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ON THE DIFFERENCE EQUATION
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Abstract. In this paper we investigate the global convergence result, boundedness and
periodicity of solutions of the recursive sequence
agTn + a1Tp—1+ ... +ApTy_k

T = , n=0,1,...
ntl boxn + b1xn—1+ ...+ bpT,_k

where the parameters a; and b; for i = 0,1, ...,k are positive real numbers and the initial
conditions x_,x_g11,...,2o are arbitrary positive numbers.
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1. INTRODUCTION

Our goal in this paper is to investigate the global stability character and the
periodicity of solutions of the recursive sequence

agTy +a1Tp—1+ ...+ ApTp—k
boxy, +b1Tp-1+ ... +bpxp_s ’

(1) Tn+1 =

where the parameters a; and b; for i = 0,1, ...,k are positive real numbers and the

initial conditions are arbitrary positive numbers.
k k k k
Suppose that A = > a;, B= > b;, A" = > a;, B"=)_ b;.
=0 =0 i=0 i=0
i#r iET
The case when k = 1 was investigated in [11]. Other nonlinear rational difference
equations were investigated in [8]-[12]. See also [1]-[4].
The study of these equations is quite challenging and rewarding and still at its

infancy.
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Definition 1. A solution of the difference equation
(2) Tnt1 = F(@nyTn-1,...,Tn—k), n=0,1,...

is said to be persistent if there exist numbers m and M with 0 < m < M < oo
such that for any initial conditions z_j,x_g41,...,2-1,29 € (0,00) there exists a
positive integer N which depends on the initial conditions such that

m<r, <M foralln> N.

Definition 2 (Stability).
(i) An equilibrium point T of Eq. (2) is locally stable if for every € > 0 there exists
0 > 0 such that for all x_p, 2 _k41,...,2_1,29 € I with

|2 —F| + |2—pp1 —F|+ .+ |z — T <6

we have

|z, —T| <& foralln > —k.

(ii) An equilibrium point T of Eq.(2) is locally asymptotically stable if T is
a locally stable solution of Eq.(2) and there exists v > 0 such that for all
Tfy Tty T—1,20 € I with

Tk — T+ |Tept1 — |+ ...+ |T0 — T| <

we have

lim z, ==.
n—oo

(iii) An equilibrium point T of Eq. (2) is a global attractor if for all z_g, x_k41,...,
x_1,x9 € I, we have

lim z, =7.
n—oo

(iv) An equilibrium point Z of Eq. (2) is globally asymptotically stable if Z is locally
stable, and 7 is also a global attractor of Eq. (2).
(v) An equilibrium point T of Eq. (2) is unstable if T is not locally stable.

The linearized equation of Eq. (2) about the equilibrium T is the linear difference

equation
k _

0F(z,z,...,T
(3) Yn+1 = Z (ax ] )yn—i-
i=0 nt
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Theorem A [7]. Assume that p,q € R and k € {0,1,2,...}. Then
Il + gl <1
is a sufficient condition for the asymptotic stability of the difference equation

Tng1 + pTn+ qtnr =0, n=0,1,....

Remark 1. Theorem A can be easily extended to general linear equations of
the form

(4) Tptk + P1Tntk—1+ ... +Pk2n =0, n=0,1,...

where p1,pa,...,pr € R and k € {1,2,...}. Then Eq.(4) is asymptotically stable
provided that

k
Z|pz‘| <L
i=1

The following theorem (which we state and prove for the convenience of the reader)
treats the method of Full Limiting Sequences which was developed by Karakostas
(see [5] and [6]).

Theorem B. Let F' € C[I*"1 [] for an interval I of real numbers and for a non-
negative integer k. Let {x,}° _, be a solution of Eq.(2), and suppose that there
exist constants A € I and B € I such that

A<xz,<B foralln>—k.

Let Lo be a limit point of the sequence {x,};> _,. Then the following statements
are true.
(i) There exists a solution {L,}5>__ of Eq.(2), called a full limiting sequence of
{zn}22 ., such that Lo = Lo and that for every N € {...,—1,0,1,...}, Ly is
a limit point of {x,}5° .
(ii) For every ig < —k, there exists a subsequence {x,, }32, of {x,}° _, such that

Ly = lim a,,4+n for every N = ig.
11— 00

Proof. We first show that there exists a solution {l,}5° . ; of Eq.(2) such
that lp = Lo and that for every N > —k — 1, Iy is a limit point of {z,}>2 _,.
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To this end, observe that there exists a subsequence {z,, }$2, of {z,}> _, such
that

lim x,, = Lo.
i—00 )

Now the subsequence {x,,—1}72; of {z,}>° , also lies in the interval [A, B] and so
it has a limit point, which we denote by £_;. It follows that there exists another
subsequence {z,, }52, of {z,, }2, such that lim x,, 1 = L_;.
j—oo
Thus we see that

lim z,, 1 =L_1 and lim z,, = Lo.

j—oo j—oo 7
It follows similarly to the above that after re-labelling, if necessary, we may assume
that

J

im xnj_k_l = E—k—h hm xnj—k = ﬁ_k, ey
— J—00 J

im x,, = Lo.

—00

Consider the solution {l,}22 _, _, of Eq.(2) with the initial conditions
l1=L 1,1l 0=L o,...; s 1=L_j_1.

Then

F(‘C—IMC—Q) cee 7‘C—k—1) = lim F(xnj—lvxnj—% s 7xnj—k—1)

j—o0

= leI{:O :L'nj = ﬁo = lo.

It follows by induction that the solution {l,}5° . ;| of Eq.(2) has the desired prop-

erty that lp = Lo, and that [y is a limit point of {z,}7° _, for every N > —k — 1.
Let S be the set of all solutions {£,}52 _,. of Eq.(2) such that the following

statements are true.

(i) —co< —m << —k—1.
(ii) £, =1y foralln > —k — 1.
(ili) For every jo € domain {L,}
{zn}22 _, such that

—m

e}
n=—m?

there exists a subsequence {z,,}7°, of

Ly = llim T+ N forall N > jp.

Clearly {l,}2> _, , € S, and so S # ¢. Given y,z € S, we say that y < z if
y C z. It follows that (S, <) is a partially ordered set which satisfies the hypotheses
of Zorn’s Lemma, and so we see that S has a maximal element which clearly is the

desired solution {L,}5% _ .
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2. LINEARIZED STABILITY ANALYSIS

In this section we study the local stability character of the solutions of Eq. (1).
Eq. (1) has a unique positive equilibrium point and it is given by

k k A
TZ;ai/;biZE.

Let f: (0,00)*"1 — (0,00) be a function defined by

apUog + a1ul + ...+ apug
5 Uy ULy - - -y Uk ) = .
( ) f( 0 k) boug + biut + ... + brug

Then it follows that

(a0b1 — albo)ul + (a0b2 — agbo)UQ + ...+ (aobk — akbo)uk

fuo(UO;ula“'auk) = (bOuO+b1u1+...+bkuk)2
k k k 2
= (ao Z biu; — bo Z ai“i) / <Z blul) )
i=1 i=1 =0
Suy (woyug,y o ug) = (a1bo — agb1)ug + (a1by — asbr)us + ... 4 (a1bx — arbi)ux
(bouo + brug + ... + bruk)?
k k 2
= (a1 Z biu; — b1 Z ai“i) / (Zbﬂ“) )
by i=0, i=0
i#1 i#1
fug (o, ut, .. ug) = (arbo — aobg)uo + (arby — arby)us + ... + (agbr—1 — ag—1bk)ur—1

(boUQ +bju; +...+ bkuk)Q
k—1 k—1 k 2
= (ak Z biui - bk Z aiui> / (Z bzul> .
=0 =0 =0

Now we see that

(a0b1 — albo) + (aobg — agbo) + ...+ (aobk — akbo)

Juo (T, Z,...,7) = B
aoB° — by A°
N AB ’
ful (f, T ,f) _ (a1b0 aobl) + (a1b2 ZQBEH) + ...+ (albk akbl)
alBl - blAl
B AB ’
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fo BT T) = (arbo — aoby) + (agbr — a1bg) + ... + (agbr—1 — ag—1bx)
AB
- akB’“ — bkAk
o AB '

The linearized equation of Eq. (1) about T is

k

Ynt1+ Y diyn—i =0,
i=0

where d; = —f,,(T,T,...,T) for i = 0,1, ..., k, whose characteristic equation is

k
AL N g =0,

i=0
Theorem 2.1. Assume that
k
Z |aiB’ — biAz‘ < AB.
i=0

Then the positive equilibrium point of Eq. (1) is locally asymptotically stable.

Proof. The proofis a direct consequence of Theorem A.

3. BOUNDEDNESS OF SOLUTIONS

Here we study the persistence of Eq. (1).

Theorem 3.1. Every solution of Eq. (1) is bounded and persists.

Proof. Let {z,}>2 , be a solution of Eq. (1). It follows from Eq. (1) that

. a0Tp + A1Tp—1 + ...+ AxTn—k
n+1 —
boxy, +b1Tp-1+ ... +brxp_s

_ Ty + A1Tn—1
boxn + 61701+ ...+ bpTy_k boxn + 61701+ ...+ bpTy_k
+ ApTn—k
boxy, +b1Tn_1+ ... +brxp_k
agTn A1Tn—1 AkTn—k
S bor,  biTn—g T beTn—rk
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Hence

k

a
6 T, < =2 =M forall n>1.
©) >

Now we wish to show that there exists m > 0 such that

z, =>m for all

The transformation

ITpn — —
Yn

will reduce Eq. (1) to the equivalent form

1=

k
bo I yn—i + b1
i=1

(3

i#1

n>1.

k

1

k _

H yn—i"‘---"‘bknyn—i
Ji i=1

k

Yn+1 = A k—1
ao [T yn—i+ar [ wn—i+...+ax [] yn—i
i=1 i=0,i#£1 i=1
k
bo I yn—i
. i=1
B k k k—1
ao [[ yn—i+ar [ yn—it+...+ax [] yn-i
i=1 i=0,i#£1 i=1
k
bl H Yn—i
i=0,i#£1
+ k k k—1
ao [T yn—i+ar [ Yn—i+...+ar [] yn-i
i=1 i=0,i#£1 i=1
k—1
be I1 yn—i
i=1
+ k k k—1 ’
ao [[ yn—i+ar ] yn—it+...+ar [] yn-i
i=1 i=0,i#£1 i=1
which implies that
k k k—1
bO H Yn—i bl ) H Yn—i bk H Yn—i
< 1 i=0,i#1 i=1 b by
Yn+1l X & & + + 1 — + —
an aq
ap H Yn—i a1 H Yn—i ag H Yn—i
i=1 i=0,i£1 i=1
Hence
1

+...
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It follows that

1 " b
<Z—1=H forall n > 1.
Tn+1 o i
Thus we obtain
1 1
(7) Tp=—2>—=m foralln>1.
yn H

From (6) and (7) we see that
m<L e, <M foralln > 1.

Therefore every solution of Eq. (1) is bounded and persists.

4. PERIODICITY OF SOLUTIONS

In this section we study the existence of a prime period two solutions of Eq. (1).
Let o, 8, v and § be defined as follows:
If k is odd, then

(k=1)/2 (k=1)/2

a= Y ax B= Y ai,
=0 1=0
(k—1)/2 (k—1)/2

y= > by, 0= Y by,
i=0 i=0

if k£ is even, then

k/2 k/2—1

o= E az, f[= E 2441,
i=0 i=0
k/2 k/2—1

v= by, =Y baj1.
i=0 i=0
Theorem 4.1. Eq.(1) has a positive prime period two solution if and only if
(8) 160 < (7~ 8)(B - a).
Proof. First suppose that there exists a prime period two solution

";qu;qu;"'

of Eq. (1). We will prove that condition (8) holds.
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We see from Eq. (1) that

_aq+pp
¥q + dp
and
_ap+fq
yp + d0q
Then
9) Ypg + 6p* = aq + fBp
and
(10) Ypq + 8¢ = ap + Bq.

Subtracting (9) from (10) gives
3(p* = ¢*) = (B—a)(p—q).

Since p # q, it follows that

_p-a
(11) p+Q—T.

Also, since p and ¢ are positive, (8 — «) should be positive.
Again, adding (9) and (10) yields

(12) 29pq +6(p* + ¢*) = (p+ q)(a + ).
It follows by (11), (12) and the relation

p2+q2:(p+q)2—2pq for all p,qg € R

that 20 )
a(f — «
2y~ 5)pg = 220,
Again, since p and ¢ are positive and 3 > «, we see that v > 4.
Thus
alf — a)
13 pqg = —F/.
19) 50— 0)

Now it is clear from Eq. (11) and Eq. (13) that p and ¢ are the two positive distinct
roots of the quadratic equation
a(f —a)

B -« _
G

(14) t2
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and so

{6—04}2_ da(f — @)
6 6(y —9)

Since v — § and 3 — a have the same sign,

> 0.

0 —« 4o
5 T y—¢

which is equivalent to
4éa < (v =06)(B — ).

Therefore inequality (8) holds.

Second suppose that inequality (8) is true. We will show that Eq. (1) has a prime
period two solution.

Assume that

ﬁ—oz_\/[ﬁ—ar_%z(ﬁ—a)

) ) 5(y—19)
p= 2
and
8-« B—a1?2 4da(f-—a)
5 +\/[ 5 | - 30y —9)
1= 2

We see from inequality (8) that
(v~ 8)(5 — ) > 4da

or
2 _ 4da(B —a)
[6—al” > B

which is equivalent to

[=a), da(ia)
5 5(v=0)
Therefore p and ¢ are distinct positive real numbers.

If k is odd, then we set (the case when k is even is similar and will be omitted)
Tk =¢q, Tofy1 = P,..., and zg = p. We wish to show that z; = z_1 = ¢ and
xg = xo = p. It follows from Eq. (1) that

ap + Bq

Yp+dq’

where p and ¢ are as given above.
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It follows that

‘)‘[“W%W[”W%}

= 40c 40«
7[1—\/1—m]+5{”\/1_m}
40
(a+6)+(ﬁ—a)[\/1—m]
40
(v+6)+(6—v){\/1—m}
Hence
(a+6)(7+5)—(ﬁ—a)(5—7)[1—%}
xr] = 46
(v+5)2—(5—7)2[1—m}
{(B—oz)(wré)—(a+6)(5—7)}\/1—%
+ 40
(v+6>2—[5—v]2[1—m}
40c
[267—25a]+[257—25a]\/1—m
- 160 ]
46y — 3—a
B—a B—a1? 4da(B-a)
5 +\/[ R
= 5 =q.

Similarly to the above one can show that
To =p.
Then it follows by induction that
Top =p and 9,41 =¢q forall n>-1.
Thus Eq. (1) has the positive prime period two solution

";qu;qu;"'

143



where p and ¢ are the distinct roots of the quadratic equation (14) and the proof is
complete.

5. GLOBAL STABILITY OF EQ. (1)
In this section we investigate the global asymptotic stability of Eq. (1).

Theorem 5.1. If the function f(ug,u1,...,u;) defined by Eq.(5) is non decreas-
ing in w;, non increasing in u; and

(15) AIB < aj(2b; + BY), i,j=0,1,...,k,

then the equilibrium point T is a global attractor of Eq. (1).

Proof. Let {z,} > _, be asolution of Eq. (1) and let f be the function defined
by Eq. (5) which is non decreasing in w; if a;/b; > a;/b;, and non increasing in w; if
ai/bi < aj/bj, i,j = 0,1,...,/€.

From Eq. (1) we see that

aTn +a1Tp—1+ ... +6;Tp—5+ ...+ QpTn—k
boxy, +b1Tp—1+ ...+ bji[,’n,j + o+ bk
agTy +a1Tp—1+ ...+ aj(O) + ...t arTyp—k
= boxn + 01Tyt + ...+ 0;(0) + .+ DT
aoTn | A1Tp-—1 T Aj—1Tp—(j-1) 4 Aj+1Tn—(5+1) i i ApTn—k

Tn+1 =

I CobjaTa—goy biiTa—gyy 0 DeTn—k
k
ai
= — =M.
>
i=0
i#j
Hence
(16) T, <M forall n>1.

In the other hand,

agTy + a1Tp—1 —l—...—l—aj(M) +...+ai(0)+...+akmn_k

17 >
(7)  Zap botn 4+ b1n_ 1+ ... +b;(M) + ... +b;(0) + ... + bp, ¢

a; M
2 J
boM + b1 M+ ...+ b;(M)+...+b;(0)+ ...+ b M
oM _ e
 B‘M Bt
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From Egs. (16) and (17) we see that

k
s
(18) m:ﬁéxnéz

=0
#J

ﬂ:M for all n > 1.
b;

S

It follows by the Method of Full Limiting Sequences that there exist solutions
{I}52 o and {Sn}2 of Eq. (1) with

n—=—oo

I =1y= lim infz, < lim supz, = Sp =5,
n—oo n—oo

where
I,,S,€[I,S], n=0,—-1,....

It suffices to show that I = S.
It follows from Eq. (1) that

aOI,l+a1I,2+...+ajI,j,1+...+aiI,i,1—|—...+akI,k,1
bol-1+bil o+...+bjl j14...+bl i1 +...+bl 1
>aoLl+a1Lg+...+aj(5)+...+ai(I)+...+akLk,1
T bol g b1+ b (S) b (D) + A bl

al +arl+.. . +a;(S)+...+a()+...+ar] AT+a;S
T boSH+ S+ A0 (S)+ . b))+ +bS  BiS+ b

I =

and so
(19) B'ST > AT + a;S — b1
Similarly, we see from Eq. (1) that

apS—1+a1S_a+ ... +a;S_j1+.. . +a;Si1 4. FapS_p_1
boS_1+b1S_o+...+ bjS,j,1 +.o 0SS
apS—1+a1S—2+ ...+ a;(I)+ ... +a;(S)+ ...+ arS—k-1

S bpS_1+ 1S+ b (D) .+ bi(S) + . A+ beS_k1
aoS—f—alS—f—...+aj(I)+...+ai(S)+...+akS_AjS—i—ajI
bol +b1l+...+b;j(I)+...+b;(S)+...+bI  BI+bS’

and so
(20) B'SI < A1S + a;I — b;S?.
Therefore it follows from (19) and (20) that

AT+ a;S —bI* < AVS + a;l — b;S?
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or

Y

AI(S — 1) +a;(I —S)+b;(I* - S*

)>0
(I—S){a; +bi(I+S)—A}>0

Y

and so
I>5 ifaj—i—bi(I—i—S)—Aj}O.

Now, we know by (15) that

AV B < a;(2b; + BY).

Hence
ABi < a-Bi(Z—bi n 1)
X Wy B,L
or
. a; a;
wen(e ) o

It follows from Eq. (18) that
AJ < bz(I—l- S) + aj,

and so it follows that

I1>8
Therefore
I1=5.
This completes the proof. ([
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