
INSTITUTE OF MATHEMATICS
TH

E
CZ
EC
H
AC

AD
EM

Y
O
F
SC
IE
NC

ES Local strong solutions to the stochastic
compressible Navier-Stokes system

Dominic Breit

Eduard Feireisl

Martina Hofmanová

Preprint No. 26-2016

PRAHA 2016





Local strong solutions to the stochastic compressible

Navier–Stokes system

Dominic Breit Eduard Feireisl ∗ Martina Hofmanová
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Žitná 25, CZ-115 67 Praha 1, Czech Republic

Technical University Berlin, Institute of Mathematics
Straße des 17. Juni 136, 10623 Berlin, Germany

Abstract

We study the Navier–Stokes system describing the motion of a compressible viscous
fluid driven by a nonlinear multiplicative stochastic force. We establish local in time exis-
tence (up to a positive stopping time) of a unique solution, which is strong in both PDE
and probabilistic sense. Our approach relies on rewriting the problem as a symmetric
hyperbolic system augmented by partial diffusion, which is solved via a suitable approx-
imation procedure using the stochastic compactness method and the Yamada–Watanabe
type argument based on the Gyöngy–Krylov characterization of convergence in probabil-
ity. This leads to the existence of a strong (in the PDE sense) pathwise solution. Finally,
we use various stopping time arguments to establish the local existence of a unique strong
solution to the original problem.

Keywords: Navier–Stokes system, compressible fluids, stochastic forcing, local strong
solutions

1 Introduction

Stochastic perturbations in the equations of motions are commonly used to model small per-
turbations (numerical, empirical, and physical uncertainties) or thermodynamic fluctuations
present in fluid flows. Moreover, it is used for a better understanding of turbulence. As a

∗The research of E.F. leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078.
The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO:67985840.

1



consequence stochastic partial differential equations (SPDEs) such as the stochastic Navier–
Stokes equations are gaining more and more interest in fluid mechanical research. First result
can be traced back to the pioneering work by Bensoussan end Teman [2] in 1973. Today there
exists an abundant amount of literature concerning the dynamics of incompressible fluids
driven by stochastic forcing. We refer to the lecture notes by Flandoli [9], the monograph
of Kuksin and Shyrikian [16] as well as the references cited therein for a recent overview.
Definitely much less is known if compressibility of the fluid is taken into account. Fundamen-
tal questions of well–posedness and even mere existence of solutions to problems dealing with
stochastic perturbations of compressible fluids are, to the best of our knowledge, largely open,
with only a few rigorous results available.
First existence results were based on a suitable transformation formula that allows to reduce
the problem to a random system of PDEs: The stochastic integral does no longer appear and
deterministic methods are applicable, see [22] for the 1D case, [23] for a rather special periodic
2D. The latter one is based on the existence theory developed by Văıgant and Kazhikhov in
[24]. Finally, the work by Feireisl, Maslowski, Novotný [8] deals with the 3D case. The first
“truly” stochastic existence result for the compressible Navier–Stokes system perturbed by a
general nonlinear multiplicative noise was obtained by Breit, Hofmanová [5]. The existence of
the so-called finite energy weak martingale solutions in three space dimensions with periodic
boundary conditions was established. Extension of this result to the zero Dirichlet boundary
conditions then appeared in [21, 26]. For completeness, let us also mention [3] where a singular
limit result was proved.

The next step towards a better understanding of stochastic compressible fluids is the so-
called relative energy inequality derived in [4]. Among other possible applications, it allows
to compare a weak solution to the compressible system with arbitrary (smooth) processes,
in particular with a strong solution of the same problem. This gives rise to the weak–strong
uniqueness principle: A weak (in the PDE sense) solution satisfying the energy inequality
necessarily coincides with a strong solution emanating from the same initial data, as long as
the latter one exists. In the light of this result, a natural question to ask is whether or not
a strong solution exists at least locally in time. Results concerning the existence of strong
solutions in three dimensions, however, do not exists at all. In the present paper, we fill this
gap by showing existence of local-in-time strong solutions (up to a positive stopping time) of
the stochastic compressible Navier–Stokes system enjoying the regularity properties required
by the weak–strong uniqueness principle established in [4].

We consider a stochastic variant of the compressible barotropic Navier-Stokes system de-
scribing the time evolution of the mass density % and the bulk velocity u of a fluid driven by
a nonlinear multiplicative noise. The system of equations reads

d%+ divx(%u) dt = 0 (1.1)

d(%u) + [divx(%u⊗ u) + a∇x%γ ] dt = divxS(∇xu) dt+ G(%, %u)dW, (1.2)

where S(∇xu) is the standard Newtonian viscous stress tensor,

S(∇xu) = µ

(
∇xu +∇txu−

2

3
divxuI

)
+ λdivxuI, µ > 0, λ ≥ 0. (1.3)
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The driving process W is a cylindrical Wiener process defined on some probability space
(Ω,F,P) and the coefficient G is generally nonlinear and satisfies suitable growth assumptions.
The precise assumptions will be specified in Section 2. We focus on the periodic boundary
conditions, for which the underlying spatial domain O ⊂ RN may be identified with the flat
torus

O = TN =
(
(−π, π)|{−π,π}

)N
, N = 1, 2, 3.

The initial conditions are random variables

%(0, ·) = %0, u(0, ·) = u0, (1.4)

with sufficient space regularity specified later.
We study the system (1.1)–(1.4) in the framework of solutions that are strong in both PDE

and probabilistic sense. More precisely, such solutions possess sufficient space regularity for
(1.1)–(1.4) to be satisfied pointwise (not only in the sense of distributions) and they are defined
on a given probability space. We introduce the notion of local strong pathwise solutions which
only exists up to a suitable stopping time, see Definition 2.5. Next, we consider maximal
strong pathwise solutions which live on a maximal (random) time interval determined by
the hypothetical blow-up of the W 2,∞-norm of the velocity u, see Definition 2.6. Our main
result, Theorem 2.7, then states the existence of a unique maximal strong pathwise solution
to problem (1.1)–(1.4).

The deterministic approach to the local existence problem for the compressible Navier-
Stokes system is usually based on energy estimates. These are derived first for the unknown
functions %, u and then, repeatedly, for their time derivatives up to a sufficient order to
guarantee the required smoothness, see the nowadays probably optimal result by Cho, Choe
and Kim [7]. However, for obvious reasons related to the irregularity of sample paths of the
Brownian motion, this technique is not suitable in the stochastic setting. Instead, the required
space regularity must be achieved by differentiating the equations only with respect to the
space variables - a typical approach applicable to purely hyperbolic systems. The related
references include works on the incompressible stochastic Navier–Stokes system [1, 6], the
incompressible stochastic Euler equations [12], and also quasilinear hyperbolic systems [15].

Similarly to Kim [15] (see also [12]), we use suitable cut-off operators to render all non-
linearities in the equations globally Lipschitz. The resulting (stochastic) system may admit
global-in-time solutions. Still, the approach proposed in [15] and later revisited in [12] cannot
be applied in a direct fashion for the following reasons:

• The energy method is applicable to symmetric hyperbolic systems and their viscous
perturbations.

• In order to symmetrize (1.1), (1.2), the density must be strictly positive - the system
must be out of vacuum.

• For the density to remain positive at least on a short time interval, the maximum
principle must be applied to the transport equation (1.1). Accordingly, equation (1.1)
must be solved exactly and not by means of a finite-dimensional approximation.
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• To avoid technical problems with non-local operators in the transport equation, the
cut-off must be applied only to the velocity field.

In view of these difficulties and anticipating strict positivity of the density, we transform
the problem to a symmetric hyperbolic system perturbed by partial viscosity and the stochas-
tic driving term, see Subsection 2.4. Then cut-off operators in the spirit of [15] are applied
to the velocity field and this system is then studied in detail in Section 3. We use this tech-
nique to cut the nonlinear parts as well as to guarantee the nondegeneracy of the density,
which leads to global in time strong martingale solutions to this approximate system. The
main ideas of the proof are as follows. First, we adapt a hybrid method similar to the one
proposed in [5]: The equation of continuity is solved directly, while the momentum equation
is approximated by a finite dimensional Galerkin scheme. On this level, we are able to gain
higher order uniform energy estimates by differentiating in space. Then, using the stochastic
compactness method, we prove the existence of a strong martingale solution. In Subsection
3.5 we establish pathwise uniqueness and then the method of Gyöngy–Krylov [13] is applied
to recover the convergence of the approximate solutions on the original probability space, see
Subsection 3.6. The existence of a unique strong pathwise solution therefore follows.

Finally, in Section 4 we employ the results of the previous sections to prove our main
result, Theorem 2.7. This last step is in the spirit of the recent treatment of the incompressible
Euler system by Glatt-Holtz and Vicol [12]. However, the analysis is more involved due to
the complicated structure of (1.1)–(1.4). We rely on a delicate combination of stopping time
arguments that allow to use the equivalence of (1.1)–(1.4) with the system studied in Section
3. As a consequence, also the corresponding existence and uniqueness result may be applied.
One of the difficulties originates in the fact that we no longer assume the initial condition
to be integrable in ω. Thus the a priori estimates from Section 3 are no longer valid. We
present the details of the proof of uniqueness in Subsection 4.1, the existence of a local strong
pathwise solution in Subsections 4.2 and 4.3 and we conclude with the existence of a maximal
strong pathwise solution in Subsection 4.4.

2 Preliminaries and main result

We start by introducing the notation and some basic facts used in the text. To begin, we fix
an arbitrarily large time horizon T > 0.

2.1 Analytic framework

The symbols W s,p(TN ) denote the Sobolov spaces of functions having distributional deriva-
tives up to order s integrable in Lp(TN ) for p ∈ [1,∞]. We will also use W s,2(TN ) for s ∈ R
to denote the space of distributions v defined on TN with the finite norm

‖v‖2W s,2(TN ) =
∑
k∈ZN

(1 + |k|s)2|ck(v)|2 <∞, (2.1)

where ck(v) are the Fourier coefficients of v with respect to the standard trigonometric basis
{exp(ik · x)}k∈ZN . The shorten notation we will write ‖ · ‖s,p for ‖ · ‖W s,p(TN ) and ‖ · ‖p for
‖ · ‖Lp(TN ).

4



The following estimates are standard in the Moser-type calculus and can be found e.g. in
Majda [18, Proposition 2.1].

1. For u, v ∈W s,2 ∩ L∞(TN ) and |α| ≤ s

‖∂αx (uv)‖2 ≤ cs (‖u‖∞‖∇sxv‖2 + ‖v‖∞‖∇sxu‖2) . (2.2)

2. For u ∈W s,2(TN ), ∇xu ∈ L∞(TN ), v ∈W s−1,2 ∩ L∞(TN ) and |α| ≤ s

‖∂αx (uv)− u∂αx v‖2 ≤ cs
(
‖∇xu‖∞‖∇s−1

x v‖2 + ‖v‖∞‖∇sxu‖2
)
. (2.3)

3. For u ∈ W s,2 ∩ C(TN ), and F s-times continuously differentiable function on an open
neighborhood of the compact set G = range[u], |α| ≤ s,

‖∂αxF (u)‖L2(TN ) ≤ cs‖∂uF‖Cs−1(G)‖u‖
|α|−1

L∞(TN )
‖∂αxu‖L2(TN ). (2.4)

2.2 Stochastic framework

The driving process W is a cylindrical Wiener process defined on some stochastic basis
(Ω,F, (Ft)t≥0,P) with a complete, right-continuous filtration, and taking values in a sepa-
rable Hilbert space U. More specifically, W is given by a formal expansion

W (t) =
∑
k≥1

ekβk(t).

Here {βk}k≥1 is a family of mutually independent real-valued Brownian motions with respect
to (Ω,F, (Ft)t≥0,P) and {ek}k≥1 is an orthonormal basis of U. To give the precise definition
of the diffusion coefficient G, consider ρ ∈ L2(TN ), ρ ≥ 0, q ∈ L2(TN ) and let G(ρ,q) : U→
L2(TN ,RN ) be defined as follows

G(ρ,q)ek = Gk(·, ρ(·),q(·)).

We suppose that the coefficients Gk : TN × [0,∞)× RN → RN are Cs-functions that satisfy
uniformly in x ∈ TN

Gk(·, 0, 0) = 0, (2.5)

|∇lGk(·, ·, ·)| ≤ αk,
∑
k≥1

αk <∞ for all l ∈ {1, ..., s}, (2.6)

with s ∈ N specified below. A typical example we have in mind is

Gk(x, ρ,q) = ak(x)ρ+ Ak(x)q, (2.7)

where ak : TN → RN and Ak : TN → RN×N are smooth functions, however, our analysis
applies to general nonlinear coefficients Gk.
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We also introduce a new variable r related to % through formula

% = %(r) =

(
γ − 1

2aγ

) 1
γ−1

r
2

γ−1 ,

together with the associated family of diffusion coefficients

Fk(·, r,u) =
1

%(r)
Gk(·, %(r), %(r)u).

Note that for the model case (2.7) this implies

Fk(x, r,u) = ak(x) + Ak(x)u.

Remark 2.1. As we are interested in strong solutions for which both % and u are bounded
and % is bounded below away from zero, the hypotheses (2.6) implies the same property for
Fk restricted to this range. In addition, we have∑

k

|Fk(·, r,u)| ≤ c (1 + |u|).

Moreover, it is enough to assume that (2.6) holds only locally, meaning on each compact
subset of TN × (0,∞)× RN .

Observe that if %, q are (Ft)-progressively measurable L2(TN )-valued processes such that

% ∈ L2
(

Ω× [0, T ];L2(TN )
)
, q ∈ L2

(
Ω× [0, T ];L2(TN ;RN )

)
,

and G satisfies (2.5), (2.6), then the stochastic integral∫ t

0
G(%, %u) dW =

∑
k≥1

∫ t

0
Gk(·, %, %u) dWk

is a well-defined (Ft)-martingale ranging in L2(TN ;RN ).
Next, we report the following result by Flandoli and Gatarek [10, Lemma 2.1] which allows

to show fractional Sobolev regularity in time for a stochastic integral.

Lemma 2.2. Let p ≥ 2, α ∈ [0, 1
2) be given. Let G = {Gk}∞k=1 satisfy, for some m ∈ R,

E

∫ T

0

( ∞∑
k=1

‖Gk‖2Wm,2(TN ,RN )

)p/2
dt

 <∞.
Then

t 7→
∫ t

0
G dW ∈ Lp

(
Ω;Wα,p

(
0, T ;Wm,2(TN ;RN )

))
,

and there exists a constant c = c(α, p) such that

E

∥∥∥∥∫ t

0
G dW

∥∥∥∥p
Wα,p

(
0,T ;Wm,2(TN ;RN )

)
 ≤ c(α, p)E

∫ T

0

( ∞∑
k=1

‖Gk‖2Wm,2(TN ,RN )

)p/2
dt

 .
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Remark 2.3. Note that the above result further implies Hölder continuity of the stochastic
integral due to the embedding

Wα,p
(

0, T ;Wm,2(TN ;RN )
)
↪→ Cβ

(
0, T ;Wm,2(TN ;RN )

)
if β < α− 1

p
.

Combining Lemma 2.2, the hypotheses (2.5), (2.6), the estimate (2.4), and the embedding

W s,2(TN ) ↪→ C(TN ), s >
N

2
,

we get in addition the following estimate for the stochastic integral appearing in (1.2).

Corollary 2.4. Let Gk = Gk(%,q) satisfy (2.5), (2.6) for a nonnegative integer s. Let p ≥ 2,
α ∈ [0, 1

2). Suppose that

%, q ∈ Lβp
(

Ω× (0, T );W s,2(TN )
)
, β = max{s, 1}.

Then the following holds:
(i) If s = 0, then

t 7→
∫ t

0
G(%,q) dW ∈ Lp

(
Ω;Wα,p

(
0, T ;L2(TN ;RN )

))
,

and

E

∥∥∥∥∫ t

0
G(%,q) dW

∥∥∥∥p
Wα,p

(
0,T ;L2(TN ;RN )

)
 ≤ c(α, p)E [∫ T

0
‖[%,q]‖p

L2(TN ,RN )
dt

]
.

(ii) If s > N
2 , then

t 7→
∫ t

0
G(%,q) dW ∈ Lp

(
Ω;Wα,p

(
0, T ;W s,2(TN ;RN )

))
,

and

E

∥∥∥∥∫ t

0
G(%,q) dW

∥∥∥∥p
Wα,p

(
0,T ;W s,2(TN ;RN )

)
 ≤ c(α, p)E [∫ T

0
‖[%,q]‖sp

W s,2(TN ,RN )
dt

]
.

Finally, we define an auxiliary space U0 ⊃ U via

U0 =

{
v =

∑
k≥1

αkek;
∑
k≥1

α2
k

k2
<∞

}
,

endowed with the norm

‖v‖2U0
=
∑
k≥1

α2
k

k2
, v =

∑
k≥1

αkek.

Note that the embedding U ↪→ U0 is Hilbert-Schmidt. Moreover, trajectories of W are P-a.s.
in C([0, T ];U0).
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2.3 Main result

Let us first introduce the notion of local strong pathwise solution. Such a solution is strong
in both PDEs and probabilistic sense but possibly exists only locally in time. To be more
precise, system (1.1)–(1.2) will be satisfied pointwise (not in the sense of distributions) on the
given stochastic basis associated to the cylindrical Wiener process W .

Definition 2.5 (Local strong pathwise solution). Let (Ω,F, (Ft)t≥0,P) be a stochastic basis
with a complete right-continuous filtration and let W be an (Ft)-cylindrical Wiener process.
Let (%0,u0) be a W s,2(TN ) ×W s,2(TN ;RN )-valued F0-measurable random variable, and let
G satisfy (2.5), (2.6). A triplet (%,u, t) is called a local strong pathwise solution to system
(1.1)–(1.4) provided

• t is an a.s. strictly positive (Ft)-stopping time;

• the density % is a W s,2(TN )-valued (Ft)-progressively measurable process satisfying

%(· ∧ t) > 0, %(· ∧ t) ∈ C([0, T ];W s,2(TN )) P-a.s.;

• the velocity u is a W s,2(TN )-valued (Ft)-progressively measurable process satisfying

u(· ∧ t) ∈ C([0, T ];W s,2(TN ;RN )) ∩ L2(0, T ;W s+1,2(TN ;RN )) P-a.s.;

• there holds P-a.s.

%(t ∧ t) = %0 −
∫ t∧t

0
divx(%u) ds,

(%u)(t ∧ t) = %0u0 −
∫ t∧t

0
divx(%u⊗ u) ds

+

∫ t∧t

0
divxS(∇xu) ds−

∫ t∧t

0
∇xp(%) ds+

∫ t∧t

0
G(%, %u) dW,

for all t ∈ [0, T ].

In the above definition, we have tacitly assumed that s is large enough in order to provide
sufficient regularity for the strong solutions. Classical solutions require two spatial derivatives
of u to be continuous P-a.s. This motivates the following definition.

Definition 2.6 (Maximal strong pathwise solution). Fix a stochastic basis with a cylindrical
Wiener process and an initial condition exactly as in Definition 2.5. A quadruplet

(%,u, (tR)R∈N, t)

is a maximal strong pathwise solution to system (1.1)–(1.4) provided

• t is an a.s. strictly positive (Ft)-stopping time;
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• (tR)R∈N is an increasing sequence of (Ft)-stopping times such that tR < t on the set
[t < T ], limR→∞ tR = t a.s. and

sup
t∈[0,tR]

‖u(t)‖2,∞ ≥ R on [t < T ]; (2.8)

• each triplet (%,u, tR), R ∈ N, is a local strong pathwise solution in the sense of Definition
2.5.

The stopping times tR in Definition 2.6 announce the stopping time t which is therefore
predictable. It denotes the maximal life span of the solution which is determined by the time
of explosion of the W 2,∞-norm of the velocity field. Indeed, it can be seen from (2.8) that

sup
t∈[0,t)

‖u(t)‖2,∞ =∞ on [t < T ].

Note that the announcing sequence (tR) is not unique. Therefore, uniqueness for maximal
strong solutions is understood in the sense that only the solution (%,u) and its blow up time
t are unique.

Let us also point out that, later on, we will choose s in order to have the embedding
W s,2 ↪→ W 2,∞, i.e. at least s > N

2 + 2. Even though one might expect that the W s,2-norm
blows up earlier than the W 2,∞-norm, this is not true. Indeed, according to Definition 2.5
and Definition 2.6, a maximal strong pathwise solution satisfies

u(· ∧ tR) ∈ C([0, T ];W s,2(TN ,RN )) P-a.s.

and hence the velocity is continuous in W s,2(TN ,RN ) on [0, t). Consequently, the blow up
of the W s,2-norm coincides with the blow up of the W 2,∞-norm at time t. This fact reflects
the nature of our a priori estimates (see Subsection 3.2): roughly speaking, control of the
W 2,∞-norm implies control of the W s,2-norm and leads to continuity of trajectories in W s,2.

Finally, we have all in hand to formulate our main result.

Theorem 2.7. Let s ∈ N satisfy s > N
2 + 3. Let the coefficients Gk satisfy hypotheses

(2.5), (2.6) and let (%0,u0) be an F0-measurable, W s,2(TN ) ×W s,2(TN ,RN )-valued random
variable such that %0 > 0 P-a.s. Then there exists a unique maximal strong pathwise solution
(%,u, (tR)R∈N, t) to problem (1.1)–(1.4) with the initial condition (%0,u0).

Remark 2.8. The required regularity s > N
2 + 3 is definitely higher than s > N

2 + 2 for
the deterministic problem, see Matsumura and Nishida [20], [19], Valli and Zajaczkowski
[25]. This is due to the loss of regularity with respect to the time variable pertinent to the
stochastic problems. Possibly optimal results could be achieved by working in the framework
of Lp-spaces as Cho, Choe, and Kim [7] and to adapt this approach to the stochastic setting
in the spirit of Glatt-Holtz and Vicol [12].

Remark 2.9. The method used in the present paper can be easily adapted to handle the
same problem on the whole space O = RN , with relevant far field conditions for %, u, say

%→ %, u→ 0 as |x| → ∞.

9



On the other hand, the case when the fluid interacts with a physical boundary, for instance O
a bounded domain with the no-slip boundary condition for u, would require a more elaborate
treatment.

Remark 2.10. Let us also point out that most of our analysis applies to the stochastic
compressible Euler system as well. Indeed, the only point where we rely on the positive
viscosity µ is the proof of continuity of trajectories of a solution in W s,2, see Subsection 3.4.
It is based on the variational approach within a Gelfand triplet which gives a very elegant
proof, especially in comparison to the Euler setting where one would need to find another
reasoning, cf. [12].

2.4 Rewriting the equations as a symmetric hyperbolic-parabolic problem

It is well known in the context of compressible fluids that existence of strong solutions is
intimately related to the strict positivity of the density, i.e. the non-appearance of vacuum
states. Anticipating this property in the framework of strong solutions we may rewrite (1.1)–
(1.2) as a hyperbolic-parabolic system for unknowns r,u where r is a function of %. To be
more precise, as the time derivative of % satisfies the deterministic equation (1.1), we have

d(%u) = d% u + % du,

where, in accordance with (1.1)
d% = −divx(%u) dt.

Consequently, the momentum equation (1.2) reads

%du + [%u · ∇xu + a∇x%γ ] dt = divxS(∇xu) dt+ G(%, %u)dW,

or, anticipating strict positivity of the mass density,

du +

[
u · ∇xu + a

1

%
∇x%γ

]
dt =

1

%
divxS(∇xu) dt+

1

%
G(%, %u)dW.

Next, we rewrite

a
1

%
∇x%γ =

aγ

γ − 1
∇x%γ−1 =

2aγ

γ − 1
%
γ−1
2 ∇x%

γ−1
2 ,

and evoking the renormalized variant of (1.1) (cf. [5])

d%
γ−1
2 + u · ∇x%

γ−1
2 dt+

γ − 1

2
%
γ−1
2 divxu dt = 0.

Thus, for a new variable

r ≡
√

2aγ

γ − 1
%
γ−1
2 ,

system (1.1), (1.2) takes the form

dr + u · ∇xr dt+
γ − 1

2
rdivxu dt = 0, (2.9)
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du + [u · ∇xu + r∇xr] dt = D(r)divxS(∇xu) dt+ F(r,u)dW, (2.10)

where

D(r) =
1

%
=

(
γ − 1

2aγ

)− 1
γ−1

r
− 2
γ−1 , F(r,u) =

1

%(r)
G(%(r), %(r)u).

Observe that the left hand side corresponds to a symmetric hyperbolic system, cf. Majda [18],
for which higher order energy estimates can be obtained by differentiating (2.9), (2.10) in x
up to order s, cf. Gallagher [11], Majda [18]. Unlike the more elaborated treatment proposed
by Cho, Choe, and Kim [7] giving rise to the optimal regularity space for the deterministic
Navier-Stokes system, the energy approach avoids differentiating the equations in the time
variable - a procedure that may be delicate in the stochastic setting.

2.5 Outline of the proof of Theorem 2.7

In the deterministic setting, system (2.9)–(2.10) can be solved via an approximation proce-
dure. The so-obtained local in time strong solution exists on a maximal time interval, the
length of which can be estimated in terms of the size of the initial data. However, in the
stochastic setting it is more convenient to work with approximate solutions defined on the
whole time interval [0, T ]. To this end, we introduce suitable cut-off operators applied to the
W 2,∞-norm of the velocity field. Specifically, we consider the approximate system in the form

dr + ϕR(‖u‖2,∞)
[
u · ∇xr + γ−1

2 r divxu
]

dt = 0, (2.11)

du + ϕR(‖u‖2,∞) [u · ∇xu + r∇xr] dt = ϕR(‖u‖2,∞)D(r)divxS(∇xu) dt (2.12)

+ ϕR(‖u‖2,∞)F(r,u)dW,

r(0) = r0, u(0) = u0, (2.13)

where ϕR : [0,∞)→ [0, 1] are smooth cut-off functions satisfying

ϕR(y) =

{
1, 0 ≤ y ≤ R,
0, R+ 1 ≤ y.

Our aim is to solve (2.11)–(2.13) via the stochastic compactness method: First, we con-
struct solutions to certain approximated systems, establish tightness of their laws in suitable
topologies and finally deduce the existence of a strong martingale solution to (2.9)–(2.10).
The necessary uniform bounds are obtained through a purely hyperbolic approach by differ-
entiating with respect to the space variable and testing the resulting expression with suitable
space derivative of the unknown functions.

For the above mentioned reasons, the approximated densities must be positive on time
intervals of finite length. Therefore the approximation scheme must be chosen to preserve the
maximum principle for (2.11). To this end, the approximate solutions to (2.11)–(2.13) will be
constructed by means of a hybrid method based on

• solving the (deterministic) equation of continuity (2.11) for a given u obtaining r = r[u];
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• plugging r = r[u] in (2.12) and using a fixed point argument to get local in time solutions
of a Galerkin approximation of (2.12);

• extending the Galerkin solution to [0, T ] by means of a priori bounds.

Note that the transport equation (2.11) is solved exactly in terms of a given velocity field
u as the cut-off operators apply to u only.

3 The approximated system

In this section we focus on the approximated system (2.11)–(2.12). More precisely, our aim
is twofold: First, we establish existence of a strong martingale solution for initial data in
Lp(Ω;W s,2(TN )) for all 1 ≤ p <∞ and some s > N

2 +2; second, we prove pathwise uniqueness
provided s > N

2 + 3, which in turn implies existence of a (unique) strong pathwise solution.
To this end, let us introduce these two concepts of strong solution for the approximate

system (2.11)–(2.12). A strong martingale solution is strong in the PDEs sense but only weak
in the probabilistic sense. In other words, the stochastic basis as well as a cylindrical Wiener
process cannot be given in advance and become a part of the solution. Accordingly, the initial
condition is stated in the form of a initial law. On the other hand, a strong pathwise solution
is strong in both PDEs and probabilistic sense, that is, the stochastic elements are given in
advance.

Definition 3.1 (Strong martingale solution). Let Λ be a Borel probability measure on

W s,2(TN )×W s,2(TN ,RN ).

A multiplet
((Ω,F, (Ft)t≥0,P) , r,u,W )

is called a strong martingale solution to the approximate system (2.11)–(2.12) with the initial
law Λ, provided

• (Ω,F, (Ft)t≥0,P) is a stochastic basis with a complete right-continuous filtration;

• W is an (Ft)-cylindrical Wiener process;

• r is a W s,2(TN )-valued (Ft)-progressively measurable process satisfying

r ∈ L2
(

Ω;C([0, T ];W s,2(TN ))
)

;

• the velocity u is a W s,2(TN )-valued (Ft)-progressively measurable process satisfying

u ∈ L2
(

Ω;C([0, T ];W s,2(TN )) ∩ L2(0, T ;W s+1,2(TN ))
)

;

• Λ = P ◦ [(r(0),u(0))]−1;

12



• there holds P-a.s.

r(t) = r(0)−
∫ t

0
ϕR(‖u‖2,∞)

[
u · ∇xr + γ−1

2 r divxu
]

ds,

u(t) = u(0)−
∫ t

0
ϕR(‖u‖2,∞) [u · ∇xu + r∇xr] ds

+

∫ t

0
ϕR(‖u‖2,∞)D(r)divxS(∇xu)ds+

∫ t

0
ϕR(‖u‖2,∞)F(r,u) dW,

for all t ∈ [0, T ].

Definition 3.2 (Strong pathwise solution). Let (Ω,F, (Ft)t≥0,P) be a given stochastic basis
with a complete right-continuous filtration and let W be a given (Ft)-cylindrical Wiener
process. Then (r,u) is called a strong pathwise solution to the approximate system (2.11)–
(2.12) with the initial condition (r0,u0) provided

• r is a W s,2(TN )-valued (Ft)-progressively measurable process satisfying

r ∈ L2
(

Ω;C([0, T ];W s,2(TN ))
)

;

• the velocity u is a W s,2(TN )-valued (Ft)-progressively measurable process satisfying

u ∈ L2
(

Ω;C([0, T ];W s,2(TN )) ∩ L2(0, T ;W s+1,2(TN ))
)

;

• there holds P-a.s.

r(t) = r0 −
∫ t

0
ϕR(‖u‖2,∞)

[
u · ∇xr + γ−1

2 r divxu
]

ds,

u(t) = u0 −
∫ t

0
ϕR(‖u‖2,∞) [u · ∇xu + r∇xr] ds

+

∫ t

0
ϕR(‖u‖2,∞)D(r)divxS(∇xu)ds+

∫ t

0
ϕR(‖u‖2,∞)F(r,u) dW,

for all t ∈ [0, T ].

The main result of this section reads as follows.

Theorem 3.3. Let the coefficients Gk satisfy hypotheses (2.5), (2.6) and let

(r0,u0) ∈ Lp(Ω,F0,P;W s,2(TN )×W s,2(TN ))

for all 1 ≤ p <∞ and some s ∈ N such that s > N
2 + 2. In addition, suppose that

‖r0‖W 1,∞(TN ) < R, r0 >
1

R
P-a.s.
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Then there exists a strong martingale solution to problem (2.11)–(2.12) with the initial law
Λ = P ◦ [(r0,u0)]−1. Moreover, there exists a deterministic constant rR > 0 such that

r(t, ·) ≥ rR > 0 P-a.s. for all t ∈ [0, T ]

and

E
[

sup
t∈[0,T ]

‖(r(t),u(t))‖s,2 +

∫ T

0
‖u‖2s+1,2 dt

]p
≤ c(R, r0,u0, p) <∞ for all 1 ≤ p <∞.

(3.1)
Finally, if s > N

2 +3, then pathwise uniqueness holds true. Specifically, if (r1,u1), (r2,u2)
are two strong solutions to (2.11)–(2.12) defined on the same stochastic basis with the same
Wiener process W and

P
[
r1

0 = r2
0, u1

0 = u2
0

]
= 1,

then
P
[
r1(t) = r2(t), u1(t) = u2(t), for all t ∈ [0, T ]

]
= 1.

Consequently, there exists a unique strong pathwise solution to (2.11)–(2.12).

The rest of this section is dedicated to the proof of Theorem 3.3 which is divided into
several parts. First, in Subsection 3.1 we construct the approximate solutions to (2.11)–(2.12)
by employing the hybrid method delineated in Subsection 2.5. Second, in Subsection 3.2 we
derive higher order energy estimates which hold true uniformly in the approximation param-
eter n. Third, in Subsection 3.3 we perform the stochastic compactness method: we establish
tightness of the laws of the approximated solutions and apply the Skorokhod representation
theorem. This yields existence of a new probability space with a sequence of random variables
converging a.s. Then in Subsection 3.4, we identify the limit with a strong martingale solution
to (2.11)–(2.12). Finally, in Subsection 3.5 we provide the proof of pathwise uniqueness under
the additional assumption that s > N

2 +3 and in Subsection 3.6 we employ the Gyöngy-Krylov
argument to deduce the existence of a strong pathwise solution.

3.1 The Galerkin approximation

To begin with, observe that for any u ∈ C([0, T ];W 2,∞(TN )), the transport equation (2.11)
admits a classical solution r = r[u], uniquely determined by the initial datum r0. In addition,
for a certain universal constant c we have the estimates

1

R
exp (−cRt) ≤ exp (−cRt) inf

TN
r0 ≤ r(t, ·) ≤ exp (cRt) sup

TN
r0 ≤ R exp (cRt)

|∇xr(t, ·)| ≤ exp (cRt) |∇xr0| ≤ R exp (cRt) t ∈ [0, T ].

(3.2)

Next, we consider the orthonormal basis {ψm}
∞
m=1 of the space L2(TN ;RN ) formed by

trigonometric functions and set

Xn = span {ψ1, . . . ,ψn} , with the associated projection Pn : L2 → Xn.
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We look for approximate solutions un of (2.12) belonging to L2
(

Ω;C([0, T ];Xn)
)

, satisfying

d 〈un,ψi〉+ ϕR(‖un‖2,∞)
〈[

[un · ∇xun + r[un]∇xr[un, r0,R]
]
;ψi

〉
dt

= ϕR(‖un‖2,∞) 〈D(r[un])divxS(∇xun);ψi〉 dt

+ ϕR(‖un‖2,∞) 〈F(r[un],un);ψi〉dW, i = 1, . . . , n.

un(0) = Pnu0.

(3.3)

As all norms on Xn are equivalent, solutions of (2.11), (3.3) can be obtained in a standard
way by means of the Banach fixed point argument. Specifically, we have to show that the
mapping

u 7→ T u : Xn → Xn,

〈T u;ψi〉 = 〈u0;ψi〉 −
∫ ·

0
ϕR(‖u‖2,∞)

〈[
u · ∇xu + r[u]∇xr[u, r0,n]

]
;ψi

〉
dt

+

∫ ·
0
ϕR(‖u‖2,∞) 〈D(r[u])divxS(∇xu);ψi〉 dt

+

∫ ·
0
ϕR(‖u‖2,∞) 〈F(r[u],u);ψi〉 dW, i = 1, . . . , n.

(3.4)

is a contraction on B = L2(Ω;C([0, T ∗];Xn)) for T ∗ sufficiently small. The three components
of T appearing on the right hand side of (3.4) will be denoted by T 1

det, T 2
det and Tsto,

respectively.
For r1 = r[u], r2 = r[v], we get

d(r1 − r2) + v1 · ∇x(r1 − r2) dt− γ − 1

2
divxv1(r1 − r2) dt

= −∇xr2 · (v1 − v2)− γ − 1

2
r2divx(v1 − v2) dt,

where we have set
v1 = ϕR(‖u‖2,∞)u, v2 = ϕR(‖v‖2,∞)v.

Consequently, we easily deduce that

sup
0≤t≤T ∗

∥∥r[u]− r[v]
∥∥2

L2 ≤ T ∗C(n,R, T ) sup
0≤t≤T ∗

∥∥u− v
∥∥2

Xn
(3.5)

noting that r1, r2 coincide at t = 0 and that rj , ∇xrj are bounded by a deterministic constant
depending on R.

As a consequence of (3.2), (3.5) and the equivalence of norms on Xn we can show that
the mapping Tdet = T 1

det + T 2
det satisfies the estimate

‖Tdetu−Tdetv‖2B ≤ T ∗C(n,R, T )‖u− v‖2B. (3.6)
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Finally, by Burgholder-Davis-Gundy inequality we have (setting JR(w) = ϕR+1(‖w‖2,∞)w)

‖Tstou−Tstov‖2B = E sup
0≤t≤T∗

∥∥∥∥∫ t

0

(
ϕR(‖u‖2,∞)F

(
r[u],u

)
− ϕ(‖v‖2,∞)F

(
r[v],v

))
dW

∥∥∥∥2

Xn

≤ C(n,R)E
∫ T ∗

0

∑
k≥1

∥∥∥ϕR(‖u‖2,∞)Fk

(
r[u], JR(u)

)
− ϕR(‖v‖2,∞)Fk

(
r[v], JR(v)

)∥∥∥2

Xn
ds

≤ C(n,R)E
∫ T ∗

0

∣∣ϕR(‖u‖2,∞)− ϕR(‖v‖2,∞)
∣∣2∑
k≥1

∥∥∥Fk

(
r[u], JR(u)

)∥∥∥2

Xn
ds

+ C(n,R)E
∫ T ∗

0
ϕR(‖v‖2,∞)2

∑
k≥1

∥∥∥Fk

(
r[u], JR(u)

)
− Fk

(
r[v], JR(v)

)∥∥∥2

Xn
ds.

Using the growth conditions for Fk (see (2.6) and Remark 2.1) we gain

‖Tstou−Tstov‖2B

≤ T ∗C(n,R)

(
E‖u− v‖2,∞ + E

∫ T∗

0

∥∥ r[u]− r[v]
∥∥2

L2ds+ E
∫ T∗

0

∥∥JR(u)− JR(v)
∥∥2

L2ds

)
≤ T ∗C(n,R)‖u− v‖2B. (3.7)

Note that the last step was a consequence of (3.5) and the equivalence of norms. Combining
(3.6) and (3.7) shows that T is a contraction for a deterministic (small) time T ∗ > 0. A
solution to (2.11)–(2.12) on the whole interval [0, T ] can be obtained by decomposing it into
small subintervals gluing the corresponding solutions together.

3.2 Uniform estimates

In this subsection, we derive estimates that hold uniformly for n → ∞, which yields a basis
for our compactness argument presented in Subsection 3.3. At this stage, the approximate
velocity field un is smooth in the x-variable; whence the corresponding solution rn = r[un, r0,n]
of the transport equation (2.11) shares the same smoothness with the initial datum r0.

Let α be a multiindex such that |α| ≤ s. Differentiating (2.11) in the x-variable we obtain

d∂αx rn + ϕR(‖un‖2,∞)
[
un · ∇x∂αx rn + γ−1

2 rn divx∂
α
xun

]
dt

= ϕR(‖un‖2,∞)
[
un · ∂αx∇xrn − ∂αx (un · ∇xrn)

]
dt

+ γ−1
2 ϕR(‖un‖2,∞) [rn∂

α
xdivxun − ∂αx (rndivxun)] dt

=: Tn1 dt+ Tn2 dt.

(3.8)

Similarly, we may use the fact that the spaces Xn are invariant with respect to the spatial
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derivatives, in particular, we deduce that

d 〈∂αxun;ψi〉+ ϕR(‖un‖2,∞) 〈[un · ∇x∂αxun + rn∇x∂αx rn] ;ψi〉 dt

− ϕR(‖un‖2,∞) 〈D(rn)divxS(∇x∂αxun);ψi〉 dt

= ϕR(‖un‖2,∞) 〈[un · ∂αx∇xun − ∂αx (un · ∇xun)] ;ψi〉 dt

+ ϕR(‖un‖2,∞) 〈[rn∂αx∇xrn − ∂αx (rn∇xrn)] ;ψi〉 dt

− ϕR(‖un‖2,∞) 〈[D(rn)∂αxdivxS(∇xun)− ∂αx (D(rn)divxS(∇xun))] ;ψi〉 dt

+ ϕR(‖un‖2,∞) 〈∂αxF(rn,un);ψi〉dW
=: Tn3 dt+ Tn4 dt+ Tn5 dt+ ϕR(‖un‖2,∞) 〈∂αxF(rn,un);ψi〉dW, i = 1, . . . , n.

(3.9)

It follows from (2.3) that the “error” terms may be handled as

‖Tn1 ‖2 . ϕR(‖un‖2,∞)
[
‖∇xun‖∞‖∇sxrn‖2 + ‖∇xrn‖∞ ‖∇

s
xun‖2

]
‖Tn2 ‖2 . ϕR(‖un‖2,∞)

[
‖∇xrn‖∞‖∇sxun‖2 + ‖divxun‖∞ ‖∇

s
xrn‖2

]
‖Tn3 ‖2 . ϕR(‖un‖2,∞)‖∇xun‖∞‖∇sxun‖2
‖Tn4 ‖2 . ‖∇xrn‖∞‖∇sxrn‖2,

(3.10)

and

‖Tn5 ‖2 . ϕR(‖un‖2,∞) ‖∇xD(rn)‖∞ ‖∇
s
xS(∇xun)‖2

+ ϕR(‖un‖2,∞) ‖divxS(∇xun)‖∞ ‖∇
s
xD(rn)‖2 .

(3.11)

Multiplying (3.8) by ∂αx rn and integrating the resulting expression by parts, we observe∫
TN

un · ∇x∂αx r∂αx rn dx = −1

2

∫
TN

divxun|∂αx rn|2 dx;

whence

‖∂αx rn(t)‖22 + (γ − 1)

∫ t

0
ϕR(‖un‖2,∞)

∫
TN

rndivx∂
α
xun∂

α
x rn dx dσ

. ‖∂αx r0‖22 +

∫ t

0
ϕR(‖un‖2,∞) (‖un‖1,∞‖%‖s,2 + ‖rn‖1,∞‖un‖s,2) ‖∂αx rn‖2 dσ

(3.12)

provided |α| ≤ s.
To apply the same treatment to (3.9), we use Itô’s formula for the function f(Cn) =
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∫
TN |∂

α
xun|2 dx. There holds

‖∂αxun(t)‖22 dx+ 2

∫ t

0
ϕR(‖un‖2,∞)

∫
TN

[un · ∇x∂αxun + rn∇x∂αx rn] · ∂αxun dx dσ

− 2

∫ t

0
ϕR(‖un‖2,∞)

∫
TN

D(rn)divxS(∇x∂αxun) · ∂αxun dx dσ

= ‖∂αxPnu0‖2 + 2

∫ t

0

∫
TN

[Tn3 + Tn4 + Tn5 ] · ∂αxun dx dσ

+ 2

∫ t

0
ϕR(‖un‖2,∞)

∫
TN

∂αxF(rn,un) · ∂αxun dW

+
∑
k≥1

∫ t

0
ϕR(‖un‖2,∞)

∫
TN
|∂αxFk(rn,un)|2 dx dσ.

(3.13)

Integrating by parts yields∫
TN

[
un · ∇x∂αxun + rn∇x∂αx rn

]
· ∂αxun dx

= −1

2

∫
TN
|∂αxun|2divxun dx−

∫
TN

rndivx∂
α
xun∂

α
x rn dx−

∫
TN
∇xrn · ∂αun∂

α
x rn

as well as

−
∫
TN

[
D(rn)divxS(∇x∂αxun)

]
· ∂αxun dx

=

∫
TN
∇xD(rn) · S(∇x∂αxun) · ∂αxun dx+

∫
TN

D(rn)S(∇x∂αxun) : ∇x∂αxun dx

Summing up (3.12)–(3.13) and using (3.10)–(3.11) we observe that the term containing
rn∂

α
x rndivx∂

α
xun on the left hand side cancels out and we may infer that

‖(rn(t),un(t))‖2s,2 +
∑
|α|≤s

∫ t

0

∫
TN

ϕR(‖un‖2,∞)D(rn)S(∇x∂αxun) : ∇x∂αxun dx dσ

. ‖(r0,u0)‖2s,2 +

∫ t

0

[
ϕR(‖un‖2,∞)‖un‖1,∞

(
‖rn‖2s,2 + ‖u‖2s,2

)
+ ‖rn‖1,∞‖rn‖s,2‖un‖s,2

]
dt

+

∫ t

0

[
ϕR(‖un‖2,∞)‖divxS(∇xun)‖∞ ‖D(rn)‖s,2 ‖un‖s,2 + ‖∇xD(rn)‖∞‖un‖2s,2

]
dσ

+

∫ t

0
ϕR(‖un‖2,∞)

∫
TN

∂αxF(rn,un) · ∂αxun dx dW

+
∑
k≥1

∫ t

0
ϕR(‖un‖2,∞)

∫
TN
|∂αxFk(rn,un)|2 dx dσ

as long as s > N
2 + 2.
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Remark 3.4. Note that the above estimate depends on R only through the cut-off function
ϕR. Moreover, in accordance with (3.2),

ϕR(‖un‖2,∞)‖un‖1,∞ + ϕR(‖un‖2,∞)‖divxS(∇xun)‖∞ . cR,

‖rn‖1,∞ + ‖∇xD(rn)‖∞ . c exp (cRT )
(
‖r0‖1,∞ + ‖∇xr0‖∞

)
. c(R) exp (cRT ) ,

and, in view of (2.4), (3.2),
‖D(rn)‖s,2 ≤ c(R, T )‖rn‖s,2.

In contrast with the preceding part, the following inequalities depend on R. Using (2.6)
as well as (2.4) we have∑

k≥1

∫ t

0
ϕR(‖un‖2,∞)

∫
TN
|∂αxFk(rn,un)|2 dx dσ

.
∫ t

0
ϕR(‖un‖2,∞)

∫
TN

∑
k≥1

|∇s−1Fk|2 dx ‖(rn,un)‖2(|α|−1)
∞ ‖(rn,un)‖2s,2 dσ

. c(R, T )

∫ t

0
‖(rn,un)‖2s,2 dσ.

as well as

E
[

sup
t∈(0,T )

∣∣∣∣ ∫ t

0
ϕR(‖un‖2,∞)

∫
TN

∂αxF(rn,un) · ∂αxun dx dW

∣∣∣∣]p
. E

[∑
k≥1

∫ T

0
ϕR(‖un‖2,∞)2

(∫
TN

∂αxFk(rn,un) · ∂αxun dx

)2

dx dt

] p
2

. E
[ ∫ T

0
ϕR(‖un‖2,∞)2

(∑
k≥1

‖Fk(rn,un)‖2s,2
)
‖un‖2s,2 dt

] p
2

. E
[ ∫ T

0
ϕR(‖un‖2,∞)2‖(rn,un)‖2(s−1)

∞ ‖(rn,un)‖4s,2 dσ

] p
2

. c(R, T )E
[

sup
t∈(0,T )

‖un‖2s,2
∫ T

0
‖(rn,un)‖2s,2 dσ

] p
2

. c(R, T )

(
κE

[
sup

t∈(0,T )
‖(rn,un)‖2ps,2

]
+ c(κ)E

[ ∫ T

0
‖(rn,un)‖2s,2 dσ

]p)
where we also took into account the Burgholder-Davis-Gundy and weighted Young inequali-
ties. Finally, we apply the Gronwall lemma to conclude

E
[(

sup
(0,T )
‖(rn,un)‖2s,2 +

∫ T

0

∫
TN
|∇s+1un|2 dx dt

)p ]
. c(R, T, s)E

[
‖(r0,u0)‖2ps,2 + 1

]
(3.14)

whenever s > N
2 + 2.
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3.3 Compactness

Now we have all in hand to set up our compactness argument leading to the existence part
of Theorem 3.3. Let us define the path space X = Xr ×Xu ×XW ,

Xu = C([0, T ];W β,2(TN ;RN )), Xr = C([0, T ];W β,2(TN )), XW = C([0, T ];U0),

where β < s (not necessarily integer) can be chosen arbitrarily close to s, in particular,
β > N

2 + 2 so that we have the embedding

W β,2(TN ) ↪→W 2,∞(TN )

needed to pass to the limit in the cut-off operators.
We denote by µrn and µun the law of rn and un on the corresponding path space. By µW

we denote the law of W on XW and their joint law on X is µn. To proceed, it is necessary to
establish tightness of {µn; n ∈ N}.

Proposition 3.5. The set {µun ; n ∈ N} is tight on Xu.

Proof. We start with a compact embedding relation

C([0, T ];W s,2(TN )) ∩ Cγ([0, T ];L2(TN )) ↪→↪→ C([0, T ];W β,2(TN )), γ > 0, β < s,

that follows directly from the abstract Arzelà-Ascoli theorem.
Due to (3.4), un satisfies

un(t) = Pnu0 −
∫ t

0
ϕR(‖un‖2,∞)Pn

[
un · ∇xun + rn∇xrn

]
dσ

+

∫ t

0
ϕR(‖un‖2,∞)Pn

[
D(rn)divxS(∇xun)

]
dσ +

∫ t

0
ϕR(‖un‖2,∞)PnF(rn,un)dW.

Now we decompose un into two parts, namely, un = Yn + Zn, where

Yn(t) = Pnu0 −
∫ t

0
ϕR(‖un‖2,∞)Pn

[
un · ∇xun + rn∇xrn

]
dσ

+

∫ t

0
ϕR(‖un‖2,∞)Pn

[
D(rn)divxS(∇xun)

]
dσ,

Zn(t) =

∫ t

0
ϕR(‖un‖2,∞)PnF(rn,un)dW.

By (4.2) and the continuity of Pn on L2 we have for any κ ∈ (0, 1) that

E
[
‖Yn‖Cκ([0,T ];L2(TN ))

]
≤ c(R),

while (4.2) combined with Corollary 2.4 (for s = 0), Remark 2.3 yields the same conclusion
for Zn, with 0 < κ < 1/2.
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Proposition 3.6. The set {µrn ; n ∈ N} is tight on Xr.

Proof. The proof is completely analogous to Proposition 3.5 using the equation (2.11) for rn
and the uniform estimate (4.2).

Since also the law µW is tight as being a Radon measure on the Polish space XW we can
finally deduce tightness of the joint laws µn.

Corollary 3.7. The set {µn; n ∈ N} is tight on X .

Since the path space X is a Polish space we may use the classical Skorokhod representation
theorem. That is, passing to a weakly convergent subsequence µε (and denoting by µ the limit
law) we infer the following result.

Proposition 3.8. There exists a subsequence µn, a probability space (Ω̃, F̃, P̃) with X -valued
Borel measurable random variables (r̃n, ũn, W̃n), N ∈ N, and (r̃, ũ, W̃ ) such that

1. the law of (r̃n, ũn, W̃n) is given by µn, n ∈ N,

2. the law of (r̃, ũ, W̃ ) is given by µ,

3. (r̃n, ũn, W̃n) converges P̃-a.s. to (r̃, ũ, W̃ ) in the topology of X .

3.4 Identification of the limit

As the next step, we will identify the limit obtained in Proposition 3.8 with a strong martingale
solution to (2.11)–(2.12), completing the proof of Theorem 3.3.

Let us first fix some notation that will be used in the sequel. We denote by rt the operator
of restriction to the interval [0, t] acting on various path spaces. In particular, if X stands for
one of the path spaces Xr, Xu or XW and t ∈ [0, T ], we define

rt : X → X|[0,t], f 7→ f |[0,t].

Clearly, rt is a continuous mapping. Let (F̃nt ) and (F̃t), respectively, be the P̃-augmented
canonical filtration of the process (r̃n, ũn, W̃n) and (r̃, ũ, W̃ ), respectively, that is

F̃nt = σ
(
σ
(
rtr̃n, rtũn, rtW̃n

)
∪
{
M ∈ F̃; P̃(M ) = 0

})
, t ∈ [0, T ],

F̃t = σ
(
σ
(
rtr̃, rtũ, rtW̃

)
∪
{
M ∈ F̃; P̃(M ) = 0

})
, t ∈ [0, T ].

We claim that (r̃, ũ, W̃ ) is a strong martingale solution to (2.11)-(2.12). Indeed, in order to
identify (2.11), let us define the following functional

(r,u) 7→ L(r,u)t := r(t)− r(0) +

∫ t

0
ϕR(‖u‖2,∞)

[
u · ∇xr − γ−1

2 r divxu
]

dσ.

Since the couple (rn,un) solves (2.11) on the original probability space, it holds L(rn,un)t = 0,
t ∈ [0, T ]. Thus, due to equality of laws we get

Ẽ‖L(r̃n, ũn)t‖22 = E‖L(rn,un)t‖22 = 0.
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With Proposition 3.8 and (4.2) at hand, we may pass to the limit on the left hand side and
deduce that (r̃, ũ) solves (2.11).

In order to identify (2.12), we first note that since W̃n has the same law as W , there
exists a collection of mutually independent real-valued (F̃t)-Wiener processes (β̃nk )k≥1 such
that W̃n =

∑
k≥1 β̃

n
k ek , i.e. there exists a collection of mutually independent real-valued

(F̃t)-Wiener processes (β̃k)k≥1 such that W̃ =
∑

k≥1 β̃kek. As the next step, let us fix times
s, t ∈ [0, T ] such that s < t and let

h : Xr|[0,s] ×Xu|[0,s] ×XW |[0,s] → [0, 1]

be a continuous function. We define functionals

(r,u) 7→Mn(r,u)t := u(t)− u(0) +

∫ t

0
ϕR(‖u‖2,∞)Pn

[
u · ∇xu + r∇xr

]
dσ

−
∫ t

0
ϕR(‖u‖2,∞)Pn

[
D(r)divxS(∇xu)

]
dσ

(r,u) 7→M(r,u)t := u(t)− u(0) +

∫ t

0
ϕR(‖u‖2,∞)

[
u · ∇xu + r∇xr

]
dσ

−
∫ t

0
ϕR(‖u‖2,∞)

[
D(r)divxS(∇xu)

]
dσ.

Since (rn,un) satisfies (2.12) on the original probability space, we have that

Mn(rn, un)t =

∫ t

0
ϕR(‖un‖2,∞)PnF(rn, un) dW.

Hence Mn(rn,un) is an L2(TN )-valued martingale and if (fj) is an orthonormal basis of
L2(TN ) then for all j ∈ N

E [h(rsrn, rsun, rsW )〈Mn(rn,un)t −Mn(rn,un)s, fj〉] = 0,

E
[
h(rsrn, rsun, rsW )

(
〈Mn(rn,un)t, fj〉2 − 〈Mn(rn,un)s, fj〉2

−
∫ t

s
ϕR(‖un‖2,∞)‖(PnF(rn,un))∗fj‖2U dσ

)]
= 0,

E
[
h(rsrn, rsun, rsW )

(
βk(t)〈Mn(rn,un)t, fj〉 − βk(s)〈Mn(rn,un)s, fj〉

−
∫ t

s
ϕR(‖un‖2,∞)〈ek, (PnF(rn,un))∗fj〉U dσ

]
= 0.

Equality of laws implies the corresponding three expressions for (r̃n, ũn) and finally due to
Proposition 3.8 and the uniform moment estimates from (4.2) we may pass to the limit to
deduce

Ẽ
[
h(rsr̃, rsũ, rsW̃ )〈M(r̃, ũ)t −Mn(r̃, ũ)s, fj〉

]
= 0,
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Ẽ
[
h(rsr̃, rsũ, rsW̃ )

(
〈M(r̃, ũ)t, fj〉2 − 〈M(r̃, ũ)s, fj〉2

−
∫ t

s
ϕR(‖ũ‖2,∞)‖(F(r̃, ũ))∗fj‖2U dσ

)]
= 0,

Ẽ
[
h(rsr̃, rsũ, rsW̃ )

(
β̃k(t)〈M(r̃, ũ)t, fj〉 − β̃k(s)〈M(r̃, ũ)s, fj〉

−
∫ t

s
ϕR(‖ũ‖2,∞)〈ek, (F(r̃, ũ))∗fj〉U dσ

]
= 0.

According to [14, Proposition A.1] this finally yields (2.12) and completes the existence part
of the proof of Theorem 3.3. Note that the strong continuity of r and u in W s,2(TN ) P-a.s.
can be deduced directly from the equations. Indeed, using the variational approach, the
momentum equation (2.12) is solved in the Gelfand triplet

W s+1,2(TN ;RN ) ↪→W s,2(TN ;RN ) ↪→W s−1,2(TN ;RN ),

the stochastic integral has continuous trajectories in W s,2(TN ;RN ) due to the uniform es-
timates, Corollary 2.4 (part (ii)) and Remark 2.3, while the coefficients of the deterministic
parts in the momentum equation belong to the space L2(0, T ;W s−1,2(TN ;RN )). Hence [17,
Theorem 3.1] applies and yields the desired continuity of the velocity field u. The continuity
of r then follows from the equation of continuity.

3.5 Pathwise uniqueness

To show pathwise uniqueness, we mimick the approach of Subsection 3.2. The difference of
two solutions (rj ,uj), j = 1, 2, satisfies

d∂αx (r1 − r2) = −ϕR
(
‖u1‖W 2,∞

)
∂αx

(
u1 · ∇xr1 +

γ − 1

2
r1divxu

1

)
dt

+ ϕR
(
‖u2‖W 2,∞

)
∂αx

(
u2 · ∇xr2 +

γ − 1

2
r2divxu

2

)
dt,

(3.15)

and

d∂αx (u1 − u2) = −ϕR (‖u1‖W 2,∞) ∂αx

(
u1 · ∇xu1 + r1∇xr1 −D(r1)divxS(∇xu1)

)
dt

+ ϕR (‖u2‖W 2,∞) ∂αx

(
u2 · ∇xu2 + r2∇xr2 −D(r2)divxS(∇xu2)

)
dt

+
[
ϕR (‖u1‖W 2,∞) ∂αxF(r1,u1)− ϕR (‖u2‖W 2,∞) ∂αxF(r2,u2)

]
dW

for |α| ≤ m.
Multiplying (3.15) on ∂αx (r1 − r2), we get

1

2
d
∣∣∂αx (r1 − r2)

∣∣2 = −ϕR
(
‖u1‖W 2,∞

)
∂αx

(
u1 · ∇xr1 +

γ − 1

2
r1divxu

1

)
∂αx (r1 − r2) dt

+ ϕR
(
‖u2‖W 2,∞

)
∂αx

(
u2 · ∇xr2 +

γ − 1

2
r2divxu

2

)
∂αx (r1 − r2) dt.

(3.16)
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Similarly, using Itô’s product rule we obtain

1

2
d
∣∣∂αx (u1 − u2)

∣∣2
= −ϕR

(
‖u1‖W 2,∞

)
∂αx

(
u1 · ∇xu1 + r1∇xr1 −D(r1)divxS(∇xu1)

)
· ∂αx (u1 − u2) dt

+ ϕR
(
‖u2‖W 2,∞

)
∂αx

(
u2 · ∇xu2 + r2∇xr2 −D(r2)divxS(∇xu2)

)
· ∂αx (u1 − u2) dt

+
[
ϕR
(
‖u1‖W 2,∞

)
∂αxF(r1,u1)− ϕR

(
‖u2‖W 2,∞

)
∂αxF(r2,u2)

]
· ∂αx (u1 − u2)dW

+
1

2

(
ϕR
(
‖u1‖W 2,∞

)
∂αxF(r1,u1)− ϕR

(
‖u2‖W 2,∞

)
∂αxF(r2,u2)

)2
dt

(3.17)

Now observe, by virtue of the standard embedding relation,∣∣ϕR (‖u1‖W 2,∞
)
− ϕR

(
‖u2‖W 2,∞

)∣∣ ≤ c1(R)
∥∥u1 − u2

∥∥
W 2,∞ ≤ c2(R)

∥∥u1 − u2
∥∥
Wm,2

as soon as m > N
2 + 2. Thus we sum (3.16), (3.17), integrate over the physical space, and

perform the same estimates as in Section 3.2 noting that the highest order terms in (3.16)
read

ϕR
(
‖u1‖W 2,∞

) ∫
TN

(
u1 · ∇x∂αx r1 − u2 · ∇x∂αx r2

)
∂αx
(
r1 − r2

)
dx

+
γ − 1

2
ϕR
(
‖u1‖W 2,∞

) ∫
TN

(
r1divx∂

α
xu1 − r2divx∂

α
xu2

)
∂αx
(
r1 − r2

)
dx

= ϕR
(
‖u1‖W 2,∞

) ∫
TN

(
(u1 − u2) · ∇x∂αx r1

)
∂αx
(
r1 − r2

)
+

1

2
divxu

2
∣∣∂αx (r1 − r2

)∣∣2 dx

+
γ − 1

2
ϕR
(
‖u1‖W 2,∞

) ∫
TN

(r1 − r2)divx∂
α
xu2∂αx

(
r1 − r2

)
dx

+
γ − 1

2
ϕR
(
‖u1‖W 2,∞

) ∫
TN

r1divx∂
α
x (u1 − u2)∂αx

(
r1 − r2

)
dx

where the last integral

ϕR
(
‖u1‖W 2,∞

) ∫
TN

r1divx
(
∂αx (u1 − u2)

)
∂αx (r1 − r2) dx

cancels, after by parts integration, with its counterpart in (3.17), namely

ϕR
(
‖u1‖W 2,∞

) ∫
TN

r1
(
∂αx (u1 − u2)

)
· ∇x∂αx (r1 − r2) dx.

Thus we deduce, exactly as in Subsection 3.2,

d
(∥∥r1 − r2

∥∥2

Wm,2 +
∥∥u1 − u2

∥∥2

Wm,2

)
≤ c(R)

1 +

2∑
j=1

(
‖rj‖2Wm+1,2 + ‖uj‖2Wm+2,2

)(∥∥r1 − r2
∥∥2

Wm,2 +
∥∥u1 − u2

∥∥2

Wm,2

) dt

+
[
ϕR
(
‖u1‖W 2,∞

)
∂αxF(r1,u1)− ϕR

(
‖u2‖W 2,∞

)
∂αxF(r2,u2)

]
· ∂αx (u1 − u2)dW,
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where m > N
2 + 2. Let us now set

G(t) = c(R)

1 +
2∑
j=1

(
‖rj(t)‖2Wm+1,2 + ‖uj(t)‖2Wm+2,2

)
and observe that if s ≥ m + 1 then the a priori estimates from Subsection 3.2 imply in
particular that G ∈ L1(0, T ) a.s. Applying the Itô formula to the product we therefore obtain

d
[
e−

∫ t
0 G(σ)dσ

(
‖r1 − r2‖2m,2 + ‖u1 − u2‖2m,2

)]
= −G(t)e−

∫ t
0 G(σ)dσ

(
‖r1 − r2‖2m,2 + ‖u1 − u2‖2m,2

)
dt

+ e−
∫ t
0 G(σ)dσd

(
‖r1 − r2‖2m,2 + ‖u1 − u2‖2m,2

)
≤ e−

∫ t
0 G(σ)dσ

[
ϕR
(
‖u1‖W 2,∞

)
∂αxF(r1,u1)− ϕR

(
‖u2‖W 2,∞

)
∂αxF(r2,u2)

]
· ∂αx (u1 − u2)dW (t).

Integrating over [0, t] and taking expectation we observe that the stochastic integral vanishes
due to the assumptions on r,u in Definition 3.1 and consequently we may infer that

E
[
e−

∫ t
0 G(σ)dσ

(∥∥r1(t)− r2(t)
∥∥2

Wm,2 +
∥∥u1(t)− u2(t)

∥∥2

Wm,2

)]
= 0

whenever
E
[∥∥r1

0 − r2
0

∥∥2

Wm,2 +
∥∥u1

0 − u2
0

∥∥2

Wm,2

]
= 0.

Since
e−

∫ t
0 G(σ)dσ > 0 P-a.s.

and the trajectories of ri,ui, i = 1, 2, are continuous in Wm,2(TN ), the pathwise uniqueness
from Theorem 3.3 follows.

3.6 Existence of a strong pathwise approximate solution

In order to complete the proof of Theorem 3.3, we make use of the Gyöngy–Krylov character-
ization of convergence in probability introduced in [13, Lemma 1.1]. It applies to situations
when pathwise uniqueness and existence of a martingale solution are valid and allows to
establish existence of a pathwise solution.

Lemma 3.9. Let (X , τ) be a Polish space and {Yn;n ∈ N} a family of random variables
ranging in X . Let

νm,n ≡ P [[Ym, Yn] ∈ B] , B a Borel set in X × X

be the collection of joint laws. Then Yn converges in probability only if any subsequence of
joint probability laws {νmk,nk}k≥0 contains a weakly converging subsequence to a ν such that

ν [(u, v) ∈ X × X , u = v] = 1.
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We start with a regular initial initial data corresponding to s > N
2 +3 required for pathwise

uniqueness of strong solutions to the approximate problem (2.11), (2.12). Going back to the
construction of approximate solution we denote by µm,n the joint law of

(rm,um, rn,un) on the space Xr ×Xu ×Xr ×Xu,

where rm, un, rn, un are the Galerkin solutions. In addition, denoting µW the law of W on
XW , we introduce the extended path space

X J = Xr ×Xu ×Xr ×Xu ×XW

and denote by νm,n the joint law of

(rm,um, rn,un,W ) on X J .

The following result follows easily from the arguments of Subsection 3.3.

Proposition 3.10. The collection {νm,n; m,n ∈ N} is tight on X J .

Let us take any subsequence {νmk,nk ; k ∈ N}. By the Skorokhod representation theorem,
we infer (for a further subsequence but without loss of generality we keep the same notation)
the existence of a probability space (Ω̄, F̄ , P̄) with a sequence of random variables

(r̂nk , ûnk , řmk , ǔmk , W̄k), k ∈ N,

converging almost surely in X J to a random variable

(r̂, û, ř, ǔ, W̄ )

and
P̄
(
(r̂nk , ûnk , řmk , ǔmk , W̄k) ∈ ·

)
= νnk,mk(·).

Observe that in particular, µnk,mk converges weakly to a measure µ defined by

µ(·) = P̄
(
(r̂, û, ř, ǔ) ∈ ·

)
.

As the next step, we recall the technique established in Subsection 3.4. Analogously, it can
be applied to both

(r̂nk , ûnk , W̄k), (r̂, û, W̄ )

and
(řmk , ǔmk , W̄k), (ř, ǔ, W̄ )

in order to show that (r̂, û, W̄ ) and (ř, ǔ, W̄ ) are strong martingale solutions to the approxi-
mate system (2.11)–(2.12). Finally, since rnk(0) = rmk(0) = r0, it follows that

P̄(r̂(0) = ř(0)) = 1.

Since unk(0) = Pnku0, umk(0) = Pmku0, we obtain for every ` ≤ nk ∧mk

P̄(P`ûnk(0) = P`ǔmk(0)) = P(P`unk(0) = P`umk(0)) = 1
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which leads to
P̄(û(0) = ǔ(0)) = 1.

Hence, in accordance with the pathwise uniqueness established in Theorem 3.3, we get the
desired conclusion

µ
(

(r1,u1, r2,u2); (r1,u1) = (r2,u2)
)

= P̄
(

(r̂, û) = (ř, ǔ)
)

= 1.

Thus, we have all in hand to apply Lemma 3.9, which implies that the original sequence
(rn,un) defined on the initial probability space (Ω,F,P) converges in probability in the topol-
ogy of Xr × Xu to a random variable (r,u). Without loss of generality, we assume that the
convergence is almost sure and again by the method from Subsection 3.4 we finally deduce that
the limit is the unique strong pathwise solution to the approximate problem (2.11)–(2.12).
Let us denote this solution by (rR,uR).

4 Proof of the main result, Theorem 2.7

Throughout the remainder of the paper, we go back to the original problem (1.1)–(1.4) and
prove Theorem 2.7. Our approach relies on the equivalence between (1.1)–(1.2) and (2.9)–
(2.10) which is valid provided the density remains strictly positive, cf. Subsection 2.4. In
addition, introducing suitable stopping times allows us to work with (2.11)–(2.12) instead of
(2.9)–(2.10) and therefore we may apply the results of the previous section, namely, Theorem
3.3. Nevertheless, there is an additional difficulty that originates in the fact that the initial
condition is not assumed to be integrable in ω and the initial density is not bounded from
below by a positive constant. Consequently, the a priori estimates from Subsection 3.2 are no
longer valid and the initial condition has to be truncated for Theorem 3.3 to be applicable.
For this reason, the proof of uniqueness as well as existence of a local strong pathwise solution
is divided into two steps. First, we consider an additional assumption the initial data so that
Theorem 3.3 applies. Second, we avoid this hypothesis.

4.1 Uniqueness

Let us first take an additional assumption that

%0 ∈ L∞(Ω;F0,P,W s,2(TN )), u0 ∈ L∞(Ω;F0,P,W s,2(TN ,RN )), %0 > % > 0 (4.1)

for some deterministic constant % > 0. In this case, the pathwise uniqueness of (1.1)–(1.4)
is a simple consequence of the pathwise uniqueness for (2.11)–(2.12) proved in Theorem 3.3.
To be more precise, let [%i,ui, (tiR), ti], i = 1, 2, be two maximal strong pathwise solutions to
(1.1)–(1.4) starting from [%0,u0] satisfying (4.1). Then[

ri :=

√
2aγ

γ − 1
(%i)

γ−1
2 ,ui

]
, i = 1, 2,

both solve (2.11)–(2.12) up to the stopping time t1R ∧ t2R and their initial conditions coincide.
Besides, the a priori estimates from Subsection 3.2 as well as the pathwise uniqueness from
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Subsection 3.5 apply up to the stopping time t1R ∧ t2R and we deduce that

P
(

[%1,u1](t ∧ t1R ∧ t2R) = [%2,u2](t ∧ t1R ∧ t2R), for all t ∈ [0, T ]
)

= 1.

Sending R→∞ implies by dominated convergence

P
(

[%1,u1](t ∧ t1 ∧ t2) = [%2,u2](t ∧ t1 ∧ t2), for all t ∈ [0, T ]
)

= 1.

As a consequence, the two solutions coincide up to the stopping time t1 ∧ t2 and due to
maximality of t1 as well as t2, it necessarily follows that t1 = t2 a.s. This completes the proof
of uniqueness under the additional assumption (4.1).

Let (%0,u0) satisfy the hypotheses of Theorem 2.7, define the set

ΩK =

{
ω ∈ Ω

∣∣∣ ‖u0(ω)‖s,2 < K, ‖r0(ω)‖s,2 < K, inf
TN

r0(ω) >
1

K

}
and note that Ω = ∪K∈RΩK . Therefore, since ΩK is F0-measurable, the a priori estimates
from Subsection 3.2 can be employed on ΩK to obtain

E
[
1ΩK

(
sup

t∈[0,T∧tiR]

∥∥(ri(t),ui(t))
∥∥2

s,2
+

∫ T∧tiR

0
‖ui(t)‖2s+1,2 dt

)p ]
. c(R, T, s,K). (4.2)

Accordingly, the method of pathwise uniqueness from Subsection 3.5 can be applied on ΩK

which yields

P
(
1ΩK [%1,u1](t ∧ t1R ∧ t2R) = 1ΩK [%2,u2](t ∧ t1R ∧ t2R), for all t ∈ [0, T ]

)
= 1

and since 1ΩK → 1Ω, tiR → ti, i = 1, 2, a.s., we may send R,K →∞ and apply the dominated
convergence theorem to deduce that

P
(

[%1,u1](t ∧ t1 ∧ t2) = [%2,u2](t ∧ t1 ∧ t2), for all t ∈ [0, T ]
)

= 1.

The uniqueness part of Theorem 2.7 is thus complete.

4.2 Existence of a local strong solution for bounded initial data

Finally, we have all in hand to go back to our original problem (1.1)–(1.4) and establish the
existence of a local strong pathwise solution with an a.s. strictly positive stopping time.
Let us first take the additional assumption (4.1). Having constructed strong solutions for
the approximate problem (2.11)–(2.12) in Subsection 3.6, which we denoted by (rR,uR), we
define

τR = inf
{
t ∈ [0, T ]

∣∣∣ ‖uR(t)‖2,∞ ≥ R
}

(with the convention inf ∅ = T ). Since uR has continuous trajectories in W s,2(TN ,RN ) which
is embedded into W 2,∞(TN ,RN ), τR is a well-defined stopping time. Moreover, due to (4.1),
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the stopping time τR is a.s. positive provided R is chosen large enough. Next, we recall that,
as stated in Theorem 3.3,

rR ≥ rR > 0 for a.e. (ω, t, x),

for some deterministic constant rR. Consequently, the density given by

% :=

(
γ − 1

2aγ

) 1
γ−1

r
2

γ−1

R ,

remains uniformly positive as well. Therefore, the unique solution (rR,uR) of the approxi-
mated system (2.11)–(2.12) with the initial condition(

r0 :=

√
2aγ

γ − 1
%0

γ−1
2 ,u0

)
generates a local strong pathwise solution(

% :=

(
γ − 1

2aγ

) 1
γ−1

r
2

γ−1

R , uR, τR

)

of the original problem (1.1)–(1.4) with the initial condition (%0,u0).

4.3 Existence of a local strong solution for general initial data

In order to relax the additional assumption upon the initial datum (4.1), consider again a
solution (rR,uR) of the approximate problem (2.11)–(2.12); now with a stopping time

τK = τ1
K ∧ τ2

K ∧ τ3
K ,

τ1
K = inf

{
t ∈ [0, T ]

∣∣∣ ‖uR(t)‖s,2 ≥ K
}

τ2
K = inf

{
t ∈ [0, T ]

∣∣∣ ‖rR(t)‖s,2 ≥ K
}

τ3
K = inf

{
t ∈ [0, T ]

∣∣∣ inf
TN

rR(t) ≤ 1

K

}
with K = K(R)→∞ as R→∞ and

K(R) < Rmin

{
1,

1

c1,∞
,

1

c2,∞

}
,

where c1,∞, c2,∞ are the constants in the embedding inequalities

‖r‖1,∞ ≤ c1,∞‖r‖s,2, ‖u‖2,∞ ≤ c2,∞‖u‖s,2.

The stopping time τK is chosen in such a way that on [0, τK)

sup
t∈[0,τK ]

‖uR(t)‖2,∞ < R, sup
t∈[0,τK ]

‖rR(t)‖1,∞ < R, inf
t∈[0,τK ]

inf
TN

rR(t) >
1

R
P-a.s.
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Next we observe that Theorem 3.3 can be used to construct solutions with the stopping
time τK for general initial data as in Theorem 2.7. Indeed let (r0,u0) be an F0-measurable
random variable taking values in W s,2(TN )×W s,2(TN ,RN ) such that r0 > 0 P-a.s. and define
the set

UK(R) =

{
[r,u] ∈W s,2(TN )×W s,2(TN ,RN )

∣∣∣ ‖r‖s,2 < K, ‖u‖s,2 < K, r >
1

K

}
.

Theorem 3.3 then provides a (unique) solution [rM , uM ] to (2.11)–(2.12) with R = M and
with the initial condition [r0,u0]1[r0,u0]∈{UK(M)\∪M−1

J=1 UK(J)}. It also solves the original system

(2.9), (2.10) up to the stopping time τK(M). Next, we find that

[r,u] =

∞∑
M=1

[rM ,uM ]1[r0,u0]∈{UK(M)\∪M−1
J=1 UK(J)}, (4.3)

solves the same problem with the initial data [r0,u0] up to the a.s. strictly positive stopping
time

τ =
∞∑

M=1

τK(M)1[r0,u0]∈{UK(M)\∪M−1
J=1 UK(J)}.

Note that in particular that [r,u] has a.s. continuous trajectories in W s,2(TN )×W s,2(TN ,RN )
and the velocity also belongs to L2(0, T ;W s+1,2(TN ,RN )) P-a.s. Indeed, there exists a disjoint
collection of sets ΩM ⊂ Ω, M ∈ N, satisfying ∪MΩM = Ω such that [r,u](ω) = [rM ,uM ](ω)
for a.e. ω ∈ ΩM . And due to Theorem 3.3, the trajectories of [rM ,uM ] are a.s. continuous in
W s,2(TN ) ×W s,2(TN ,RN ). On the other hand, we loose the integrability in ω as the initial
condition is only assumed to be in W s,2(TN ) ×W s,2(TN ,RN ) a.s. and no integrability in ω
is assumed. In particular, the estimate (3.1) is no longer valid for the solution (4.3).

To conclude, after the straightforward transformation to the original variables [%,u], we
obtain the existence of a local strong pathwise solution to problem (1.1)–(1.4) with a strictly
positive stopping time τ .

4.4 Existence of a maximal strong solution

In order to extend the solution (%,u) to a maximal time of existence t, let T denote the set
of all possible a.s. strictly positive stopping times corresponding to the solution starting from
the initial datum (%0,u0). According to the above proof, this set is nonempty. Moreover, it
is closed with respect to finite minimum and finite maximum operations. More precisely,

σ1, σ2 ∈ T ⇒ σ1 ∨ σ2 ∈ T ,

and
σ1, σ2 ∈ T ⇒ σ1 ∧ σ2 ∈ T ,

for any stopping time σ2. Let t = supσ∈T σ. Then we may choose an increasing sequence
(σM ) ⊂ T such that limM→∞ σM = t a.s. Let [%M ,uM ] be the corresponding sequence of
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solutions on [0, σM ]. Due to uniqueness, this sequence defines a solution (%,u) on ∪M [0, σM ]
by setting (%,u) := (%M ,uM ) on [0, σM ]. For each R ∈ N we now define

τR = t ∧ inf
{
t ∈ [0, T ]

∣∣∣ ‖u(t)‖2,∞ ≥ R
}
.

Then (%,u) is a solution on [0, σM ∧ τR] and sending M → ∞ we obtain that (%,u) is a
solution on [0, τR]. Note that τR is not a.s. strictly positive unless ‖u0‖2,∞ < R. Nevertheless,
since u0 ∈ W s,2(TN ,RN ) a.s. we may deduce that for almost every ω there exists R = R(ω)
such that tR(ω)(ω) > 0. To guarantee the strict positivity, we combine the two sequences of
stopping times (σR) and (τR) and define tR = σR ∨ τR. Then each triplet (%,u, tR), R ∈ N, is
a local strong pathwise solution with an a.s. strictly positive stopping time. Next, we observe
that, by repeating the construction of a local strong pathwise solution, a solution on [0, tR]
can be extended to a solution on [0, tR+σ] for an a.s. strictly positive stopping time σ. Thus,
in order to show that tR < t on [t < T ], assume for a contradiction that P(tR = t < T ) > 0.
Then we have tR + σ ∈ T and hence P(t < tR + σ) > 0 which contradicts the maximality of
t. Consequently, (tR) is an increasing sequence of stopping times converging to t. Moreover,
on the set [t < T ] we have that

sup
t∈[0,tR]

‖u(t)‖2,∞ ≥ R.

Thus, the existence part of Theorem 2.7 is complete.
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