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Abstract

We study a damped wave equation with nonlinear damping in the locally uniform spaces
and prove well-posedness of the equation and existence of a locally compact attractor. An up-
per bound on the Kolmogorov’s ε-entropy is also established using the method of trajectories.

1 Introduction

We study the semilinear damped wave equation

utt + g(ut)−∆u+ αu+ f(u) = h, t > 0, x ∈ Rd, (1.1)

where f and g are nonlinear continuous functions described in more detail in Section 3, with
initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rd. (1.2)

We focus on proving the well-posedness of the problem in the context of locally uniform
spaces, the existence of a locally compact attractor and mainly on establishing an upper
bound on the Kolmogorov’s ε-entropy. We use the method of trajectories introduced in [15],
which has been previously used in a similar context for showing the finite dimensionality of
the global attractor of (1.1) in bounded domains in [16]. However, the approach applied to
the bounded domain problem cannot be used directly due to a different nature of embeddings
in weighted spaces and requires a slightly different technique. To this end, we introduce a
hyperbolic variant of locally uniform spaces which seems suitable for equations with a finite
speed of propagation. Also as usual in locally uniform spaces, the problem has an inherent non-
compactness and non-separability. In order to obtain the dissipation of energy, we formulate
additional assumptions that allow for the nonlinearities in the equation to be superlinear.
One could expect that a suitable control of dispersion could yield dissipative estimates under
weak growth restrictions on the nonlinearities.

This equation has been intensely studied in the setting of bounded domains. The existence
of a global attractor with supercritical nonlinearities has been shown in [8] and for critical
nonlinearities [18] with less restrictive conditions on the damping. The finite dimensionality
has been discussed in [16] and has been achieved even for critical nonlinearities in [4] and [11].

In the context of locally uniform spaces, a linearly damped wave equation has been studied
in [7] and [20]. In [20] the author has also established an upper bound on the Kolmogorov’s
ε-entropy of the locally compact attractor. Some results, including well-posedness and the
existence of a locally compact attractor, have also been shown for a strongly damped wave
equation in [19] and recently for a wave equation with fractional damping in [17]. To the best
of our knowledge, nonlinear damping in this setting has not yet been studied.

The paper is organized as follows: In Section 2 we review the locally uniform spaces. In
Section 3, the well-posedness of the equation (1.1) is established. In Section 4, we discuss
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additional assumptions that lead to dissipative estimates. In Section 5, we introduce the
trajectory setting and prove a local variant of squeezing property, which is used in Section
6 to establish the existence of the locally compact attractor and an upper bound on its
Kolmogorov’s ε-entropy .

2 Function spaces

In this section we review the basic facts about weighted Sobolev spaces and locally uniform
spaces. These spaces and their relation have been studied in [21] and [2].

By an admissible weight function of growth rate ν ≤ 0 we understand φ : Rd → (0,+∞)
measurable and bounded satisfying

C−1
φ e−ν|x−y| ≤ φ(x)/φ(y) ≤ Cφeν|x−y| (2.1)

for some Cφ ≥ 1 and every x, y ∈ Rd.
For x̄ ∈ Rd and ε > 0 we define the weight function φx̄,ε with center in x̄ and decay rate ε

by
φx̄,ε(x) = e−ε|x−x̄|. (2.2)

Then clearly for every multiindex α there exists Cα > 0 such that

|Dαφx̄,ε| ≤ Cαε|α|φx̄,ε. (2.3)

We emphasize that, thanks to [2, Proposition 4.1], the particular choice of the weight function
(2.2) does not play any role in the definition of the locally uniform spaces below as long as a
certain decay properties are met. Also note that by the above definition, φx̄,ε is an admissible
weight function with growth ε.

For p ∈ [1,∞) we define the weighted Lebesgue space Lpx̄,ε(Rd) by

Lpx̄,ε(R
d) = {u ∈ Lploc(R

d); ‖u‖Lpx̄,ε(Rd) :=

(∫
Rd
|u|pφx̄,ε dx

)1/p

<∞}.

In the special case p = 2 we use the notation

‖u‖x̄,ε ≡ ‖u‖L2
x̄,ε(Rd).

We denote the scalar product on L2
x̄,ε(Rd) by (·, ·)x̄,ε. The scalar product on L2(Rd) will be

denoted by (·, ·).
Clearly the embedding

Lpx̄,ε1(Rd) ↪→ Lpx̄,ε2(Rd) (2.4)

holds for ε1 ≤ ε2.
The weighted Sobolev spaces are defined in an obvious manner and allow the continuous

embedding
W k,p
x̄,ε (Rd) ↪→W l,q

x̄,ε̃(R
d)

with k ≥ l and q ≥ p such that W k,p(Rd) ↪→ W l,q(Rd) and ε̃ = εq/p. We stress out that the
embedding

W 1,p
x̄,ε (Rd) ↪→ Lqx̄,ε(R

d)

does not hold for any q > p.
The weighted spaces also allow certain compact embeddings. More precisely, let k ≥ l and

q ≥ p be such that W k,p(B(0, 1)) ↪→↪→W l,q(B(0, 1)). Then we have the compact embedding

W k,p
x̄,ε (Rd) ↪→↪→W l,q

x̄,ε̃(R
d)

with ε̃ > εp/q, which gives that for example the embedding

{u ∈ L∞(0, T0;W 1,2
x̄,ε (Rd)), ut ∈ L∞(0, T0;L2

x̄,ε̃(Rd))} ↪→↪→ Lm(0, T0;Lsx̄,ε̃(Rd)), (2.5)

where 1 < m <∞ and 1 ≤ s < 2d/(d− 2), is compact, and continuous for s = 2d/(d− 2).
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Let Ck denote a closed unit cube in Rd centered at xk ∈ (Z/2)d, i.e.

Ck =

d∏
i=1

[xk,i − 1/2, xk,i + 1/2], k ∈ N.

The weighted locally uniform Lebesgue space Lpb,φ for p ∈ [1,∞) and an admissible weight
function φ is defined by

Lpb,φ(Rd) = {u ∈ Lploc(R
d); ‖u‖Lp

b,φ
(Rd) = sup

k∈N
φ1/p(xk)‖u‖Lp(Ck) <∞}.

If φ ≡ 1, we omit the subscript and write for example L2
b instead of L2

b,φ. For p = 2 we
use a simplified notation

‖u‖b,φ ≡ ‖u‖L2
b,φ

(Rd).

The spaces Lpb,φ(Rd) are neither separable nor reflexive.
Locally uniform Sobolev spaces are again constructed in a straightforward manner. The

standard embeddings holding on bounded domains also hold for locally uniform spaces, namely

W 1,2
b (Rd) ↪→ L

2d/(d−2)
b (Rd). (2.6)

However, none of these embeddings is compact.
The weighted Lebesgue spaces and the locally uniform spaces are connected through the

equivalence of the locally uniform norm. The following lemma is standard and the proof can
be found e.g. in [2] or [9].

Lemma 2.1. Let ε > 0, 1 ≤ p <∞, k ∈ N0 and let φ be an admissible weight function with
growth ν < ε. Then u ∈W k,p

b,φ (Rd) if and only if

sup
x̄∈Rd

φ(x̄)‖u‖p
W
k,p
x̄,ε (Rd)

<∞.

Moreover, the norm
‖u‖p

W̃
k,p
b,φ

(Rd)
:= sup

x̄∈Rd
φ(x̄)‖u‖p

W
k,p
x̄,ε (Rd)

is equivalent with the original W k,p
b,φ (Rd)norm.

Finally we define so-called parabolic locally uniform space Lpb(0, T ;Lp(Rd)) by

Lp(0, T ;Lp(Rd)) = {u : (0, T )× Rd → R; ‖u‖Lp
b
(0,T ;Lp) := sup

k∈N
‖u‖Lp(0,T ;Lp(Ck)) <∞}.

These spaces and their weighted variants have been studied in [9].

3 Well-posedness for locally uniform data

In this section we prove the existence and uniqueness of weak solutions of (1.1) for infinite
energy data. We will make use of the following energy spaces which arise in the case of (1.1)
in unbounded domains

Φx̄,ε = W 1,2
x̄,ε (Ω)× L2

x̄,ε(Rd), Φb = W 1,2
b (Rd)× L2

b(Rd), Φloc = W 1,2
loc (Rd)× L2

loc(Rd).

We consider Φb as the phase space for the asymptotic analysis. However, it is well known
that the locally uniform spaces are not separable, hence there are problems with attaining
the initial conditions and approximating less regular data. There are at least two ways how
to overcome this inconvenience. The first one is to consider Sobolev spaces with the weight
functions like φx̄,ε with better properties. The second way is to use a phase space which is
defined as closure of smooth functions in ‖ · ‖Φb (such approach was considered e.g. in [14]).
Both settings combined with the finite speed of propagation property of wave equations lead
to the uniqueness and existence result. We have chosen the second approach.

Let us denote Lploc(I;W k,p
loc (Ω)) the set of measurable functions u on I × Ω such that for

any compact J ⊆ I and K ⊆ Ω we have u ∈ Lp(J ;W k,p(K)). Particularly, u ∈ L∞loc(0,∞;X)
means that u is strongly (Bochner) measurable in (0,∞) and u ∈ L∞loc(0, T ;X) for any T > 0.
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We impose the following requirements on the nonlinearities of studied equation:

f ∈ C1(R), (F1)

∀r ∈ R : |f ′(r)| ≤ γ1(|r|p−1 + 1), (F2)

f ′ ≥ −β, (F3)

lim inf
|r|→∞

f(r)/r ≥ 0, (F4)

g ∈ C1(R), g(0) = 0, g′ > 0, (G1)

lim inf
|z|→∞

g′(z) > 0, (G2)

∀r ∈ R :

γ2|r|µ+1 − γ3 ≤ g(r)r ≤ γ4(|r|µ+1 + 1),
(G3)

where γj , β > 0. In what follows, we consider the following set of parameters:

p ∈
(

0,
2∗

2

]
for d > 2, p ∈ (0,∞) for d = 2, µ ∈ [1,∞). (3.1)

The assumptions (F1), (F3) and (F4) allow us to find a decomposition f(s) = f1(s)+f2(s)
such that f1, f2 ∈ C1(R) satisfy

f1(r)r ≥ 0, f1(0) = 0, |f ′1| ≥ −β,

f ′1(r) ≤ γ1

(
|r|p−1 + 1

)
, |f2(r)|+ |f ′2(r)| ≤ γ5,

where γ5 > 0 depends on the function f .
Also from (G1) and (G2) we observe that for every δ > 0 the estimate

|u− v|2 ≤ δ + c(δ) (g(u)− g(v)) (u− v) (3.2)

holds for every u, v ∈ R (cf. [10, Lemma 1] or [8]) .
We use the notation

E[u](t) =
1

2

(
|∂tu(t)|2 + |∇u(t)|2 + α|u(t)|2

)
,

F [u](t) = E[u](t, x) + F (u(t)),

where

F (r) = F1(r) + F2(r) =

∫ r

0

f1(s) ds+

∫ r

0

f2(s) ds.

Also note that

F1(r) =

∫ r

0

f1(s) + βs ds− β

2
r2 ≤ f1(r)(r) +

β

2
r2. (3.3)

Definition. Let u0, u1 ∈ Φb and h ∈ L2
b(0,∞;L2). We call u : [0,∞) × Rd → R a weak

solution of (1.1) if for every ε > 0 and x̄ ∈ Rd we have

(u, ut) ∈ C([0,∞),Φx̄,ε), ut ∈ Lµ+1
loc (0,∞;Lµ+1

x̄,ε (Rd)),

u(0) = u0, ut(0) = u1, ‖u‖2
W

1,2
b

(Rd)
+ ‖ut‖2L2

b
(Rd) ∈ L

∞
loc((0,∞)) (3.4)

and the equality

−
∫ ∞

0

(ut(t), ψt(t, ·)) dt+

∫ ∞
0

(∇u(t),∇ψ(t, ·)) dt+

∫ ∞
0

(αu(t), ψ(t, ·)) dt

+

∫ ∞
0

(g(ut(t)), ψ(t, ·)) dt+

∫ ∞
0

(f(u(t)), ψ(t, ·)) dt =

∫ ∞
0

(h(t), ψ(t, ·)) dt (3.5)

holds for every test function ψ ∈ D((0,∞)×Rd) (or equivalently for every Lipschitz compactly
supported function ψ).

The equality (3.5) has an equivalent version closely connected to the energy space Φε,x̄.
By using ψφε,x̄ with ψ ∈ D((0,∞)× Rd) as a test function in (3.5), we obtain

−
∫ T

0

(
u′(t), ∂tψ(t, ·)

)
x̄,ε
dt+

∫ T

0

(
∇u(t),∇ψ(t, ·)

)
x̄,ε
dt+

∫ T

0

(
αu(t), ψ(t, ·)

)
x̄,ε
dt

+

∫ T

0

(
g(ut(t)), ψ(t, ·)

)
x̄,ε
dt+

∫ T

0

(
f(u(t)), ψ(t, ·)

)
x̄,ε
dt

=

∫ T

0

(
h(t), ψ(t, ·)

)
x̄,ε
dt−

∫ T

0

(
∇u(t), ψ(t, ·)∇φx̄,ε

)
dt.

(3.6)
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By a standard density argument, the equality (3.6) holds also for any function ψθ where
θ = θ(t) is a smooth function compactly supported in (0,∞) and

ψ ∈ L∞loc(0,∞;W 1,2
x̄,ε (Ω)) ∩W 1,2

loc (0,∞;L2
x̄,ε(Rd)) ∩ Lµ+1

loc (0,∞;Lµ+1
x̄,ε (Rd)).

Moreover, if
ψ ∈ C([0,∞);W 1,2

x̄,ε (Ω)) ∩ Lµ+1
loc (0,∞;Lµ+1

x̄,ε (Rd)) (3.7)

then

−
∫ T

0

(
u′(t), ∂tψ(t, ·)

)
x̄,ε
dt+

(
u′(T ), ψ(T, ·)

)
x̄,ε
−
(
u′(0), ψ(0, ·)

)
x̄,ε

+

∫ T

0

(
∇u(t),∇ψ(t, ·)

)
x̄,ε
dt+

∫ T

0

(
g(ut(t)), ψ(t, ·)

)
x̄,ε
dt

+

∫ T

0

(
αu(t), ψ(t, ·)

)
x̄,ε
dt+

∫ T

0

(
f(u(t)), ψ(t, ·)

)
x̄,ε
dt

=

∫ T

0

(
h(t), ψ(t, ·)

)
x̄,ε
dt−

∫ T

0

(
∇u(t), ψ(t, ·)∇φx̄,ε

)
dt.

(3.8)

is satisfied for every T ∈ (0,∞). To this end, we test (3.6) by ψθn with

θ′n(t) = nη

(
n

(
t− 1

n

))
χ(0, 2

n ) − nη
(
n

(
t− T +

1

n

))
χ(T− 2

n
,T), θn(0) = 0

where η is the standard non-negative mollifier compactly supported in (−1,1) and χI denotes
the characteristic function of I ⊂ R. Observe that θ′ ⇀∗ δ0 − δT in the space of Radon
measures on [0,T ] and θ → 1 in Ls([0,T ]) for all s ∈ [1,∞). Hence, we conclude (3.8) by
letting n → ∞ and using the continuity of ψ with respect to time. The weak formulation is
therefore equivalent to (3.8) with test functions (3.7).

The lack of regularity of ut with respect to the space variables prevents us from using it
as a test function in (3.8). On the other hand, one can test the weak formulation (3.8) by the
time difference

Dτu(t,x) =
u(t+ τ,x)− u(t− τ,x)

2τ

where we take u(s,x) = u(0,x) for s < 0. Indeed, as u ∈ AC([0,∞),L2
x̄,ε) we have for a fixed

t ∈ (0,∞)∥∥∥∥u(t+ τ,x)− u(t,x)

τ

∥∥∥∥µ+1

L
µ+1
x̄,ε

=

∥∥∥∥ 1

τ

(∫ t+τ

t

u′(s) ds

)∥∥∥∥µ+1

L
µ+1
x̄,ε

≤ 1

τ

∫ t+τ

t

∥∥u′(s)∥∥µ+1

L
µ+1
x̄,ε

ds,

thus Dτu ∈ Lµ+1
loc

(
0,∞;Lµ+1

x̄,ε

)
. In the rest of the paper, with an obvious abuse of terminology,

we will use the phrase ”testing by ut” instead of taking the time differences as test functions
and sending τ → 0+. For more details see e.g. [12].

Theorem 3.1. For every (u0, u1) ∈ Φb and h ∈ L2
b(0,∞;L2) there exists a unique weak

solution of (1.1) which satisfies the energy equality∫
Rd
F [u](t2)φx̄,ε dx−

∫
Rd
F [u](t1)φx̄,ε dx

+

∫ t2

t1

(
g(ut), ut

)
x̄,ε
dt+

∫ t2

t1

(
∇u, ut∇φx̄,ε

)
=

∫ t2

t1

(
h(t), ut

)
x̄,ε
dt (3.9)

for every 0 ≤ t1 < t2 <∞, x̄ ∈ Rd and ε > 0.

We remark that both existence and uniqueness of solutions can be shown even in the
so-called super-critical case, particularly when

µ ∈ [1,∞), p ∈
(

2∗

2
,2∗ − 1

)
, p ≤ 2∗µ

µ+ 1
, f ∈ C2(R), |f ′′(r)| ≤ γ1(|r|p−2 + 1). (3.10)

The existence part remains unchanged. Uniqueness follows by combination of the approach
presented in [3] for bounded domains with the localisation technique developed in [1, Sec-
tion 7].
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As usual in the context of locally uniform spaces, one cannot expect the strong time
continuity of solutions in the phase space Φb. Taking d = 1, one can check that

u(t,x) = e−t/2θ(x− t)

with

θ(x) =

∫ x

0

∞∑
n=1

(−1)n+1nχn,n+ 1
n2

(y) dy

is a weak solution of

utt − uxx + ut +
1

4
u = 0,

(u(0,x),ut(0,x)) =

(
θ(x),

θ

2
(x)− θ′(x)

)
∈ Φb.

However,

‖u(t1)− u(t2)‖
W

1,2
b
≥ 1

2e
,

holds for all t1, t2 ∈ (0,δ), t1 6= t2, provided δ > 0 is small enough. Hence, u : [0,δ) → W 1,2
b

is not continuous as the range of u is not separable. Moreover, the function u is not strongly
(Bochner) measurable.

Proof of Theorem 3.1. Assume that ε > 0 and x̄ are given. It is sufficient to show existence
of solutions on (0,T ) for fixed T ∈ (0,∞) independent on the initial data together with time
continuity, particularly (u,ut) ∈ C([0,T ]; Φx̄,ε). The existence of global solutions then follows
from a continuation argument.

Step 1 - approximations and solutions on bounded domains. We approximate the
nonlinear term f by Lipschitz functions and the initial data by compactly supported data.
Let {fk}k be a sequence of functions such that for every k ∈ N the function fk ∈ C1(R)
is globally Lipschitz, satisfies (F1)-(F4), fk → f pointwise, fk(t) = f(t) for t ∈ (−k,k) and
|fk| ≤ |f |.

For k ∈ N, we define function

φk(x) =


1 for x ∈ B(0,k),

k + 1− |x| for x ∈ B(0,k + 1)\B(0,k),

0 for x ∈ B(0,k + 1)c.

(3.11)

Let uk0 = ηk ∗ (u0φ
k), uk1 = ηk ∗ (u1φ

k), hk = ηk ∗ (hφk) where ηk = kdη(k|x|) and η is the
standard mollifier. We get

(uk0 ,u
k
1)→ (u0,u1) in Φx̄,ε, ‖(uk0 ,uk1)‖Φx̄,ε ≤ ‖(u0,u1)‖Φx̄,ε (3.12)

hk → h in L2((0,T );L2
x̄,ε), ‖hk‖L2

x̄,ε
≤ ‖h‖L2

x̄,ε
(3.13)

as a direct consequence of approximation by mollifiers and decay of φx̄,ε.
Existence and uniqueness of strong solutions on bounded domains is a well known result

(see e.g. [13]). The finite speed of propagation holds as the source term fk is Lipschitz. Hence,
for every k ∈ N we can construct

uk ∈W 1,2
loc ([0,∞);L2(Rd)) ∩ L2

loc([0,∞);W 2,2(Rd)), ut ∈ Lµ+1
loc ([0,∞);Lµ+1(Rd))

which is a global strong solution (the equation (3.14) is satisfied almost everywhere in (0,T )×
Rd) of

uktt + g(ukt )−∆uk + αuk + fk(u) = hk, t > 0, x ∈ Rd (3.14)

satisfying the initial conditions

uk(0, x) = uk0(x), ukt (0, x) = uk1(x), x ∈ Rd.

Moreover, uk(t,·) is compactly supported for any t ∈ [0,∞) and (uk,ukt ) ∈ C([0,T ];W 1,2(Rd)×
L2(Rd)) ↪→ C([0,T ]; Φx̄,ε).

6
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Step 2 - uniform estimates in weighted Lebesgue spaces. Let us multiply both
sides of (3.14) by ukt φx̄,ε and integrate the resulting equality w.r.t. x over Rd. We get

d

dt

∫
Rd

(
E[uk] + F k(uk)

)
φx̄,ε dx+

∫
Rd
g(ukt )ukt φx̄,ε dx

=

∫
Rd
hkukt φx̄,ε dx+

∫
Rd
∇ukukt∇φx̄,ε dx ≤

∫
Rd
E[uk]φx̄,ε dx+

1

2

∫
Rd
|hk|2φx̄,ε dx,

where F k is the primitive function of fk such that F k(0) = 0. From the Gronwall lemma and
condition (G3), we obtain

‖uk(τ)‖2
W

1,2
x̄,ε

+ ‖ukt (τ)‖2L2
x̄,ε

+ γ2

∫ τ

0

‖ukt (t)‖µ+1

L
µ+1
x̄,ε

dt ≤ eτ
(
‖uk(0)‖2

W
1,2
x̄,ε

+ ‖ukt (0)‖2L2
x̄,ε

+ ‖F k(uk(0))‖L1
x̄,ε

+

∫ τ

0

1

2
‖hk(t)‖2L2

x̄,ε
dt+ τ

∫
Rd
γ3φx̄,ε dx

)
(3.15)

for arbitrary τ ∈ (0,T ). Therefore,

sup
τ∈(0,T )

(
‖uk(τ)‖2

W
1,2
x̄,ε

+ ‖ukt (τ)‖2L2
x̄,ε

)
+

∫ T

0

‖ukt (t)‖µ+1

L
µ+1
x̄,ε

dt ≤ C

for some C > 0 depending only on u0, u1, h and T . Applying the basic weak compactness
arguments and (2.5), there is a subsequence of {uk}n∈N (not relabelled) and measurable
functions u, f̄ , ḡ such that

(uk,ukt ) ⇀∗ (u,ut) in L∞((0,T ); Φx̄,ε),

ukt ⇀
∗ ut in Lµ+1((0,T );Lµ+1

x̄,ε ),

uk ⇀∗ u in L∞
(

(0,T );L2∗

x̄, 2
∗
p
ε

)
,

fk(uk) ⇀∗ f̄ in L∞
(

(0,T );L
2∗
p

x̄, 2
∗
p
ε

)
, (3.16)

g(uk) ⇀ ḡ in L(µ+1)/µ
(

(0,T );L
(µ+1)/µ
x̄,ε

)
, (3.17)

uk → u almost everywhere in (0,T )× Rd. (3.18)

Using supremum over x̄ ∈ Rd on both sides of (3.15) gives us (cf. Lemma 2.1)

sup
t∈(0,T )

(
‖uk(t)‖2

W
1,2
b

+ ‖ukt (t)‖2L2
b

)
+ sup
x̄∈Rd

∫ T

0

‖ukt (t)‖µ+1

L
µ+1
x̄,ε

dt ≤ C (3.19)

where C > 0 depends only on ‖(u0,u1)‖Φb , ‖h‖L2
b
(0,∞;L2) and T > 0. Thus, using (3.18),

(3.16) and assumptions on fk together with the embedding

W 1,2
b ↪→ L2∗

b ↪→ L2∗
x̄,ε,

we have fk(uk) uniformly bounded in L∞
(

(0,T );L
2∗
p
x̄,ε

)
, therefore

fk(uk)→ f(u) in Lr
(
(0,T );Lqx̄,ε

)
(3.20)

for any q ∈
[
1, 2

∗

p

)
and r ∈ [1,∞), hence f̄ = f(u).

Step 3 - stability in C([0,T ]; Φx̄,ε) and existence. Let us subtract the equation for ul

from the equation for uk, multiply the difference by (ukt − ult)φx̄,ε and integrate over Rd with
respect to x. Using the monotonicity of g and standard estimates, we obtain

‖uk(τ)− ul(τ)‖2
W

1,2
x̄,ε

+ ‖ukt (τ)− ult(τ)‖2L2
x̄,ε
≤ ‖uk(0)− ul(0)‖2

W
1,2
x̄,ε

+ ‖ukt (0)− ult(0)‖2L2
x̄,ε

+ ‖fk(uk)− f l(ul)‖
L(µ+1)/µ

(
(0,τ);L

(µ+1)/µ
x̄,ε

)‖ukt − vlt‖Lµ+1((0,τ);L
µ+1
x̄,ε )

+ ‖hk − hl‖2
L2((0,τ);L2

x̄,ε)
+ C

∫ τ

0

(
‖uk(t)− ul(t)‖2

W
1,2
x̄,ε

+ ‖ukt (t)− ult(t)‖2L2
x̄,ε

)
dt.

7
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for every τ ∈ (0,T ). From the Gronwall lemma, we infer that

sup
τ∈(0,T )

‖uk(τ)− ul(τ)‖2
W

1,2
x̄,ε

+ ‖ukt (τ)− ult(τ)‖2L2
x̄,ε

≤ C(T )
(
‖uk(0)− ul(0)‖2

W
1,2
x̄,ε

+ ‖ukt (0)− ult(0)‖2L2
x̄,ε

)
+ C(T )‖fk(uk)− f l(ul)‖

L(µ+1)/µ
(
(0,τ);L

(µ+1)/µ
x̄,ε

)‖ukt − vlt‖Lµ+1((0,τ);L
µ+1
x̄,ε ). (3.21)

Observe that (3.21) together with (3.12), (3.13), (3.17) and (3.20) gives

(uk,ukt )→ (u,ut) in C([0,T ]; Φx̄,ε). (3.22)

Finally, we conclude that ukt → ut almost everywhere in (0,T ) × Rd which in combination
with (3.17) implies that ḡ = g(ut). Summing up the results on convergence given above and
noting that uk satisfies (3.5), we can pass to the limit in (3.8).

The energy equality (3.9) holds for uk and using the convergence results above, in par-
ticular (3.22), it follows that it holds also for u. The relation (3.4) follows from Gronwall’s
lemma and taking supremum over x̄ ∈ Rd (see also estimates leading to (3.19)).

Step 4 - uniqueness of weak solutions. Let us test the weak formulation for u and v
by (u−v)t keeping in mind that actually we test by Dτ [u−v] and sending τ → 0. Subtracting
both equalities. we obtain the energy equality in the following form:∫

Rd
E(u(τ)− v(τ))φx̄,ε dx+

∫ τ

0

∫
Rd

(f(u)− f(v)) (ut − vt)φx̄,ε dx dt

+

∫ τ

0

∫
Rd

(g(ut)− g(vt)) (ut − vt)φx̄,ε dx dt =

∫ τ

0

∫
Rd

(∇u−∇v)) (ut − vt)∇φx̄,ε dx dt

for any τ ∈ (0,T ). Using assumptions (F2) with p < 2∗/2,(G1) and (3.4), we get∫
Rd
E(u(τ)− v(τ))φx̄,ε dx ≤ C

∫ τ

0

∫
Rd
E(u(t)− v(t))φx̄,ε dx dt. (3.23)

Hence, u(t) = v(t) ∈ Φx̄,ε almost everywhere in [0,T ] as a consequence of Gronwall’s lemma.

Theorem 3.2. The solution operator S(T ) : Φb → Φb defined by

S(T )(u0, u1) = (u(T ), ut(T ))

where (u(T ), ut(T )) is the weak solution of (1.1) with (u(0), ut(0)) = (u0, u1), is locally Lips-
chitz. Moreover, if B ⊆ Φb is bounded, then S(T ) : (B, ‖·‖Φx̄,ε)→ (Φb, ‖·‖Φx̄,ε) is Lipschitz.

Proof. Assume that (u0,u1), (v0,v1) ∈ B. Following the same line as in the proof of uniqueness,
we obtain (3.23). Standard application of Gronwall’s lemma gives

‖(u− v)(T )‖Φx̄,ε ≤ C(T,B)‖(u− v)(0)‖Φx̄,ε . (3.24)

Finally, applying supremum over x̄ ∈ Rd on both sides of (3.24), from Lemma 2.1 we infer

‖(u− v)(T )‖Φb ≤ C̃(T,B)‖(u− v)(0)‖Φb .

4 Dissipation of energy

In contrast to the bounded domain case, the energy of the solutions does not necessarily
decrease over time. This may be attributed to the last element in (3.6) and the absence of
the embeddings between the weighted spaces of the same weight. Thus, it seems that an
additional assumption has to be made in order to show any dissipation of energy. As we
will see below, we can either have linearly bounded g and possibly superlinear function f ,
or we can ensure the dissipation by connecting the growths of the functions f and g. By a
dissipation assumption, we understand one of the following:

(D1) µ = 1,

8
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(D2) µ ∈ (1, (d+ 2)/(d− 2)) and there exists κ ∈ (0, 1) and C > 0 such that

g(r)s ≤ κf(s)s+ C (g(r)r + 1) ∀r, s ∈ R.

The assumption (D1), i.e. linearly bounded damping, is well studied in the case of the
bounded domain. The assumption (D2) is a variant of an assumption from [5] and allows for
example the use of the functions

g(r) = r|r|µ−1, f(s) = |s|p−1s− as, where µ ∈ [1, 3) and p ∈ [µ, 3) (4.1)

with d = 3 and 0 < a < α.
We emphasize that the upper entropy bound established the last section does not depend

on the particular choice of the dissipation condition.
In the rest of this section we will also assume that for every ε > 0 there exists Ch =

Ch(ε) > 0 such that

sup
x̄∈Rd

∫ t2

t1

‖h(t)‖2L2
x̄,ε

dt ≤ Ch(t2 − t1) (4.2)

holds for all 0 ≤ t1 < t2. The estimate (4.2) automatically satisfied in an autonomous case
discussed in the following sections.

Lemma 4.1. Let (4.2) and either of the conditions (D1), (D2) hold. Then there exist ε, ζ >
0, C0, C1 > 0 such that for every weak solution (u(t), u′(t)) with initial condition (u0, u1) ∈ B
the estimate ∫

Rd
F [u](T )φx̄,ε dx ≤ C1e

−ζT
∫
Rd
F [u](0)φx̄,ε dx+ C0 (4.3)

holds for all T > 0.

Proof. Let T > 0 and t1, t2 ∈ [0, T ], t1 < t2. We test the equation by ut + δu, where δ > 0
will be determined later. We obtain the equality∫

Rd
F [u](t2)φx̄,ε dx+ δ

(
ut(t2), u(t2)

)
x̄,ε
−
∫
Rd
F [u](t1)φx̄,ε dx− δ

(
ut(t1), u(t1)

)
x̄,ε

+

∫ t2

t1

(
g(ut(t)), ut(t)

)
x̄,ε
dt− δ

∫ t2

t1

‖ut(t)‖2x̄,ε dt+ δ

∫ t2

t1

(
f1(u(t)), u(t)

)
x̄,ε
dt

+ δ

∫ t2

t1

‖∇u(t)‖2x̄,ε + α‖u(t)‖2x̄,ε dt =

∫ t2

t1

(
h(t)− f2(u(t)), ut(t) + δu(t)

)
x̄,ε
dt

− δ
∫ t2

t1

(
g(ut(t)), u(t)

)
x̄,ε
dt−

∫ t2

t1

(
∇u(t), (ut(t) + δu(t))∇φx̄,ε

)
dt. (4.4)

For δ1 ∈ (0, 1), we use (3.3) to get∫ t2

t1

(
f1(u(t)), u(t)

)
x̄,ε
dt ≥ δ1

∫ t2

t1

∫
Rd
F1(u(t))φx̄,ε dx dt−

δ1β

2

∫ t2

t1

‖u(t)‖2x̄,ε dt. (4.5)

Also for δ2 > 0, by (4.2) we have∫ t2

t1

(
h−f2(u(t)), ut(t) + δu(t)

)
x̄,ε
dt ≤ 1

δ2
(t2− t1)

(
Ch + γ2

5Cε
)

+ δ2

∫ t2

t1

‖ut(t)‖2x̄,ε dt. (4.6)

Other elementary estimates and (2.3) give∫ t2

t1

(
∇u(t), (ut(t) + δu(t))∇φx̄,ε

)
dt

≤ Cε
∫ t2

t1

‖∇u(t)‖2x̄,ε + ‖ut(t)‖2x̄,ε + δ2‖u(t)‖2x̄,ε dt (4.7)

and

− δδ3
∫ t2

t1

(
ut(t), u(t)

)
x̄,ε
dt ≥ −δδ3

2

(∫ t2

t1

‖ut(t)‖2x̄,ε dt+

∫ t2

t1

‖u‖2x̄,ε dt
)
. (4.8)
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Assume that (D1) holds. From (G3) we obtain∫ t2

t1

(
g(ut(t)), ut(t)

)
x̄,ε
dt ≥ γ2

∫ t2

t1

‖ut(t)‖2x̄,ε dt− γ3(t2 − t1)Cε, (4.9)

and

− δ
∫ t2

t1

(
g(ut(t)), u(t)

)
x̄,ε
dt

≤ γ2
4δ

α

∫ t2

t1

‖ut(t)‖2x̄,ε dt+
δα

2

∫ t2

t1

‖u(t)‖2x̄,ε dt+
γ2

4δ

α
Cε(t2 − t1). (4.10)

The assertion the follows by inserting the estimates (4.5)–(4.10) into (4.4) and finishing the
argument by choosing the constants δ1, δ, δ2, ε, δ3 (possibly in this order) sufficiently small
and by Gronwall’s lemma applied to

η(t) =

∫
Rd
F [u](t)φx̄,ε dx+ δ

(
ut(t), u(t)

)
x̄,ε
.

Under the assumption (D2), we have

− δ
∫ t2

t1

(
g(ut(t)), u(t)

)
x̄,ε
dt

≤ δ
(
κ

∫ t2

t1

(
f(u(t)), u(t)

)
x̄,ε
dt+

∫ t2

t1

(
g(ut(t)), ut(t))

)
x̄,ε
dt+ CCε

)
and we use (3.2) to get

(1− δ)
∫ t2

t1

(
g(ut(t)), ut(t)

)
x̄,ε
dt ≥ (1− δ)

(
γ2

∫ t2

t1

‖ut(t)‖2x̄,ε dt− γ3Cε(t2 − t1)

)
. (4.11)

The conclusion is then reached similarly as in the case (D1).

Theorem 4.2. Let the assumptions of Lemma 4.1 hold. Then there exists a closed positively
invariant absorbing set B ⊆ Φb bounded in Φb.

Proof. Let ε, ζ, C0, C1 > 0 be as in Lemma 4.1. Using the embedding W 1,2
b (Rd) ↪→ Lp+1

b (Rd)
and the equivalence of weighted and locally uniform norms in Lemma 2.1 we have∫

Rd
F1(u0)φx̄,ε dx ≤ C‖u0‖p+1

W
1,2
b

(Rd)
+ CCε.

Inserting into (4.3) we obtain∫
Rd
F [u](T )φx̄,ε dx ≤ e−ζTQ

(
‖u0‖W1,2

b
(Rd)

, ‖u1‖L2
b
(Rd)

)
+ C

which leads to

sup
x̄∈Rd

∫
Rd
E[u](T )φx̄,ε dx ≤ e−ζTQ

(
‖u0‖W1,2

b
(Rd)

, ‖u1‖L2
b
(Rd)

)
+ C̃

Set B̃ = B(0, C̃) ⊆ Φb and find t0 > 0 such that S(t)B̃ ⊆ B̃. We define

B =
⋃
t≥t0

S(t)B̃
Φb

and observe that B is positively invariant, cf. Theorem 3.2.
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5 Locally uniform squeezing property

In this section we introduce the trajectory setting and prove that the solution operator in the
space of trajectories satisfies a local variant of so-called squeezing property (cf. [6]), which will
in turn lead to the asymptotic compactness and an upper bound on Kolmogorov’s ε-entropy.
To achieve this, we require additional assumptions on µ and the damping nonlinearity g.
We note that one can obtain the asymptotic compactness required for the existence of a
locally compact attractor also without these additional assumptions by means of a standard
decomposition argument.

From now on, let h ≡ 0 and for simplicity we assume d = 3. In addition, we require

µ ∈ [1, 7/3), p ∈ [0, 3), (5.1)

C(1 + |r|)µ−1 ≤ g′(r) ≤ C(1 + |r|)µ−1 ∀r ∈ R. (5.2)

These assumptions and the properties of f lead to the estimates

|f(r)− f(s)| ≤ C(1 + (|r|+ |s|)p−1)|r − s|,

(g(r)− g(s))(r − s) ≥ C|r − s|2,

(g(r)− g(s))(r − s) ≥ C
∫ 1

0

(1 + |tr + (1− t)s|µ−1)|r − s|2 dt,

|g(r)− g(s)| ≤ C
∫ 1

0

(1 + |tr + (1− t)s|µ−1)|r − s| dt,

|g(r)− g(s)| ≤ (1 + (|r|+ |s|)µ−1)|r − s|.

(5.3)

Let ` > 1 and v > 1 be fixed and let φ be an admissible weight function. We define the
space of trajectories by

E`,vb,φ = {(χ, χt) : χ : (0, `)× R3 → R and ‖u‖2E`,v
b,φ

:= sup
k∈N

φ(xk)

∫ `

0

∫
Zk(t)

E [u] dx dt <∞},

B` = {(χ, χt) ∈ E`,vb,φ;χ solves the equation (1.1) in [0, `] with (χ(0), χt(0)) ∈ B}.

where we denote

Zk(t) = B(xk, v(2`− t)), t ∈ (0, 2`), K(xk) = {(t, x) ∈ (0, `)× Rd : x ∈ Zk(t)},

Z̃k(t) = B(xk, v(3`− t)), t ∈ (0, 3`), K̃(xk) = {(t, x) ∈ (0, 2`)× Rd : x ∈ Z̃k(t)}.

Note that the half-cone {(t, x) ∈ K̃(0); 0 < t < `} can be covered by a finite number of
cones K(xj), j ∈ N , xj ∈ B(0, 3v`). We emphasize that the size of N is independent of `.

We define the operators e : B` → Φb and L(t) : B` → B` by

e((χ, χt)) = (χ(`), χt(`)),

[L(t)(χ, χt)](s) = S(t+ s)(χ(0), χt(0)), s ∈ (0, `).

Let O ⊆ R3 and let φ be an admissible weight function. We define

‖u‖2Φb,φ(O) = sup
k∈I(O)

φ(xk)

∫
Ck

|u|2 + |∇u|2 + |ut|2 dx,

‖u‖2E`,v
b,φ

(O)
= sup
k∈I(O)

φ(xk)

∫ `

0

∫
Zk(t)

E[u] dx dt.

Again, if φ ≡ 1 we write Φb(O) instead of Φb,1(O).

Lemma 5.1. Let `, v > 1 and φ be arbitrary weight function. The following holds:

1. L = L(`) : B` → B` is Lipschitz continuous,

2. e : B` → Φb is Lipschitz continuous,

3. B` is positively invariant under L, i.e. L(t)B` ⊆ B` for every t ≥ 0.
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Proof. The proof follows from the finite speed of propagation and is similar to [16, Lemma
2.1]. Let χ1, χ2 ∈ B` and let u1, u2 be the respective solutions. Set w = u1 − u2 and let
0 < t1 < t2 < 2`. We test the equation by wt and using mollification and a similar argument
as in the proof of existence of solutions, namely approximating by more regular data and
stability, we get to the equation∫

Z̃k(t2)

E[w](t2) dx−
∫
Z̃k(t1)

E[w](t) dx+

∫ t2

t1

∫
Z̃k(t)

(
g(u1

t )− g(u2
t )
)
wt dx dt

= −
∫ t2

t1

∫
Z̃k(t)

(
f(u1)− f(u2)

)
wt dx dt+

∫ t2

t1

∫
∂Z̃k(t)

wt∇w · n− vE[w] dSx dt.

Since v > 1, the boundary integral is non-positive and using (G1) and a similar estimate on
the first element on the right-hand side of the previous equation as in the proof of uniqueness,
we arrive to ∫

Z̃k(t2)

E[w](t2) dx ≤
∫
Z̃k(t1)

E[w](t) dx+ C

∫ t2

t1

∫
Z̃k(t)

E[w] dx dt.

Invoking Gronwall’s lemma we get∫
Z̃k(t)

E[w](t) dx ≤
(

1 + C(t− s)eC(t−s)
)∫

Z̃k(s)

E[w](s) dx

for 0 < s < t < 2`. Integrating from 0 to ` by s and from ` to 2` by t leads to∫ 2`

`

∫
Z̃k(t)

E[w] dx dt ≤ C
∑
j∈N

∫ `

0

∫
xk+Zj(t)

E[w] dx dt.

We multiply the equation by φ(xk) and use the property (2.1) to get

φ(xk)

∫ `

0

∫
Zk(t)

E[Lu1 − Lu2] dx dt ≤ C#N max
j∈N

φ(xj)

∫ `

0

∫
xk+Zj(t)

E[u1 − u2] dx dt. (5.4)

The Lipschitz continuity of L in E`,vb,φ follows by taking supremum over k ∈ N and estimating
the maximum on the right-hand side by the supremum over j ∈ N. The Lipschitz continuity
of e can be obtained in a similar manner.

The positive invariance of B` follows immediately from the definitions.

Definition. We say that the mapping L : B` → B` has a locally uniform squeezing property
(LUSP) for an admissible weight function φ if for every θ > 0 there exists ` > 1, v > 1,
κ > 0 and N ⊆ N such that xj ∈ B(0, 3v`) ⊆ Rd for every j ∈ N and for every k ∈ N and
χ1, χ2 ∈ B` and the respective solutions u1, u2 we have

φ(xk)

∫ `

0

∫
Zk(t)

E[Lu1 − Lu2] dx dt ≤ θ
∑

j∈N (k)

φ(xj)

∫ `

0

∫
Zj(t)

E[u1 − u2] dx dt

+ κ

φ(xk)

∫ `

0

∫
Zk(t)

|Lu1 − Lu2|2 dx dt+
∑

j∈N (k)

φ(xj)

∫ `

0

∫
Zj(t)

|u1 − u2|2 dx dt

 , (5.5)

where
N (k) = {j ∈ N;xj = xi + xk for some i ∈ N}.

The above definition contains a slight abuse of terminology as one has to first choose θ > 0
and only then find suitable ` and v to get the squeezing property of L = L(`) : B` → B`.
However, this will not be of any concern in any of the later uses as θ > 0 will be chosen only
once.

Lemma 5.2. The operator L = L(`) has (LUSP) for every admissible weight function.
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Proof. The proof in similar to [16, Lemma 3.1]. Let us restrict ourselves to the case µ ∈
(1, 7/3) and p ∈ (1, 3) since the remaining cases are similar or easier.

Let τ ∈ (0, `), χ1, χ2 ∈ B` with the respective solutions u1, u2 and denote w = u1 − u2.
Similarly as in the proof of Lemma 5.1 we get∫

Z̃k(2`)

E[w](2`) dx dt−
∫
Z̃k(τ)

E[w](τ) dx+

∫ 2`

τ

∫
Z̃k(t)

(g(u1
t )− g(u2

t ))wt dx dt

+

∫ 2`

τ

∫
Z̃k(t)

(f(u1)− f(u2))wt dx dt =

∫ 2`

τ

∫
∂Z̃k(t)

wt∇w · n− vE[w] dSx dt,

(5.6)

∫
Z̃k(2`)

wwt dx dt+

∫ 2`

τ

∫
Z̃k(t)

|∇w|2 + α|w|2 dx dt+

∫ 2`

τ

∫
Z̃k(t)

(f(u1)− f(u2))w dxdt

=

∫
Z̃k(τ)

wwt dx+

∫ 2`

τ

∫
Z̃k(t)

|wt|2 − (g(u1)− g(u2))w dxdt

+

∫ 2`

τ

∫
∂Z̃k(t)

w∇w · n− vwtw dSx dt

(5.7)

Using the estimates (5.3) in (5.6) we have∫
Z̃k(2`)

E[w](2`)−
∫
Z̃k(τ)

E[w](τ) dx+ C1

∫ 2`

τ

‖wt‖2L2(Z̃k(t))
dt+ C1

∫ 2`

τ

J (t) dt

≤ C
∫ 2`

τ

∫
Z̃k(t)

(1 + (|u1|+ |u2|)p−1|w||wt| dx dt+

∫ 2`

τ

∫
∂Z̃k(t)

wt∇w · n− vE[w] dSx dt,

(5.8)

where

J (t) =

∫
Z̃k(t)

∫ 1

0

(1 + |su1
t + (1− s)u2

t |µ)|wt|2 ds dx.

We estimate the first element on the right-hand side using the dissipation of energy by

C

∫ 2`

τ

∫
Z̃k(t)

(1 + (|u1|+ |u2|)p−1|w||wt| dx dt

≤ C
∫ 2`

τ

‖1 + |u1|+ |u2|‖p−1

L(p−1)r1 (Z̃k(t))
‖wt‖L2(Z̃k(t))

‖w‖
Lr2 (Z̃k(t))

dt

≤
∫ 2`

τ

C1/2‖wt‖2L2(Z̃k(t))
+ C‖w‖2

Lr2 (Z̃k(t))
dt, (5.9)

where we put r1 = 6/(p − 1) and 1/r1 + 1/r2 = 1/2, therefore r2 ∈ (2, 6). Combining (5.8)
and (5.9) we arrive to∫

Z̃k(2`)

E [w](2`) dx−
∫
Z̃k(τ)

E [w](τ) dx+
C1

2

∫ 2`

τ

‖wt‖2L2(Z̃k(t))
dt+ C1

∫ 2`

τ

J (t) dt

≤ C
∫ 2`

τ

‖w‖2
Lr2 (Z̃k(t))

dt+

∫ 2`

τ

∫
∂Z̃k(t)

wt∇w · n− vE[w] dSx dt. (5.10)

Returning to (5.7), by the estimates (5.3) we have∫ 2`

τ

‖∇w‖2
L2(Z̃k(t))

+ α‖w‖2
L2(Z̃k(t))

dt

≤
∫ 2`

τ

‖wt‖2L2(Z̃k(t))
dt+ C

∫
Z̃k(2`)

E [w](2`) dx+ C

∫
Bk(τ)

E [w](τ) dx

+ C

∫ 2`

τ

∫
Z̃k(t)

∫ 1

0

(1 + |su1
t + (1− s)u2

t |µ)|wt||w|φx̄,ε ds dx dt

+ C

∫ 2`

τ

∫
Z̃k(t)

(1 + (|u1|+ |u2|)p−1)|w|2φx̄,ε dx dt

+

∫ 2`

τ

∫
∂Z̃k(t)

w∇w · n− vwtw dSx dt.

(5.11)
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Similarly as in (5.9) we estimate the fourth element on the right-hand side of (5.11) as

C

∫ 2`

τ

∫
Z̃k(t)

∫ 1

0

(1 + |su1
t + (1− s)u2

t |µ)|wt||w|φx̄,ε ds dx dt

≤ C
∫ 2`

τ

J dt+ C

∫ 2`

τ

‖w‖2
L2s2 (Z̃k(t))

dt, (5.12)

where we use the dissipation of energy and set s1 = 2/(µ− 1) and 1/s1 + 1/s2 = 1, therefore
2s2 ∈ (2, 6). Similarly the fifth element (5.11) by

C

∫ 2`

τ

∫
Z̃k(t)

(1 + (|u1|+ |u2|)p−1)|w|2 dx dt ≤ C
∫ 2`

τ

‖w‖2
L2z2 (Z̃k(t))

dt, (5.13)

where we again used the dissipation estimate and set z1 = 6/(p − 1) and 1/z1 + 1/z2 = 1,
therefore 2z2 ∈ (2, 3). Set s = max(2s2, 2z2). Combining the estimates (5.11–5.13) we obtain∫ 2`

τ

‖∇w‖2
L2(Z̃k(t))

+ α‖w‖2
L2(Z̃k(t))

dt

≤
∫ 2`

τ

‖wt‖2L2(Z̃k(t))
dt+ C

(∫
Z̃k(2`)

E [w](2`) dx+

∫
Z̃k(τ)

E [w](τ) dx

)
+ C

∫ 2`

τ

J dt

+ C

∫ 2`

τ

‖w‖2
Ls(Z̃k(t))

dt+

∫ 2`

τ

∫
∂Z̃k(t)

w∇w · n− vwtw dSx dt. (5.14)

Define r = max(s, r2). Multiply (5.14) by δ > 0, add it to (5.10) and choose v ≥ (1 +
δ)/(1− δ) and δ > 0 small enough to get

ζ

∫ 2`

`

∫
Z̃k(t)

E [w](t) dx dt ≤ C
∫ 2`

0

‖w‖2
Lr(Z̃k(t))

dt+ 2

∫
Z̃k(τ)

E [w](τ) dx

for some ζ > 0 and integrate by τ from 0 to ` to obtain

ζ`

∫ 2`

`

∫
Z̃k(t)

E [w](t) dx dt ≤ C`
∫ 2`

0

‖w‖2
Lr(Z̃k(t))

dt+ 2

∫ `

0

∫
Z̃k(t)

E [w](t)φx̄,ε dx dt. (5.15)

Now split the integral∫ 2`

0

‖w‖2
Lr(Z̃k(t))

dt =

∫ `

0

‖w‖2
Lr(Z̃k(t))

dt+

∫ 2`

`

‖w‖2
Lr(Z̃k(t))

dt

and divide the equation (5.15) by ζ`. Next we employ Ehrling’s lemma, namely

‖w‖2Lr(Ω) ≤ γ‖w‖2W1,2(Ω) + C‖w‖2L2(Ω)

for Ω = B(x,R) ⊆ Rd with x ∈ Rd, R > 0, γ > 0 arbitrary and C = C(γ,R), on the
arguments of the split integrals. Indeed, this is possible since the diameters of the domains
in question, i.e. Z̃k(t) for t ∈ (0, 2`), are bounded. Combining these estimates with (5.15) we
obtain(

1− Cγ

ζ

)∫ `

0

∫
Zk(t)

E[Lw] dx dt ≤
(

2

ζ`
+
Cγ

ζ

) ∑
j∈N (k)

∫ `

0

∫
Zj(t)

E[w] dx dt

+
C

ζ

∫ `

0

∫
Zk(t)

|Lw|2 dx dt+
∑

j∈N (k)

∫ `

0

∫
Zj(t)

|w|2 dx dt

 , (5.16)

where N (k) ⊆ N is a finite set of size N such that the union of cones K(xj) over j ∈ N covers

the cone K̃(xk). Now let θ̃ > 0 be such that θ̃Cφ exp(ν3v`) < θ, where ν > 0 is the growth of
the admissible function φ. By choosing ` sufficiently large and γ sufficiently small we get∫ `

0

∫
Zk(t)

E[Lw] dx dt ≤ θ̃
∑

j∈N (k)

∫ `

0

∫
Zj(t)

E[w] dx dt

+ C

∫ `

0

∫
Zk(t)

|Lw|2 dx dt+
∑

j∈N (k)

∫ `

0

∫
Zj(t)

|w|2 dx dt

 . (5.17)

14
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It remains to insert the weight function with sufficiently small growth which is easily done by
multiplying (5.17) by ψ(xk), invoking (2.1) and using the restriction on θ̃.

6 Locally compact attractor and entropy estimate

Let O ⊆ Rd. We denote
I(O) = {k ∈ N;Ck ∩ O 6= ∅}.

Let M be a metric space and K ⊆ M be relatively compact. Let Nε(K,M) denote the
smallest number of balls of radii ε that cover K in M . We define the Kolmogorov’s ε-entropy
by

Hε(K,M) = lnNε(K,M).

A number of typical examples of upper and lower bounds on the Kolmogorov’s ε-entropy in
various situations can be found e.g. in [20].

The following lemma is crucial for the estimate of Kolmogorov’s ε-entropy and considerably
simplifies the proof of asymptotic compactness. We note that an estimate of this kind may
be used to establish an infinite dimensional exponential attractor. We postpone this issue to
a subsequent paper together with an abstract criterion and a applications to other equations.

Lemma 6.1. Let O ⊆ R3 be bounded and satisfy

#I(O) ≤ C0 vol(O). (6.1)

Let ε > 0, δ ∈ (0, 1) and (x0, x1) ∈ B. Also let φ be an admissible weight function. Then there
exist `, v > 1 such that

Hδε
(

(LB)
∣∣
O, E

`,v
b,φ(O)

)
≤ C1 vol(O), (6.2)

where B = Bλ((χ0, χ1); E`,vb,φ) ∩ B` is a ball centered around the `-trajectory (χ0, χ1) starting
from (x0, x1). The constant C1 depends only on C0, ` and δ and is independent of (x0, x1), ε
and O as long as (6.1) is satisfied.

Proof. The proof adapts the techniques from [16, Lemma 4.1] and [9, Lemma 2.6], the main
difference being working with hyperbolic trajectories space instead of parabolic ones.

Without loss of generality, assume that 0 ∈ N . First find `, v > 1 such that (5.5) holds
for θ > 0 such that 4θ#N < δ2 and fix λ > 0 such that

4θ#N + κλ2(#N + Lip(L)) < δ2

Let k ∈ I(O). Define

P (χ, χt) =
(
φ(xj)χ|K(xj)

)
j∈N

, (χ, χt) ∈ B`,

X = {P (χ, χt); (χ, χt) ∈ B} .

We equip the space X with the norm

‖y‖2X = max
j∈N

∫ `

0

∫
Zj(t)

|yj |2, y = (yj)j∈N ∈ X.

Since B` (and thus B) is uniformly bounded on every cone K(xi), i ∈ N, by the Aubin-Lions
lemma there exists N ∈ N and (χi, χit) ∈ B, i = 1, . . . , N , such that

X ⊆
N⋃
i=1

Bλε
(
P (χi, χit);X

)
.

It is important to note that N is independent of k and ε, which follows from the estimate

‖y‖2X ≤ Cε2

holding uniformly for ε > 0 and k ∈ I(O).
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Choose (χ, χt) ∈ B. Then P (χ, χt) ∈ Bελ(P (χi, χit);X) for some 1 ≤ i ≤ N . Let u and ui
be the respective solution for χ and χi and let w = u− ui. Using (LUSP) we may estimate

φ(xk)

∫ `

0

∫
Zk(t)

E[Lw] dx dt

≤ θ
∑

j∈N (k)

∫ `

0

∫
Zj(t)

E[w] dx dt+ κ
∑

j∈N (k)

φ(xj)

∫ `

0

∫
Zj(t)

|w|2 dx dt

+ κφ(xk)

∫ `

0

∫
Zk(t))

|Lw|2 dx dt

≤ 4θε2#N + κε2λ2(#N + Lip(L)) < δ2ε2,

therefore we have
Hδε

(
(LB)|Ck , E

`,v
b,φ(Ck)

)
≤ lnN

uniformly for every k ∈ I(O).
The final estimate follows directly from (6.1) since for covering in E`,vb,φ(O), one needs to

consider the product of all the coverings in E`,vb,φ(Ck), k ∈ I(O).

Proposition 6.2. The dynamical system (S(t),Φb) is asymptotically compact in the local
topology Φloc.

Proof. Let {xn} ⊆ Φb be bounded, let tn →∞ and let K ⊆ Rd be compact. Without loss of
generality we may assume xn ∈ B. Find `, v > 1 such that (6.2) holds for φ ≡ 1 and θ = 1/2.
Let B ⊆ Rd be a sufficiently large ball such that K ⊆ B and N (k) ⊆ B for every k ∈ I(K).

Passing to a subsequence we may find χn ∈ B` such that S(tn)xn = e(Lnχn). Using (6.2)
we are able to recurrently find a Cauchy subsequence {Lnχn} in E`,vb,φ(B). The proof will be
finished once we show that the sequence e(Lχn) is Cauchy in Φb(K) and this immediately
follows from (5.4) by taking supremum over k ∈ I(K).

Using the dissipation of energy and the local asymptotic compactness we are able to show
the existence of a locally compact attractor. The proof of the following theorem follows exactly
as in [7] or [20] and will be omitted here.

Theorem 6.3. There exists a unique set A ⊆ Φb invariant under S(t) and compact in Φloc
such that A attracts sets bounded in Φb in the local topology Φloc, i.e. for every B ⊆ Φb
bounded

lim
t→∞

distΦloc(S(t)B,A) = 0.

We denote

A` = {χ ∈ E`,vb,φ;χ solves the equation in [0, `] with (χ(0), χt(0)) ∈ A}.

It is clear that e(A`) = A and L(A`) = A`.
Before we proceed to the entropy estimate, we define an auxiliary weight function in the

spirit of [20]. Let x̄ ∈ Rd, R > 0 and ν > 0 be fixed. We define an auxiliary weight function
ψ(x0, R) by

ψ(x0, R) = ψ(x0, R)(x) =

{
1, |x− x0| ≤ R+

√
d,

exp
(
ν
(
R+
√
d− |x− x0|

))
, otherwise.

Clearly ψ(x0, R) is an admissible weight function with growth ν and one has

Hε (A,Φb(B(x0, R)) ≤ Hε
(
A,Φb,ψ(x0,R)(Rd)

)
. (6.3)

The statement of the following lemma is formally the same as in [9]. However, we should
keep in mind that we are working with a different trajectories norm, even if the proof of the
lemma runs exactly in the same way as in the original proof.
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Lemma 6.4 ([9, Lemma 5.4]). For every ε0 > 0 there exist C > 0 such that for every x0 ∈ R3,
R ≥ 1, ε ∈ (0, ε0) and χ1, χ2 ∈ E`,vb,ψ(x0,R) it holds that

‖χ1 − χ2‖E`,v
b,ψ(x0,R)

≤ max

{
‖χ1 − χ2‖E`,v

b,ψ(x0,R)
(B(x0,Rε))

, ε

}
,

where

R(ε) = R+ C

(
1 + ln

1

ε

)
. (6.4)

Theorem 6.5. There exists C0, C1, ε0 > 0 such that for every x0 ∈ R3, R ≥ 1 and ε ∈ (0, ε0)
one has the bound

Hε
(
A|B(x0,R),Φb (B (x0, R))

)
≤ C0

(
R+ C1 ln

1

ε

)3

ln
1

ε
.

Proof. The proof uses a similar technique to [9, Theorem 5.1] and is standard. Let `, v > 1
and let ψ(x0, R) have sufficiently small growth such that Lemma 6.1 holds with δ = 1/2 and
for ψ(x0, R). By (6.3), the Lipschitz continuity of e shown in Lemma 5.1 and the fact that
Ck ⊆ Bk(`) allows us to estimate

Hε (A,Φb (B (x0, R))) ≤ Hε
(
A,Φb,ψ(x0,R)

)
≤ Hε/Lip(e)

(
A`, E`,vb,ψ(x0,R)

)
.

We find ε0 > 0 and χ ∈ A` such that A` ⊆ Bε0(χ; E`,vb,ψ(x0,R)), in other words

Hε0

(
A`, E`,vb,ψ(x0,R)

)
= 0.

The proof will be finished once we establish the bound

Hε02−k

(
A`, E`,vb,ψ(x0,R)

)
≤ kC0

(
R+ C(1 + ln

2k

ε0
)

)3

(6.5)

since then for ε ∈ (0, ε0) we find k ∈ N such that 2−kε0 ≤ ε < 2−k+1ε0 and the desired
entropy bound follows from k < C ln 1/ε holding for ε sufficiently small.

To prove the recurrent estimate (6.5) we use induction. Let first k = 1. Then from Lemma
6.1 we have

Hε0/2

(
A`|B(x0,R(ε0/2)), E`,vb,ψ(x0,R)(B(x0, R(ε0/2)))

)
≤ C0

(
R+ C(1 + ln

2k

ε0
)

)3

.

By Lemma 6.4 the ε0/2-covering in the space E`,vb,ψ(x0,R)(B(x0, R(ε0/2))) is also a ε0/2-covering

in E`,vb,ψ(x0,R).

Now let the bound (6.5) hold for k > 1, i.e.

A` ⊆
N⋃
i=1

Bε02−k

(
χi; E`,vb,ψ(x0,R)

)
(6.6)

for some χi ∈ A`. Apply the mapping L to (6.6) to get

L(A`) = A` ⊆
N⋃
i=1

BLip(L)ε02−k

(
Lχi; E`,vb,ψ(x0,R)

)
, (6.7)

where we used the invariance of A` under L from Lemma 5.1. By Lemma 6.1 each of
the balls on the right-hand side of (6.7) can be covered by balls with radii ε0/2

−(k+1)in
E`,vb,ψ(x0,R)(B(x0, R(ε02−k+1))) so that

Hε02−(k+1)

(
A`|B(x0,R0(ε0/2

−(k+1))), E
`,v
b,ψ(x0,R)

(
B
(
x0, R0(ε0/2

−(k+1))
)))

≤ Hε02−k

(
A`, E`,vb,ψ(x0,R)

)
+ C

(
R0 + C(1 + ln

2k+1

ε0
)

)3

≤ (k + 1)C

(
R0 + C(1 + ln

2k+1

ε0
)

)3

.

The proof is finished by another use of Lemma 6.4 as in the step k = 1.
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