lp(∂Ω)
satisfying (3.1). Let ϕ be an Lp-solution of the Neumann problem for the Laplace
equation (2.2).

• Then ϕ ∈ Bp,max(p,2)
1+1/p (Ω) ⊂W 1,p(Ω) ∩ C(Ω).

• If ∂Ω is of class Ck,α with k ∈ N, 0 < α < 1 and f ∈ Ck−1,α(∂Ω), then
ϕ ∈ Ck,α(Ω).

• If ∂Ω is of class Ck,1(∂Ω), 1/p < s < k, f ∈ Bp,r
s−1/p(∂Ω) then ϕ ∈ Bp,r

s+1(Ω).
• If ∂Ω is of class Ck,1(∂Ω), 1/p < s < k, s − 1/p is not a natural number,
f ∈W s−1/p,p(∂Ω), then ϕ ∈W s+1,p(Ω).

Proof. The tangential derivative ∂/∂τ is a continuous mapping W 1,p(∂Ω) onto the
set of all functions from Lp(∂Ω) satisfying (3.1). So, we can choose h ∈ W 1,p(∂Ω)
such that ∂h/∂τ = f . According to Proposition 3.3 there exists an Lp-solution ρ of
the Dirichlet problem for the Laplace equation (2.1) such that Ma(∇ρ) ∈ Lp(∂Ω).
Remark that ρ ∈ Bp,max(p,2)

1+1/p (Ω) ⊂W 1,p(Ω) (see Proposition 3.1). According to [10,
Theorem 1.1.3] there exists a harmonic function ϕ such that ρ−iϕ is a holomorphic
function in Ω. Thus ∂1ϕ = ∂2ρ ∈ Lp(Ω), ∂2ϕ = −∂1ρ ∈ Lp(Ω) by [12, Proposition
3.2]. So, ϕ ∈ W 1,p(Ω) by [41, §1.5.2–1.5.4]. Since Ma(∇ρ),Ma(∇ϕ) ∈ Lp(∂Ω),
there exist nontangential limits of ∇ρ and ∇ϕ at almost all points of ∂Ω. (See [28]
and [29, Theorem 1].) Clearly

∂ϕ

∂n
=
∂ρ

∂τ
=
∂h

∂τ
= f.
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So, ϕ is an Lp-solution of the Neumann problem for the Laplace equation (2.2).
Other solutions of (2.2) differ from ϕ by a constant by Proposition 3.9.

Since ∂jϕ ∈ B
p,max(p,2)
1/p (Ω) by Proposition 3.1, [46, Proposition 7.6] forces that

ϕ ∈ Bp,max(p,2)
1+1/p (Ω). According to [64, §2.3.3, Remark 4] and [66, §2.7.1, Remark 1]

we have Bp,max(p,2)
1+1/p (Ω) ⊂W 1,p(Ω) ∩ C(Ω).

Let now ∂Ω be of class Ck,α with 0 < α < 1 and f ∈ Ck−1,α(∂Ω). Proposition 3.5
gives that ρ ∈ Ck,α(Ω). Thus ∂jϕ ∈ Ck−1,α(Ω) and ϕ ∈ Ck,α(Ω).

Let now ∂Ω be of class Ck,1(∂Ω), 1/p < s < k, f ∈ Bp,r
s−1/p(∂Ω). Then h ∈

Bp,r
s+1−1/p(∂Ω). Proposition 3.8 gives that ρ ∈ Bp,r

s+1(Ω). Since ∂jϕ ∈ Bp,r
s (Ω), [46,

Proposition 7.6] forces that ϕ ∈ Bp,r
s+1(Ω).

Suppose now ∂Ω is of class Ck,1(∂Ω), 1/p < s < k, s−1/p is not a natural number
and f ∈ W s−1/p,p(∂Ω). Suppose first that s ∈ N. Then h ∈ W s+1−1/p,p(∂Ω).
According to Proposition 3.7 one has ρ ∈ W s+1,p(Ω). Since ∂jϕ ∈ W s,p(Ω), the
function ϕ ∈ W s+1,p(Ω). If s 6∈ N, then f ∈ W s−1/p,p(∂Ω) = Bp,p

s−1/p(Ω) and thus
ϕ ∈ Bp,p

s+1(Ω) = W s+1,p(Ω). �

4. Reduction of the problem

In this section we show how to reduce the problem (2.3) to a Dirichlet and a
Neumann problem for the Laplace equation.

If (u, ρ) is an Lp-Lq solution of the problem (2.3), then ρ ∈ C∞(Ω), ∆ρ = 0 in
Ω (see [38, p. 10]). So, ρ is an Lq-solution of the Dirichlet problem for the Laplace
equation (2.1). First of all we solve this problem. Then we find Φ ∈ C(Ω,R2) such
that (Φ, ρ) is a solution of the Stokes system (2.3a) in Ω.

Lemma 4.1. Let 1 < q <∞. Let ρ be an Lq-solution of the Dirichlet problem for
the Laplace equation (2.1). Then ρ ∈ Bq,max(q,2)

1/q (Ω). Fix s ∈ (0,∞), 1 < r, t <∞,
0 < α < 1, k ∈ N.

• If ρ ∈ Bt,r
s (Ω) then there exists Φ ∈ C∞(Ω,R2) ∩ Bt,r

s+1(Ω,R2) such that
(Φ, ρ) is a solution of the Stokes system (2.3a) in Ω. If, moreover, Bt,r

s+1(R2)
↪→ B

q,max(2,q)
1/q+1 (R2), then Φ ∈ C(Ω,R2) ∩Bq,max(2,q)

1/q+1 (Ω,R2).
• If ρ ∈ W s,t(Ω) then there exists Φ ∈ C∞(Ω,R2) ∩ W s+1,t(Ω,R2) such

that (Φ, ρ) is a solution of the Stokes system (2.3a) in Ω. If, moreover,
W s+1,t(R2) ↪→ B

q,max(2,q)
1/q+1 (R2), then Φ ∈ C(Ω,R2) ∩Bq,max(2,q)

1/q+1 (Ω,R2).
• If ∂Ω is of class Ck,α and ρ ∈ Ck,α(Ω) then there exists Φ ∈ Ck+1,α(Ω,R2)

such that (Φ, ρ) is a solution of the Stokes system (2.3a) in Ω.

Proof. According to Proposition 3.1 we have ρ ∈ Bq,max(q,2)
1/q (Ω).

According to [10, Theorem 1.1.3] there exists a harmonic function ψ on Ω such
that ρ + iψ is a holomorphic function in Ω. Thus ∂2ψ = ∂1ρ, ∂1ψ = −∂2ρ in
Ω by [12, Proposition 3.1]. If ρ ∈ Bt,r

s (Ω) then ∂jψ = (−1)j∂3−jρ ∈ Bt,r
s−1(Ω),

and therefore ψ ∈ Bt,r
s (Ω) by [46, Proposition 7.6]. We extend ψ as a function

from Bt,r
s (R2) with compact support. If ρ ∈ W s,t(Ω) then ∂jψ = (−1)j∂3−jρ ∈

W s−1,t(Ω), and therefore ψ ∈ W s,t(Ω). According to [3, Theorem 5.24] we can
extend ψ as a function from W s−1,t(R2) with compact support. If ρ ∈ Ck,α(Ω)
then ∂jψ ∈ Ck−1,α(Ω). Since ψ ∈ C∞(Ω), ψ ∈ W 1,3(Ω) by [41, §1.5.2-§1.5.4].
Sobolev’s embedding theorem gives that ψ ∈ C(Ω). Thus ψ ∈ Ck,α(Ω). If ∂Ω is of
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class Ck,α then we can extend ψ as a function from Ck,α(R2) with compact support.
(See [26, Lemma 6.37].)

Remember that

h∆(x) =
1
2π

ln
1
|x|

is a fundamental solution of the Laplace equation, i.e. −∆h∆ = δ0, where δ0 is
the unit mass concentrated in 0 (see [11, Theorem 2.4.1.2]). Since ψ has compact
support we can define Φ = (Φ1,Φ2) by the convolution

Φ1 = −ψ ∗ (∂2h∆), Φ2 = ψ ∗ (∂1h∆).

We have in Ω

∇ ·Φ = ∂1(−ψ ∗ ∂2h∆) + ∂2(ψ ∗ ∂1h∆) = −∂1∂2(ψ ∗ h∆) + ∂1∂2(ψ ∗ h∆) = 0,

∆Φ1 = ∆(−ψ ∗ ∂2h∆) = ∂2[ψ ∗ (−∆h∆)] = ∂2(ψ ∗ δ0) = ∂2ψ = ∂1ρ,

∆Φ2 = ∆(ψ ∗ ∂1h∆) = ∂1[ψ ∗ (∆h∆)] = ∂1[ψ ∗ (−δ0)] = −∂1ψ = ∂2ρ,

Since (Φ, ρ) is a solution of the Stokes system in Ω, we have Φ ∈ C∞(Ω,R2) by [55,
§1.2].

If ψ ∈ Bt,r
s (R2) then Φj ∈ Bt,r

s+1(Ω) by [46, Theorem 3.3]. If, moreover, Bt,r
s+1(R2)

↪→ B
q,max(2,q)
1/q+1 (R2), then Φ ∈ C(Ω,R2) by [64, §2.8.1, Theorem].

If ψ ∈ W s,t(R2) then Φj ∈ W s+1,t(Ω) by [46, Theorem 3.3]. If, moreover,
W s+1,t(Ω) ↪→ B

q,max(2,q)
1/q+1 (Ω), then Φ ∈ C(Ω,R2) by [64, §2.8.1, Theorem].

Let now ψ ∈ Ck,α(R2). If β is a multiindex with |β| ≤ k then ∂βΦj = (∂βψ) ∗
(−1)j(∂3−jh∆) ∈ C1,α(Ω) by [32, Theorem 10.1.1]. Hence Φ ∈ Ck+1,α(Ω). �

Let now Φ be a vector function from Lemma 4.1. Then (u, ρ) is an Lp-Lq-
solution of the problem (2.3) if and only if for ṽ = u−Φ, t ≡ 0 the couple (ṽ, t) is
an Lp-Lq-solution of the problem

(4.1) −∆ṽ +∇t = 0, ∇ · ṽ = 0 in Ω, ṽ · τ = f̃ := g −Φ · τ, t = 0 on ∂Ω.

We want to represent ṽj as derivatives of an Lp-solution of the Neumann problem
for the Laplace equation with boundary condition f̃ . But the Neumann problem is
solvable only for a boundary condition f̃ with

∫
∂Ω
f̃ dσ = 0. So, first we must show

that there exists a solution of the problem (4.1) also for some f̃ with
∫

∂Ω
f̃ dσ 6= 0.

Lemma 4.2. Define w(x) = (−x2, x1)[
∫
Ω

2 dy]−1. Then

∆w = 0, ∇ ·w = 0 in Ω,∫
∂Ω

τ ·w dσ = 1.

Proof. Easy calculation yields ∆w = 0, ∇ ·w = 0 in Ω. The Divergence theorem
gives ∫

∂Ω

τ ·w dσ =
∫

Ω

[∂2(x2) + ∂1(x1)]
[∫

Ω

2 dy
]−1

dx = 1.

�
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Let now w be from Lemma 4.2, t ≡ 0. Then (ṽ, t) is an Lp-Lq-solution of the
problem (4.1) if and only if (v, t) is an Lp-Lq-solution of the problem

(4.2) −∆v +∇t = 0, ∇ · v = 0 in Ω, v · τ = f, t = 0 on ∂Ω,

where

(4.3) v = ṽ −w
∫

∂Ω

f̃ dσ
[∫

∂Ω

1 dσ
]−1

, f = f̃ −
∫

∂Ω

f̃ dσ
[∫

∂Ω

1 dσ
]−1

.

Lemma 4.3. Let 1 < p <∞, f ∈ Lp(∂Ω), and ϕ be an Lp-solution of the Neumann
problem for the Laplace equation (2.2). Define v1 = −∂2ϕ, v2 = ∂1ϕ, v = (v1, v2),
t ≡ 0. Then (v, t) is an Lp-Lq-solution of the problem (4.2).

Proof. We have −∆v +∇t = (∂2∆ϕ,−∂1∆ϕ) = 0, ∇ · v = −∂1∂2ϕ+ ∂2∂1ϕ = 0,

f = n1∂1ϕ+ n2∂2ϕ = τ · (−∂2ϕ, ∂1ϕ) = τ · v.

�

5. Unique solvability of the problem

Proposition 5.1. Let 1 < p, q < ∞, (u, ρ) be an Lp-Lq-solution of the problem
(2.3) with h ≡ 0. Suppose that one of the following conditions is satisfied:

• q ≥ 2,
• ∂Ω is of class C1,
• Ω is convex,
• Ma(∇ρ) ∈ Lq(∂Ω).

Then ρ ≡ 0. If moreover g ≡ 0, then u ≡ 0.

Proof. Since (u, ρ) is a solution of the Stokes system (2.3a), we have ρ ∈ C∞(Ω),
∆ρ = 0 in Ω (see [38, p. 10]). So, ρ is an Lq-solution of the Dirichlet problem for
the Laplace equation ∆ρ = 0 in Ω, ρ = 0 on ∂Ω. Hence, ρ ≡ 0 by Proposition 3.2
and Proposition 3.3.

Let now g ≡ 0. First we show that u2 + iu1 is a holomorphic function in Ω.
Since ρ ≡ 0, we have ∆u = 0. According to [10, Theorem 1.1.3] there exists a
harmonic function v2 on Ω such that u2 + iv2 is a holomorphic function in Ω. We
have ∂2u2 = −∂1v2 by [12, Proposition 3.1]. Since ∇ · u = 0, we have ∂2u2 =
−∂1u1. Hence ∂1(u1 − v2) = 0. Thus there exists a function w(x2) such that
u1(x) − v2(x) = w(x2). Since w′′ = ∆u1 − ∆v2 = 0, there exist constants c1, c2
such that w(x2) = c1x2 + c2. Therefore there exists a constant c such that the
fuction u2 + i(u1 + cx2) is holomorphic in Ω. According to [68, Theorem 1.12] there
is a sequence of domains Ωj with boundaries of class C∞ such that

• Ωj ⊂ Ω.
• There are a > 0 and homeomorphisms Λj : ∂Ω → ∂Ωj , such that Λj(y) ∈

Γa(y) for each j and each y ∈ ∂Ω and sup{|y − Λj(y)|; y ∈ ∂Ω} → 0 as
j →∞.

• There are positive functions ωj on ∂Ω bounded away from zero and infinity
uniformly in j such that for any measurable set E ⊂ ∂Ω,

∫
E
ωj dσ =

σ(Λj(E)), and so that ωj → 1 pointwise a.e. and in every Ls(∂Ω), 1 ≤ s <
∞.

• The normal vectors to Ωj , n(Λj(y)), converge pointwise a.e. and in every
Ls(∂Ω), 1 ≤ s <∞, to n(y).
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Since u2 + i(u1 + cx2) is holomorphic, the Cauchy integral∫
∂Ωj

[u2 + i(u1 + cx2)] d(x1 + ix2) = 0,

i.e. ∫
∂Ωj

(u1 + cx2, u2) · n dσ = 0,
∫

∂Ωj

(u1 + cx2, u2) · τ dσ = 0.

Letting j →∞ we obtain by virtue the Lebesgue lemma

0 =
∫

∂Ω

(u1 + cx2, u2) · τ dσ.

Since u · τ = 0 on ∂Ω, we obtain by the Green formula

0 =
∫

∂Ω

(cx2, 0) · τ dσ = −
∫

Ω

∂2(cx2) dx = −c
∫

Ω

1 dx.

Thus c = 0 and u2 + iu1 is a holomorphic function.
Since u2 + iu1 is a holomorphic function, there exists a holomorphic function

ψ1 + iψ2 such that (ψ1 + iψ2)′ = u2 + iu1 (see [12, Theorem 8.5]). Thus u2 + iu1 =
∂1(ψ1 + iψ2). Since ∂1ψ2 = −∂2ψ1, we have ∇ψ1 = (u2,−u1). Hence ψ1 is
an Lp-solution of the Neumann problem ∆ψ1 = 0 in Ω, ∂ψ1/∂n = 0 on ∂Ω.
Proposition 3.9 gives that ψ1 is constant. Since ∇ψ1 = (u2,−u1), we infer that
u ≡ 0. �

Theorem 5.2. Let 1 < p, q < ∞. Suppose that one of the following conditions is
satisfied:

• p ≤ 2 ≤ q,
• ∂Ω is of class C1,
• Ω is convex.

If g ∈ Lp(∂Ω), h ∈ Lq(∂Ω), then there exists a unique Lp-Lq-solution (u, ρ) of the
problem (2.3). Moreover, u ∈ Bmax(p,2),p

1/p (Ω,R2) and ρ ∈ Bmax(q,2),q
1/q (Ω).

Proof. The uniqueness follows from Proposition 5.1.
According to Proposition 3.2 there exists a unique Lq-solution ρ of the Dirichlet

problem for the Laplace equation (2.1), ρ ∈ Bmax(q,2),q
1/q (Ω). According to Lemma 4.1

there exists Φ ∈ C∞(Ω,R2) ∩ C(Ω,R2) such that (Φ, ρ) is a solution of the Stokes
system (2.3a) in Ω and Φ ∈ C(Ω) ∩Bq,max(q,2)

1+1/q (Ω). Let w = (x2, x1)[
∫
Ω

1 dy]−1 be
the vector function from Lemma 4.2. Define

f̃ := g −Φ · τ, f = f̃ −
∫

∂Ω

f̃ dσ
[∫

∂Ω

1 dσ
]−1

.

According to Proposition 3.9 there exists an Lp-solution ϕ of the Neumann problem
for the Laplace equation (2.2). Proposition 3.1 gives that ∂jϕ ∈ B

p,max(p,2)
1/p (Ω).

Define v1 = −∂2ϕ, v2 = ∂1ϕ, v = (v1, v2), t ≡ 0. Then (v, t) is an Lp-Lq-solution
of the problem (4.2) by Lemma 4.3. Define

ṽ = v + w
∫

∂Ω

f̃ dσ
[∫

∂Ω

1 dσ
]−1

.

Then (ṽ, t) is an Lp-Lq-solution of the problem (4.1). Define u = ṽ + Φ. Then
(u, ρ) is an Lp-Lq-solution of the Navier problem (2.3). �
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Theorem 5.3. Let 1 < p, q < ∞. Suppose that one of the following conditions is
satisfied:

• p, q ≤ 2,
• ∂Ω is of class C1,
• Ω is convex.

If g ∈ Lp(∂Ω), h ∈ W 1,q(∂Ω), then there exists a unique Lp-Lq-solution (u, ρ) of
the problem (2.3) such that Ma(∇ρ) ∈ Lq(∂Ω). Moreover, u ∈ B

max(p,2),p
1/p (Ω,R2)

and ρ ∈ Bmax(q,2),q
1+1/q (Ω) ∩ C0,(q−1)/q(Ω).

Proof. The uniqueness follows from Proposition 5.1.
According to the Sobolev embedding theorem [41, Chapter I, §1.8.1] we have

h ∈ C0,(p−1)/p(∂Ω). Put r = max(q, 2). According to Theorem 5.2 there exists an
Lp-Lr-solution (u, ρ) of the problem (2.3) and u ∈ Bmax(p,2),p

1/p (Ω,R2). The function
ρ is an Lr-solution of the Dirichlet problem for the Laplace equation ∆ρ = 0 in Ω,
ρ = h on ∂Ω. Proposition 3.3 and Proposition 3.4 give that Ma(∇ρ) ∈ Lq(∂Ω) and
ρ ∈ Bmax(q,2),q

1+1/q (Ω) ∩ C0,(q−1)/q(Ω). �

Lemma 5.4. Let (u, ρ) be an Lp-Lq solution of the problem (2.3) with 1 < p, q, r <
∞.

• Let 0 ≤ α < 1, h ∈ C0,α(∂Ω). If α ≤ 1/2 or ∂Ω is of class C1 or Ω is
convex, then ρ ∈ C0,α(Ω).

• Let k ∈ N , 0 < α < 1. If ∂Ω is of class Ck,α and h ∈ Ck,α(∂Ω), then
ρ ∈ Ck,α(Ω).

• Let 1/q < s < 1 + 1/q. Suppose that q = 2 or ∂Ω is of class C1 or Ω is
convex. If h ∈ Bq,r

s−1/q(∂Ω) then ρ ∈ Bq,r
s (Ω). If h ∈ W s−1/q,q(∂Ω) then

ρ ∈W s,q(Ω).
• Let ∂Ω be of class Ck,1(∂Ω) where k ∈ N, 1 < q < ∞. If 1 < s ≤ k + 1,
s− 1/q 6∈ N0, h ∈W s−1/q,q(∂Ω) then ρ ∈W s,q(Ω).

• Let ∂Ω be of class Ck,1(∂Ω) where k ∈ N, 1 < q, r < ∞, 1 < s < k + 1. If
h ∈ Bq,r

s−1/q(∂Ω) then ρ ∈ Bq,r
s (Ω).

Proof. ρ is an Lq-solution of the Dirichlet problem ∆ρ = 0 in Ω, ρ = h on ∂Ω.
The rest is a consequence of Proposition 3.4, Proposition 3.5, Proposition 3.6,
Proposition 3.7, Proposition 3.8 and the fact that W s,p(Ω) = Bp,p

s (Ω), W s,p(∂Ω) =
Bp,p

s (∂Ω) for non-integer s. �

Remark 5.5. There exists h ∈ C0,1(∂Ω) such that for each Lp-Lq-solution (u, ρ) of
the problem (2.3) we have ρ 6∈ C0,1(Ω).

Proof. According to [4, Theorem 2] there is h ∈ C0,1(∂Ω) such that it does not
exist ρ ∈ C0,1(Ω) ∩ C2(Ω) with ∆ρ = 0 in Ω, ρ = h on ∂Ω. Let now (u, ρ) be
an Lp-Lq-solution of the problem (2.3). Then ρ is an Lq-solution of the Dirichlet
problem for the Laplace equation (2.1) (see [38, p. 10]). Thus ρ 6∈ C0,1(Ω). �

6. Solutions in Sobolev and Besov spaces

Let 1 < p, q, r, β <∞, 1/p < t <∞, 1/q < s <∞. In this section we study the
problem

(6.1a) −∆u +∇ρ = F, ∇ · u = G in Ω,
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(6.1b) u · τ = g, ρ = h on ∂Ω,

where u ∈W t,p(Ω,R2)∪Bp,β
t (Ω,R2) and ρ ∈W s,q(Ω)∪Bq,r

s (Ω). The nonhomoge-
neous Stokes system (6.1a) is fulfilled in the sense of distributions and the boundary
conditions (6.1b) are fulfilled in the sense of traces.

Proposition 6.1. Let ∂Ω be of class C1, 1 < p, q, r, β < ∞, 1/p < t < ∞, 1/q <
s <∞. Suppose that u ∈W t,p(Ω,R2)∪Bp,β

t (Ω,R2) and ρ ∈W s,q(Ω)∪Bq,r
s (Ω). If

(u, ρ) is a solution of the problem (2.3) with g ≡ 0, h ≡ 0 then u ≡ 0, ρ ≡ 0.

Proof. Since ρ is a solution of the problem ∆ρ = 0 in Ω, ρ = 0 on ∂Ω, Proposi-
tion 3.6 gives that ρ ≡ 0. Therefore ∆u = ∇ρ = 0. Denote by Ψ the trace of u.
Proposition 3.6 forces that u is an Lp-solution of the problem ∆u = 0 in Ω, u = Ψ
on ∂Ω. Hence (u, ρ) is an Lp-Lq solution of the Navier problem (2.3). According
to Proposition 5.1 we have u ≡ 0. �

Theorem 6.2. Let k ∈ N, 1 < p, q < ∞, ∂Ω be of class Ck,1, 1/q < s < k + 1,
s − 1/q 6∈ N0, 1/p < t < k, t − 1/p 6∈ N0, and t ≤ s + 1, p ≤ q. If t = s + 1
suppose moreover that p = q. If g ∈ W t−1/p,p(∂Ω), h ∈ W s−1/q,q(∂Ω), then there
exists a unique solution (u, ρ) ∈W t,p(Ω, R2)×W s,q(Ω) of the Navier problem (2.3).
Remark that (u, ρ) is a unique Lp-Lq solution of (2.3).

Proof. Uniqueness follows from Proposition 6.1.
According to Theorem 5.2 there exists a unique Lp-Lq solution (u, ρ) of (2.3).

Lemma 5.4 gives that ρ ∈W s,q(Ω). For the regularity of u we follow the construc-
tion of a solution in §4. Let w(x) = (−x2, x1)[

∫
Ω

2 dy]−1, and Φ, ṽ, v, f , f̃ , ϕ have
meaning from §4. Since W s,q(R2) ↪→ B

q,max(2,q)
1/q (R2) (see [64, §2.3.3, Remark 4]),

Lemma 4.1 gives that Φ ∈ W s+1,q(Ω). Hence Φ ∈ W t,p(Ω) by [53, Chap. 2, §5.4]
and Hölder’s inequality. Moreover, W t,p(Ω) ↪→ W t−1/p,p(∂Ω) by [27, Theorem
1.5.1.2]. Thus f̃ = g − Φ · τ ∈ W t−1/p,p(∂Ω) and therefore f ∈ W t−1/p,p(∂Ω).
Since ϕ is a solution of the Neumann problem for the Laplace equation with
the boundary condition f , Proposition 3.10 gives that ϕ ∈ W t+1,p(Ω). Hence
v = (−∂2ϕ, ∂1ϕ) ∈W t,p(Ω,R2). Since u is a linear combination of Φ, w and v, we
deduce that u ∈W t,p(Ω). �

Theorem 6.3. Let k ∈ N, 1 < p, q, r, β <∞, ∂Ω be of class Ck,1, 1/q < s < k+ 1,
1/p < t < k, and t ≤ s + 1, p ≤ q. If t = s + 1 suppose moreover that p = q and
r ≤ β. If g ∈ Bp,β

t−1/p(∂Ω), h ∈ Bq,r
s−1/q(∂Ω), then there exists a unique solution

(u, ρ) ∈ Bp,β
t (Ω, R2) × Bq,r

s (Ω) of the Navier problem (2.3). Remark that (u, ρ) is
a unique Lp-Lq solution of (2.3).

Proof. Define the operator U by

U [u, p] = [u · τ |∂Ω, p|∂Ω].

By virtue of Theorem 6.2 there exists ε > 0 such that

U : {[u, p] ∈W t+ε,p(Ω,R2)×W s+ε,q(Ω);∇u = ∇p,∇ · u = 0}

→W t+ε−1/p(∂Ω)×W s+ε−1/q(∂Ω),

U : {[u, p] ∈W t−ε,p(Ω,R2)×W s−ε,q(Ω);∇u = ∇p,∇ · u = 0}

→W t−ε−1/p(∂Ω)×W s−ε−1/q(∂Ω)
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are isomorphisms. The real interpolation gives the theorem. (See [63, Lemma 22.3],
[65, §2.4.2] and [67, Corollary 1.111].) �

Theorem 6.4. Let k ∈ N, 1 < p, q, r, β <∞, ∂Ω be of class Ck,1, 1/q < s < k+ 1,
1/p < t < k, and t ≤ s + 1, p ≤ q. If t = s + 1 suppose moreover that p = q and
r ≤ β. If g ∈ Bp,β

t−1/p(∂Ω), h ∈ Bq,r
s−1/q(∂Ω), F ∈ Bq,r

s−1(Ω,R2), G ∈ Bq,r
s (Ω), then

there exists a unique solution (u, ρ) ∈ Bp,β
t (Ω, R2)×Bq,r

s (Ω) of the Navier problem
(6.1).

Proof. Fix R > 0 such that Ω ⊂ B(0;R) = {x; |x| < R}. If l ∈ N , G̃ ∈
W l−1,q(B(0;R)) and F̃ ∈ W l−2,q(B(0;R),R2),

∫
B(0;R)

G̃ dx = 0, then there ex-
ists a unique v ∈W l,q(B(0;R),R2), φ ∈W l−1,q(B(0;R)) such that

−∆v +∇φ = F̃, ∇ · ṽ = G in B(0;R),

v = 0 on ∂B(0;R),
∫

B(0;R)

φ dx = 0.

Moreover,

‖v‖W l,q(B(0;R)) + ‖φ‖W l−1,q(B(0;R)) ≤ C
(
‖F̃‖W l−2,q(B(0;R)) + ‖G̃‖W l−1,q(B(0;R))

)
where a constant C does not depend on F̃ and G̃. (See [24, Theorem 2.1] and [23,
Theorem 2.1].) Using the interpolation we infer that for F̃ ∈ Bq,r

s−1(B(0;R); R2)
and G̃ ∈ Bq,r

s (B(0;R)) we have v ∈ Bq,r
s+1(B(0;R); R2), φ ∈ Bq,r

s (B(0;R)). (See
[63, Lemma 22.3], [67, Corollary 1.111] and [67, Theorem 1.122].)

We can choose F̃ ∈ Bq,r
s−1(B(0;R); R2), G̃ ∈ Bq,r

s (B(0;R)) such that
∫

B(0;R)
G̃ dx =

0, and F̃ = F, G̃ = G in Ω. We have proved that there exist v ∈ Bq,r
s+1(B(0;R),R2),

φ ∈ Bq,r
s (B(0;R)) such that

−∆v +∇φ = F̃, ∇ · v = G̃ in B(0;R).

One has v ∈ Bq,r
s+1(Ω,R2) ⊂ Bq,β

s+1(Ω,R2) ⊂ Bp,β
t (Ω,R2) by [66, §2.3.2, Proposition

2] and [67, Theorem 1.97].
According to [27, Theorem 1.5.1.2] there exist s(1), s(2) such that s(1) < s <

s(2) and the trace γΩ is a bounded linear operator from W s(j),q(Ω) = Bq,q
s(j)(Ω)

to W s(j)−1/q,q(∂Ω) = Bq,q
s(j)−1/q(∂Ω). By virtue of the interpolation we deduce

that γΩ : Bq,r
s (Ω) → Bq,r

s−1/q(∂Ω) is a bounded linear operator. (See [63, Lemma

22.3] and [67, Corollary 1.111].) By the same way we prove that γΩ : Bp,β
t (Ω) →

Bp,β
t−1/p(∂Ω) is a bounded linear operator. So, v ∈ Bp,β

t−1/p(∂Ω,R2), φ ∈ Bq,r
s−1/q(∂Ω).

According to Theorem 6.3 there exists a solution (w, ψ) ∈ Bp,β
t (Ω, R2)×Bq,r

s (Ω)
of the Navier problem

−∆w +∇ψ = 0, ∇ ·w = 0 in Ω,

w · τ = g − v · τ, ψ = h− φ on ∂Ω.

Clearly, (u, ρ) := (w+v, ψ+φ) ∈ Bp,β
t (Ω,R2)×Bq,r

s (Ω) is a solution of the Navier
problem (6.1).The uniqueness of a solution follows from Proposition 6.1. �

Theorem 6.5. Let k ∈ N, 1 < p, q < ∞, ∂Ω be of class Ck,1, 1/q < s < k + 1,
s− 1/q 6∈ N0, 1/p < t < k, t− 1/p 6∈ N0, and t ≤ s+ 1, p ≤ q. If t = s+ 1 suppose
moreover that p = q. If g ∈W t−1/p,p(∂Ω), h ∈W s−1/q,q(∂Ω), F ∈W s−1,q(Ω,R2),
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G ∈ W s,q(Ω), then there exists a unique solution (u, ρ) ∈ W t,p(Ω,R2) ×W s,q(Ω)
of the Navier problem (6.1).

Proof. According to Theorem 6.4, [24, Theorem 2.1] and [23, Theorem 2.1] there
exist (v, ρ1) ∈ W s+1,q(Ω,R2)×W s,q(Ω) such that −∆v +∇ρ1 = F, ∇ · v = G in
Ω. Since p ≤ q, and t ≤ s+ 1 we have v ∈ W t,p(Ω,R2). So, v ∈ W t−1/p,p(Ω,R2),
ρ1 ∈W s−1/q,q(∂Ω) by [27, Theorem 1.5.1.2].

According to Theorem 6.2 there exists a solution (w, ρ2) ∈W t,p(Ω,R2)×W s,q(Ω)
of the problem

−∆w +∇ρ2 = 0, ∇ ·w = 0 in Ω,

w · τ = g − v · τ, ρ2 = h− ρ1 on ∂Ω.

Clearly, (u, ρ) := (v + w, ρ1 + ρ2) ∈ W t,p(Ω,R2) ×W s,q(Ω) is a solution of (6.1).
The uniqueness of a solution follows from Proposition 6.1. �

7. Classical solutions

Theorem 7.1. Let k ∈ N , 0 < α, γ < 1, ∂Ω be of class Ck,γ . Let h ∈ C0(∂Ω), g ∈
C0,α(∂Ω). Then there exist unique u ∈ C0(Ω,R2) ∩ C∞(Ω,R2), ρ ∈ C0(Ω) ∩ C∞(Ω)
such that (u, ρ) is a classical solution of the problem (2.3).

• If α ≤ γ then u ∈ C0,α(Ω,R2).
• If h ∈ C0,γ(∂Ω), then ρ ∈ C0,γ(Ω).
• If h ∈ Ck,γ(∂Ω) then ρ ∈ Ck,γ(Ω).
• If g ∈ Ck−1,γ(∂Ω), h ∈ Cmax(k−2,1),γ(∂Ω) then u ∈ Ck−1,γ(Ω,R2).

Proof. According to Theorem 5.2 there exist a unique L2−L2-solution (u, ρ) of the
problem (2.3). Lemma 5.4 gives that ρ ∈ C0(Ω). The regularity of u we get from
the construction of u in §4. Let w(x) = (−x2, x1)[

∫
Ω

2 dy]−1, and Φ, ṽ, v, f̃ , ϕ
have meaning from §4.

Suppose that α ≤ γ. Let 2 < q <∞. Since ρ is a classical solution of the Dirich-
let problem for the Laplace equation, Lemma 4.1 gives that Φ ∈ Bq,q

1+1/q(Ω,R
2).

According to [66, §2.7.1, Remark 1] we have Bq,q
1+1/q(Ω) ⊂ C0,(q−1)/q(Ω). For suffi-

ciently large q we have Φ ∈ C0,α(Ω,R2). Thus f̃ = g −Φ · τ ∈ C0,α(Ω) and hence
f ∈ C0,α(Ω). Since ϕ is an Lp-solution of the Neumann problem for the Laplace
equation (2.2), ϕ ∈ C1,α(Ω) by Proposition 3.10. Thus v1 = −∂2ϕ ∈ C0,α(Ω),
v2 = ∂1ϕ ∈ C0,α(Ω). So, ṽ ∈ C0,α(Ω,R2) and u = Φ + ṽ ∈ C0,α(Ω,R2).

If h ∈ C0,γ(∂Ω), then ρ ∈ C0,γ(Ω) by Lemma 5.4. If h ∈ Ck,γ(∂Ω) then ρ ∈
Ck,γ(Ω) (see Lemma 5.4).

Let now g ∈ Ck−1,γ(∂Ω), h ∈ Cl,γ(∂Ω) with l = max(k− 2, 1). Since ρ ∈ Cl,γ(Ω),
Φ ∈ Cl+1,γ(Ω) by Lemma 4.1. So f ∈ Ck−1,γ(∂Ω). Proposition 3.10 gives ρ ∈
Ck,γ(Ω). Therefore u ∈ Ck−1,γ(Ω,R2). �

Theorem 7.2. Let k ∈ N , 0 < γ < 1, ∂Ω be of class Ck+2,γ . Let h ∈ Ck,γ(∂Ω),
g ∈ Ck+1,γ(∂Ω), F ∈ Ck−1,γ(Ω,R2), G ∈ Ck,γ(Ω). Then there exists a unique
solution (u, ρ) ∈ Ck+1,γ(Ω,R2)× Ck,γ(Ω) of the problem (6.1).

Proof. According to [26, Theorem 6.19] there exists a solution ω ∈ Ck+2,γ(Ω) of the
problem ∆ω = G in Ω, ω = 0 on ∂Ω. Define w = ∇ω, g̃ = g −w · τ , F̃ = F + ∆w.
Then w ∈ Ck+1,γ(Ω,R2), g̃ ∈ Ck+1,γ(∂Ω), F̃ ∈ Ck−1,γ(Ω,R2), and ∇ · w = G in
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Ω. According to [22, Theorem IV.7.2 and Remark IV.7.1] there exists a solution
(v, p) ∈ Ck+1,γ(Ω,R2)× Ck,γ(Ω) of the problem

−∆v +∇p = F̃, ∇ · v = 0 in Ω, v = 0 on ∂Ω.

Define h̃ = h − p. Then h̃ ∈ Ck,γ(∂Ω). According to Theorem 7.1 there exists a
solution (ṽ, p̃) ∈ Ck+1,γ(Ω,R2)× Ck,γ(Ω) of the problem

−∆ṽ +∇p̃ =, ∇ · ṽ = 0 in Ω, τ · ṽ = g̃, p̃ = h̃ on ∂Ω.

Put u = w + v + ṽ, ρ = p+ p̃. Then (u, ρ) ∈ Ck+1,γ(Ω,R2)× Ck,γ(Ω) is a solution
of the problem (6.1).

The uniqueness follows from Theorem 7.1. �
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