## ON THE DIFFERENCE EQUATION

$$x_{n+1} = \frac{a_0 x_n + a_1 x_{n-1} + \dots + a_k x_{n-k}}{b_0 x_n + b_1 x_{n-1} + \dots + b_k x_{n-k}}$$

E. M. ELABBASY, H. EL-METWALLY, E. M. ELSAYED, Mansoura

(Received October 10, 2006)

Abstract. In this paper we investigate the global convergence result, boundedness and periodicity of solutions of the recursive sequence

$$x_{n+1} = \frac{a_0 x_n + a_1 x_{n-1} + \ldots + a_k x_{n-k}}{b_0 x_n + b_1 x_{n-1} + \ldots + b_k x_{n-k}}, \quad n = 0, 1, \dots$$

where the parameters  $a_i$  and  $b_i$  for  $i=0,1,\ldots,k$  are positive real numbers and the initial conditions  $x_{-k},x_{-k+1},\ldots,x_0$  are arbitrary positive numbers.

Keywords: stability, periodic solution, difference equation

MSC 2000: 39A10

#### 1. Introduction

Our goal in this paper is to investigate the global stability character and the periodicity of solutions of the recursive sequence

(1) 
$$x_{n+1} = \frac{a_0 x_n + a_1 x_{n-1} + \dots + a_k x_{n-k}}{b_0 x_n + b_1 x_{n-1} + \dots + b_k x_{n-k}},$$

where the parameters  $a_i$  and  $b_i$  for i = 0, 1, ..., k are positive real numbers and the initial conditions are arbitrary positive numbers.

Suppose that 
$$A = \sum_{i=0}^{k} a_i$$
,  $B = \sum_{i=0}^{k} b_i$ ,  $A^r = \sum_{\substack{i=0 \ i \neq r}}^{k} a_i$ ,  $B^r = \sum_{\substack{i=0 \ i \neq r}}^{k} b_i$ .

The case when k=1 was investigated in [11]. Other nonlinear rational difference equations were investigated in [8]–[12]. See also [1]–[4].

The study of these equations is quite challenging and rewarding and still at its infancy.

# **Definition 1.** A solution of the difference equation

(2) 
$$x_{n+1} = F(x_n, x_{n-1}, \dots, x_{n-k}), \quad n = 0, 1, \dots$$

is said to be persistent if there exist numbers m and M with  $0 < m \le M < \infty$  such that for any initial conditions  $x_{-k}, x_{-k+1}, \ldots, x_{-1}, x_0 \in (0, \infty)$  there exists a positive integer N which depends on the initial conditions such that

$$m \leqslant x_n \leqslant M$$
 for all  $n \geqslant N$ .

# **Definition 2** (Stability).

(i) An equilibrium point  $\overline{x}$  of Eq. (2) is locally stable if for every  $\varepsilon > 0$  there exists  $\delta > 0$  such that for all  $x_{-k}, x_{-k+1}, \ldots, x_{-1}, x_0 \in I$  with

$$|x_{-k} - \overline{x}| + |x_{-k+1} - \overline{x}| + \ldots + |x_0 - \overline{x}| < \delta$$

we have

$$|x_n - \overline{x}| < \varepsilon$$
 for all  $n \geqslant -k$ .

(ii) An equilibrium point  $\overline{x}$  of Eq.(2) is locally asymptotically stable if  $\overline{x}$  is a locally stable solution of Eq.(2) and there exists  $\gamma > 0$  such that for all  $x_{-k}, x_{-k+1}, \ldots, x_{-1}, x_0 \in I$  with

$$|x_{-k} - \overline{x}| + |x_{-k+1} - \overline{x}| + \ldots + |x_0 - \overline{x}| < \gamma$$

we have

$$\lim_{n \to \infty} x_n = \overline{x}.$$

(iii) An equilibrium point  $\overline{x}$  of Eq. (2) is a global attractor if for all  $x_{-k}, x_{-k+1}, \ldots, x_{-1}, x_0 \in I$ , we have

$$\lim_{n \to \infty} x_n = \overline{x}.$$

- (iv) An equilibrium point  $\overline{x}$  of Eq. (2) is globally asymptotically stable if  $\overline{x}$  is locally stable, and  $\overline{x}$  is also a global attractor of Eq. (2).
- (v) An equilibrium point  $\overline{x}$  of Eq. (2) is unstable if  $\overline{x}$  is not locally stable.

The linearized equation of Eq. (2) about the equilibrium  $\overline{x}$  is the linear difference equation

(3) 
$$y_{n+1} = \sum_{i=0}^{k} \frac{\partial F(\overline{x}, \overline{x}, \dots, \overline{x})}{\partial x_{n-i}} y_{n-i}.$$

**Theorem A** [7]. Assume that  $p, q \in \mathbb{R}$  and  $k \in \{0, 1, 2, ...\}$ . Then

$$|p| + |q| < 1$$

is a sufficient condition for the asymptotic stability of the difference equation

$$x_{n+1} + px_n + qx_{n-k} = 0, \ n = 0, 1, \dots$$

 $\operatorname{Remark}$  1. Theorem A can be easily extended to general linear equations of the form

(4) 
$$x_{n+k} + p_1 x_{n+k-1} + \ldots + p_k x_n = 0, \quad n = 0, 1, \ldots$$

where  $p_1, p_2, \ldots, p_k \in \mathbb{R}$  and  $k \in \{1, 2, \ldots\}$ . Then Eq. (4) is asymptotically stable provided that

$$\sum_{i=1}^k |p_i| < 1.$$

The following theorem (which we state and prove for the convenience of the reader) treats the method of Full Limiting Sequences which was developed by Karakostas (see [5] and [6]).

**Theorem B.** Let  $F \in C[I^{k+1}, I]$  for an interval I of real numbers and for a non-negative integer k. Let  $\{x_n\}_{n=-k}^{\infty}$  be a solution of Eq. (2), and suppose that there exist constants  $A \in I$  and  $B \in I$  such that

$$A \leqslant x_n \leqslant B$$
 for all  $n \geqslant -k$ .

Let  $\mathcal{L}_0$  be a limit point of the sequence  $\{x_n\}_{n=-k}^{\infty}$ . Then the following statements are true.

- (i) There exists a solution  $\{L_n\}_{n=-\infty}^{\infty}$  of Eq. (2), called a full limiting sequence of  $\{x_n\}_{n=-k}^{\infty}$ , such that  $L_0 = \mathcal{L}_0$  and that for every  $N \in \{\ldots, -1, 0, 1, \ldots\}$ ,  $L_N$  is a limit point of  $\{x_n\}_{n=-k}^{\infty}$ .
- (ii) For every  $i_0 \leqslant -k$ , there exists a subsequence  $\{x_{r_i}\}_{i=0}^{\infty}$  of  $\{x_n\}_{n=-k}^{\infty}$  such that

$$L_N = \lim_{i \to \infty} x_{r_i + N}$$
 for every  $N \geqslant i_0$ .

Proof. We first show that there exists a solution  $\{l_n\}_{n=-k-1}^{\infty}$  of Eq. (2) such that  $l_0 = \mathcal{L}_0$  and that for every  $N \ge -k-1$ ,  $l_N$  is a limit point of  $\{x_n\}_{n=-k}^{\infty}$ .

To this end, observe that there exists a subsequence  $\{x_{n_i}\}_{i=0}^{\infty}$  of  $\{x_n\}_{n=-k}^{\infty}$  such that

$$\lim_{i \to \infty} x_{n_i} = \mathcal{L}_0.$$

Now the subsequence  $\{x_{n_i-1}\}_{i=1}^{\infty}$  of  $\{x_n\}_{n=-k}^{\infty}$  also lies in the interval [A, B] and so it has a limit point, which we denote by  $\mathcal{L}_{-1}$ . It follows that there exists another subsequence  $\{x_{n_j}\}_{j=0}^{\infty}$  of  $\{x_{n_i}\}_{i=0}^{\infty}$  such that  $\lim_{j\to\infty} x_{n_j-1} = \mathcal{L}_{-1}$ .

Thus we see that

$$\lim_{j \to \infty} x_{n_j - 1} = \mathcal{L}_{-1} \quad \text{and} \quad \lim_{j \to \infty} x_{n_j} = \mathcal{L}_0.$$

It follows similarly to the above that after re-labelling, if necessary, we may assume that

$$\lim_{j\to\infty} x_{n_j-k-1} = \mathcal{L}_{-k-1}, \quad \lim_{j\to\infty} x_{n_j-k} = \mathcal{L}_{-k}, \dots, \quad \lim_{j\to\infty} x_{n_j} = \mathcal{L}_0.$$

Consider the solution  $\{l_n\}_{n=-k-1}^{\infty}$  of Eq. (2) with the initial conditions

$$l_{-1} = \mathcal{L}_{-1}, \ l_{-2} = \mathcal{L}_{-2}, \dots, \ l_{-k-1} = \mathcal{L}_{-k-1}.$$

Then

$$F(\mathcal{L}_{-1}, \mathcal{L}_{-2}, \dots, \mathcal{L}_{-k-1}) = \lim_{j \to \infty} F(x_{n_j-1}, x_{n_j-2}, \dots, x_{n_j-k-1})$$
$$= \lim_{j \to \infty} x_{n_j} = \mathcal{L}_0 = l_0.$$

It follows by induction that the solution  $\{l_n\}_{n=-k-1}^{\infty}$  of Eq. (2) has the desired property that  $l_0 = \mathcal{L}_0$ , and that  $l_N$  is a limit point of  $\{x_n\}_{n=-k}^{\infty}$  for every  $N \ge -k-1$ .

Let S be the set of all solutions  $\{\mathcal{L}_n\}_{n=-m}^{\infty}$  of Eq. (2) such that the following statements are true.

- (i)  $-\infty \leqslant -m \leqslant -k-1$ .
- (ii)  $\mathcal{L}_n = l_n$  for all  $n \geqslant -k-1$ .
- (iii) For every  $j_0 \in \text{domain } \{\mathcal{L}_n\}_{n=-m}^{\infty}$ , there exists a subsequence  $\{x_{n_l}\}_{l=0}^{\infty}$  of  $\{x_n\}_{n=-k}^{\infty}$  such that

$$\mathcal{L}_N = \lim_{l \to \infty} x_{n_l + N}$$
 for all  $N \geqslant j_0$ .

Clearly  $\{l_n\}_{n=-k-1}^{\infty} \in S$ , and so  $S \neq \varphi$ . Given  $y, z \in S$ , we say that  $y \leq z$  if  $y \subset z$ . It follows that  $(S, \leq)$  is a partially ordered set which satisfies the hypotheses of Zorn's Lemma, and so we see that S has a maximal element which clearly is the desired solution  $\{L_n\}_{n=-\infty}^{\infty}$ .

## 2. Linearized stability analysis

In this section we study the local stability character of the solutions of Eq. (1). Eq. (1) has a unique positive equilibrium point and it is given by

$$\overline{x} = \sum_{i=0}^{k} a_i / \sum_{i=0}^{k} b_i = \frac{A}{B}.$$

Let  $f: (0,\infty)^{k+1} \longrightarrow (0,\infty)$  be a function defined by

(5) 
$$f(u_0, u_1, \dots, u_k) = \frac{a_0 u_0 + a_1 u_1 + \dots + a_k u_k}{b_0 u_0 + b_1 u_1 + \dots + b_k u_k}.$$

Then it follows that

$$f_{u_0}(u_0, u_1, \dots, u_k) = \frac{(a_0b_1 - a_1b_0)u_1 + (a_0b_2 - a_2b_0)u_2 + \dots + (a_0b_k - a_kb_0)u_k}{(b_0u_0 + b_1u_1 + \dots + b_ku_k)^2}$$

$$= \left(a_0 \sum_{i=1}^k b_i u_i - b_0 \sum_{i=1}^k a_i u_i\right) / \left(\sum_{i=0}^k b_i u_i\right)^2,$$

$$f_{u_1}(u_0, u_1, \dots, u_k) = \frac{(a_1b_0 - a_0b_1)u_0 + (a_1b_2 - a_2b_1)u_2 + \dots + (a_1b_k - a_kb_1)u_k}{(b_0u_0 + b_1u_1 + \dots + b_ku_k)^2}$$

$$= \left(a_1 \sum_{\substack{i=0, \\ i \neq 1}}^k b_i u_i - b_1 \sum_{\substack{i=0, \\ i \neq 1}}^k a_i u_i\right) / \left(\sum_{\substack{i=0}}^k b_i u_i\right)^2,$$

 $f_{u_k}(u_0, u_1, \dots, u_k) = \frac{(a_k b_0 - a_0 b_k) u_0 + (a_k b_1 - a_1 b_k) u_1 + \dots + (a_k b_{k-1} - a_{k-1} b_k) u_{k-1}}{(b_0 u_0 + b_1 u_1 + \dots + b_k u_k)^2}$   $= \left(a_k \sum_{i=0}^{k-1} b_i u_i - b_k \sum_{i=0}^{k-1} a_i u_i\right) / \left(\sum_{i=0}^k b_i u_i\right)^2.$ 

Now we see that

$$f_{u_0}(\overline{x}, \overline{x}, \dots, \overline{x}) = \frac{(a_0b_1 - a_1b_0) + (a_0b_2 - a_2b_0) + \dots + (a_0b_k - a_kb_0)}{AB}$$

$$= \frac{a_0B^0 - b_0A^0}{AB},$$

$$f_{u_1}(\overline{x}, \overline{x}, \dots, \overline{x}) = \frac{(a_1b_0 - a_0b_1) + (a_1b_2 - a_2b_1) + \dots + (a_1b_k - a_kb_1)}{AB}$$

$$= \frac{a_1B^1 - b_1A^1}{AB},$$
.

$$f_{u_k}(\overline{x}, \overline{x}, \dots, \overline{x}) = \frac{(a_k b_0 - a_0 b_k) + (a_k b_1 - a_1 b_k) + \dots + (a_k b_{k-1} - a_{k-1} b_k)}{AB}$$
$$= \frac{a_k B^k - b_k A^k}{AB}.$$

The linearized equation of Eq. (1) about  $\overline{x}$  is

$$y_{n+1} + \sum_{i=0}^{k} d_i y_{n-i} = 0,$$

where  $d_i = -f_{u_i}(\overline{x}, \overline{x}, \dots, \overline{x})$  for  $i = 0, 1, \dots, k$ , whose characteristic equation is

$$\lambda^{k+1} + \sum_{i=0}^{k} d_i \lambda^i = 0.$$

Theorem 2.1. Assume that

$$\sum_{i=0}^{k} \left| a_i B^i - b_i A^i \right| < AB.$$

Then the positive equilibrium point of Eq. (1) is locally asymptotically stable.

Proof. The proof is a direct consequence of Theorem A.

#### 3. Boundedness of solutions

Here we study the persistence of Eq. (1).

**Theorem 3.1.** Every solution of Eq. (1) is bounded and persists.

Proof. Let  $\{x_n\}_{n=-k}^{\infty}$  be a solution of Eq. (1). It follows from Eq. (1) that

$$\begin{split} x_{n+1} &= \frac{a_0x_n + a_1x_{n-1} + \ldots + a_kx_{n-k}}{b_0x_n + b_1x_{n-1} + \ldots + b_kx_{n-k}} \\ &= \frac{a_0x_n}{b_0x_n + b_1x_{n-1} + \ldots + b_kx_{n-k}} + \frac{a_1x_{n-1}}{b_0x_n + b_1x_{n-1} + \ldots + b_kx_{n-k}} + \ldots \\ &\quad + \frac{a_kx_{n-k}}{b_0x_n + b_1x_{n-1} + \ldots + b_kx_{n-k}} \\ &\leqslant \frac{a_0x_n}{b_0x_n} + \frac{a_1x_{n-1}}{b_1x_{n-1}} + \ldots + \frac{a_kx_{n-k}}{b_kx_{n-k}}. \end{split}$$

Hence

(6) 
$$x_n \leqslant \sum_{i=0}^k \frac{a_i}{b_i} = M \quad \text{for all} \quad n \geqslant 1.$$

Now we wish to show that there exists m > 0 such that

$$x_n \geqslant m$$
 for all  $n \geqslant 1$ .

The transformation

$$x_n = \frac{1}{y_n}$$

will reduce Eq. (1) to the equivalent form

$$y_{n+1} = \frac{b_0 \prod_{i=1}^k y_{n-i} + b_1 \prod_{i=0, i \neq 1}^k y_{n-i} + \dots + b_k \prod_{i=1}^{k-1} y_{n-i}}{a_0 \prod_{i=1}^k y_{n-i} + a_1 \prod_{i=0, i \neq 1}^k y_{n-i} + \dots + a_k \prod_{i=1}^{k-1} y_{n-i}}$$

$$= \frac{b_0 \prod_{i=1}^k y_{n-i}}{a_0 \prod_{i=1}^k y_{n-i} + a_1 \prod_{i=0, i \neq 1}^k y_{n-i} + \dots + a_k \prod_{i=1}^{k-1} y_{n-i}}$$

$$+ \frac{b_1 \prod_{i=0, i \neq 1}^k y_{n-i}}{a_0 \prod_{i=1}^k y_{n-i} + a_1 \prod_{i=0, i \neq 1}^k y_{n-i} + \dots + a_k \prod_{i=1}^{k-1} y_{n-i}} + \dots$$

$$+ \frac{b_k \prod_{i=1}^k y_{n-i}}{a_0 \prod_{i=1}^k y_{n-i} + a_1 \prod_{i=0, i \neq 1}^k y_{n-i} + \dots + a_k \prod_{i=1}^{k-1} y_{n-i}},$$

which implies that

$$y_{n+1} \leqslant \frac{b_0 \prod_{i=1}^k y_{n-i}}{a_0 \prod_{i=1}^k y_{n-i}} + \frac{b_1 \prod_{i=0, i \neq 1}^k y_{n-i}}{a_1 \prod_{i=0, i \neq 1}^k y_{n-i}} + \ldots + \frac{b_k \prod_{i=1}^{k-1} y_{n-i}}{a_k \prod_{i=1}^{k-1} y_{n-i}} = \frac{b_0}{a_0} + \frac{b_1}{a_1} + \ldots + \frac{b_k}{a_k}.$$

Hence

$$\frac{1}{x_{n+1}} \leqslant \sum_{i=0}^{k} \frac{b_i}{a_i}.$$

It follows that

$$\frac{1}{x_{n+1}} \leqslant \sum_{i=0}^{k} \frac{b_i}{a_i} = H \quad \text{ for all } n \geqslant 1.$$

Thus we obtain

(7) 
$$x_n = \frac{1}{y_n} \geqslant \frac{1}{H} = m \quad \text{for all } n \geqslant 1.$$

From (6) and (7) we see that

$$m \leqslant x_n \leqslant M$$
 for all  $n \geqslant 1$ .

Therefore every solution of Eq. (1) is bounded and persists.

#### 4. Periodicity of solutions

In this section we study the existence of a prime period two solutions of Eq. (1). Let  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\delta$  be defined as follows:

If k is odd, then

$$\alpha = \sum_{i=0}^{(k-1)/2} a_{2i}, \quad \beta = \sum_{i=0}^{(k-1)/2} a_{2i+1},$$
$$\gamma = \sum_{i=0}^{(k-1)/2} b_{2i}, \quad \delta = \sum_{i=0}^{(k-1)/2} b_{2i+1},$$

if k is even, then

$$\alpha = \sum_{i=0}^{k/2} a_{2i}, \quad \beta = \sum_{i=0}^{k/2-1} a_{2i+1},$$
$$\gamma = \sum_{i=0}^{k/2} b_{2i}, \quad \delta = \sum_{i=0}^{k/2-1} b_{2i+1}.$$

**Theorem 4.1.** Eq. (1) has a positive prime period two solution if and only if

(8) 
$$4\delta\alpha < (\gamma - \delta)(\beta - \alpha).$$

Proof. First suppose that there exists a prime period two solution

$$\ldots, p, q, p, q, \ldots$$

of Eq. (1). We will prove that condition (8) holds.

We see from Eq. (1) that

$$p = \frac{\alpha q + \beta p}{\gamma q + \delta p}$$

and

$$q = \frac{\alpha p + \beta q}{\gamma p + \delta q}.$$

Then

$$\gamma pq + \delta p^2 = \alpha q + \beta p$$

and

(10) 
$$\gamma pq + \delta q^2 = \alpha p + \beta q.$$

Subtracting (9) from (10) gives

$$\delta(p^2 - q^2) = (\beta - \alpha)(p - q).$$

Since  $p \neq q$ , it follows that

$$(11) p+q=\frac{\beta-\alpha}{\delta}.$$

Also, since p and q are positive,  $(\beta - \alpha)$  should be positive. Again, adding (9) and (10) yields

(12) 
$$2\gamma pq + \delta(p^2 + q^2) = (p+q)(\alpha + \beta).$$

It follows by (11), (12) and the relation

$$p^2 + q^2 = (p+q)^2 - 2pq$$
 for all  $p, q \in \mathbb{R}$ 

that

$$2(\gamma - \delta)pq = \frac{2\alpha(\beta - \alpha)}{\delta}.$$

Again, since p and q are positive and  $\beta > \alpha$ , we see that  $\gamma > \delta$ . Thus

(13) 
$$pq = \frac{\alpha(\beta - \alpha)}{\delta(\gamma - \delta)}.$$

Now it is clear from Eq. (11) and Eq. (13) that p and q are the two positive distinct roots of the quadratic equation

(14) 
$$t^{2} - \frac{\beta - \alpha}{\delta}t + \frac{\alpha(\beta - \alpha)}{\delta(\gamma - \delta)} = 0,$$

and so

$$\left[\frac{\beta - \alpha}{\delta}\right]^2 - \frac{4\alpha(\beta - \alpha)}{\delta(\gamma - \delta)} > 0.$$

Since  $\gamma - \delta$  and  $\beta - \alpha$  have the same sign,

$$\frac{\beta - \alpha}{\delta} > \frac{4\alpha}{\gamma - \delta},$$

which is equivalent to

$$4\delta\alpha < (\gamma - \delta)(\beta - \alpha).$$

Therefore inequality (8) holds.

Second suppose that inequality (8) is true. We will show that Eq. (1) has a prime period two solution.

Assume that

$$p = \frac{\frac{\beta - \alpha}{\delta} - \sqrt{\left[\frac{\beta - \alpha}{\delta}\right]^2 - \frac{4\alpha(\beta - \alpha)}{\delta(\gamma - \delta)}}}{2}$$

and

$$q = \frac{\frac{\beta - \alpha}{\delta} + \sqrt{\left[\frac{\beta - \alpha}{\delta}\right]^2 - \frac{4\alpha(\beta - \alpha)}{\delta(\gamma - \delta)}}}{2}.$$

We see from inequality (8) that

$$(\gamma - \delta)(\beta - \alpha) > 4\delta\alpha$$

or

$$[\beta - \alpha]^2 > \frac{4\delta\alpha(\beta - \alpha)}{\gamma - \delta},$$

which is equivalent to

$$\left[\frac{\beta - \alpha}{\delta}\right]^2 > \frac{4\alpha(\beta - \alpha)}{\delta(\gamma - \delta)}.$$

Therefore p and q are distinct positive real numbers.

If k is odd, then we set (the case when k is even is similar and will be omitted)  $x_{-k} = q$ ,  $x_{-k+1} = p$ , ..., and  $x_0 = p$ . We wish to show that  $x_1 = x_{-1} = q$  and  $x_2 = x_0 = p$ . It follows from Eq. (1) that

$$x_1 = \frac{\alpha p + \beta q}{\gamma p + \delta q},$$

where p and q are as given above.

It follows that

$$x_1 = \frac{\alpha \left[ 1 - \sqrt{1 - \frac{4\delta\alpha}{(\beta - \alpha)(\gamma - \delta)}} \right] + \beta \left[ 1 + \sqrt{1 - \frac{4\delta\alpha}{(\beta - \alpha)(\gamma - \delta)}} \right]}{\gamma \left[ 1 - \sqrt{1 - \frac{4\delta\alpha}{(\beta - \alpha)(\gamma - \delta)}} \right] + \delta \left[ 1 + \sqrt{1 - \frac{4\delta\alpha}{(\beta - \alpha)(\gamma - \delta)}} \right]}$$

$$= \frac{(\alpha + \beta) + (\beta - \alpha) \left[ \sqrt{1 - \frac{4\delta\alpha}{(\beta - \alpha)(\gamma - \delta)}} \right]}{(\gamma + \delta) + (\delta - \gamma) \left[ \sqrt{1 - \frac{4\delta\alpha}{(\beta - \alpha)(\gamma - \delta)}} \right]}.$$

Hence

$$x_{1} = \frac{(\alpha + \beta)(\gamma + \delta) - (\beta - \alpha)(\delta - \gamma)\left[1 - \frac{4\delta\alpha}{(\beta - \alpha)(\gamma - \delta)}\right]}{(\gamma + \delta)^{2} - (\delta - \gamma)^{2}\left[1 - \frac{4\delta\alpha}{(\beta - \alpha)(\gamma - \delta)}\right]}$$

$$+ \frac{\{(\beta - \alpha)(\gamma + \delta) - (\alpha + \beta)(\delta - \gamma)\}\sqrt{1 - \frac{4\delta\alpha}{(\beta - \alpha)(\gamma - \delta)}}}{(\gamma + \delta)^{2} - [\delta - \gamma]^{2}\left[1 - \frac{4\delta\alpha}{(\beta - \alpha)(\gamma - \delta)}\right]}$$

$$= \frac{[2\beta\gamma - 2\delta\alpha] + [2\beta\gamma - 2\delta\alpha]\sqrt{1 - \frac{4\delta\alpha}{(\beta - \alpha)(\gamma - \delta)}}}{4\delta\gamma - \frac{4\delta\alpha[\delta - \gamma]}{\beta - \alpha}}$$

$$= \frac{\frac{\beta - \alpha}{\delta} + \sqrt{\left[\frac{\beta - \alpha}{\delta}\right]^{2} - \frac{4\alpha(\beta - \alpha)}{\delta(\gamma - \delta)}}}{2} = q.$$

Similarly to the above one can show that

$$x_2 = p$$
.

Then it follows by induction that

$$x_{2n} = p$$
 and  $x_{2n+1} = q$  for all  $n \geqslant -1$ .

Thus Eq. (1) has the positive prime period two solution

$$\dots, p, q, p, q, \dots$$

where p and q are the distinct roots of the quadratic equation (14) and the proof is complete.

In this section we investigate the global asymptotic stability of Eq. (1).

**Theorem 5.1.** If the function  $f(u_0, u_1, ..., u_k)$  defined by Eq. (5) is non decreasing in  $u_i$ , non increasing in  $u_j$  and

(15) 
$$A^{j}B^{i} \leq a_{i}(2b_{i}+B^{i}), \quad i,j=0,1,\ldots,k,$$

then the equilibrium point  $\overline{x}$  is a global attractor of Eq. (1).

Proof. Let  $\{x_n\}_{n=-k}^{\infty}$  be a solution of Eq. (1) and let f be the function defined by Eq. (5) which is non decreasing in  $u_i$  if  $a_i/b_i \geqslant a_j/b_j$ , and non increasing in  $u_i$  if  $a_i/b_i \leqslant a_j/b_j$ ,  $i, j = 0, 1, \ldots, k$ .

From Eq. (1) we see that

$$\begin{split} x_{n+1} &= \frac{a_0x_n + a_1x_{n-1} + \ldots + a_jx_{n-j} + \ldots + a_kx_{n-k}}{b_0x_n + b_1x_{n-1} + \ldots + b_jx_{n-j} + \ldots + b_kx_{n-k}} \\ &\leqslant \frac{a_0x_n + a_1x_{n-1} + \ldots + a_j(0) + \ldots + a_kx_{n-k}}{b_0x_n + b_1x_{n-1} + \ldots + b_j(0) + \ldots + b_kx_{n-k}} \\ &\leqslant \frac{a_0x_n}{b_0x_n} + \frac{a_1x_{n-1}}{b_1x_{n-1}} + \ldots + \frac{a_{j-1}x_{n-(j-1)}}{b_{j-1}x_{n-(j-1)}} + \frac{a_{j+1}x_{n-(j+1)}}{b_{j+1}x_{n-(j+1)}} + \ldots + \frac{a_kx_{n-k}}{b_kx_{n-k}} \\ &= \sum_{\substack{i=0\\i\neq j}}^k \frac{a_i}{b_i} = M. \end{split}$$

Hence

(16) 
$$x_n \leqslant M \quad \text{for all} \quad n \geqslant 1.$$

In the other hand,

(17) 
$$x_{n+1} \geqslant \frac{a_0 x_n + a_1 x_{n-1} + \dots + a_j(M) + \dots + a_i(0) + \dots + a_k x_{n-k}}{b_0 x_n + b_1 x_{n-1} + \dots + b_j(M) + \dots + b_i(0) + \dots + b_k x_{n-k}}$$

$$\geqslant \frac{a_j M}{b_0 M + b_1 M + \dots + b_j(M) + \dots + b_i(0) + \dots + b_k M}$$

$$= \frac{a_j M}{B^i M} = \frac{a_j}{B^i} = m.$$

From Eqs. (16) and (17) we see that

(18) 
$$m = \frac{a_j}{B^i} \leqslant x_n \leqslant \sum_{\substack{i=0\\i\neq j}}^k \frac{a_i}{b_i} = M \quad \text{for all } n \geqslant 1.$$

It follows by the Method of Full Limiting Sequences that there exist solutions  $\{I_n\}_{n=-\infty}^{\infty}$  and  $\{S_n\}_{n=-\infty}^{\infty}$  of Eq. (1) with

$$I = I_0 = \lim_{n \to \infty} \inf x_n \leqslant \lim_{n \to \infty} \sup x_n = S_0 = S,$$

where

$$I_n, S_n \in [I, S], \quad n = 0, -1, \dots$$

It suffices to show that I = S.

It follows from Eq. (1) that

$$\begin{split} I &= \frac{a_0I_{-1} + a_1I_{-2} + \ldots + a_jI_{-j-1} + \ldots + a_iI_{-i-1} + \ldots + a_kI_{-k-1}}{b_0I_{-1} + b_1I_{-2} + \ldots + b_jI_{-j-1} + \ldots + b_iI_{-i-1} + \ldots + b_kI_{-k-1}} \\ &\geqslant \frac{a_0I_{-1} + a_1I_{-2} + \ldots + a_j(S) + \ldots + a_i(I) + \ldots + a_kI_{-k-1}}{b_0I_{-1} + b_1I_{-2} + \ldots + b_j(S) + \ldots + b_i(I) + \ldots + b_kI_{-k-1}} \\ &\geqslant \frac{a_0I + a_1I + \ldots + a_j(S) + \ldots + a_i(I) + \ldots + a_kI}{b_0S + b_1S + \ldots + b_j(S) + \ldots + b_i(I) + \ldots + b_kS} = \frac{A^jI + a_jS}{B^iS + b_iI}, \end{split}$$

and so

$$(19) B^i S I \geqslant A^j I + a_j S - b_i I^2.$$

Similarly, we see from Eq. (1) that

$$\begin{split} S &= \frac{a_0 S_{-1} + a_1 S_{-2} + \ldots + a_j S_{-j-1} + \ldots + a_i S_{-i-1} + \ldots + a_k S_{-k-1}}{b_0 S_{-1} + b_1 S_{-2} + \ldots + b_j S_{-j-1} + \ldots + b_i S_{-i-1} + \ldots + b_k S_{-k-1}} \\ &\leqslant \frac{a_0 S_{-1} + a_1 S_{-2} + \ldots + a_j (I) + \ldots + a_i (S) + \ldots + a_k S_{-k-1}}{b_0 S_{-1} + b_1 S_{-2} + \ldots + b_j (I) + \ldots + b_i (S) + \ldots + b_k S_{-k-1}} \\ &\leqslant \frac{a_0 S + a_1 S + \ldots + a_j (I) + \ldots + a_i (S) + \ldots + a_k S}{b_0 I + b_1 I + \ldots + b_j (I) + \ldots + b_i (S) + \ldots + b_k I} = \frac{A^j S + a_j I}{B^i I + b_i S}, \end{split}$$

and so

$$(20) B^i S I \leqslant A^j S + a_j I - b_i S^2.$$

Therefore it follows from (19) and (20) that

$$A^j I + a_j S - b_i I^2 \leqslant A^j S + a_j I - b_i S^2$$

or

$$A^{j}(S-I) + a_{j}(I-S) + b_{i}(I^{2}-S^{2}) \ge 0,$$
  
 $(I-S)\{a_{j} + b_{i}(I+S) - A^{j}\} \ge 0,$ 

and so

$$I \geqslant S$$
 if  $a_i + b_i(I + S) - A^j \geqslant 0$ .

Now, we know by (15) that

$$A^j B^i \leqslant a_j (2b_i + B^i).$$

Hence

$$A^j B^i \leqslant a_j B^i \left(\frac{2b_i}{B^i} + 1\right)$$

or

$$A^{j} \leqslant b_{i} \left( \frac{a_{j}}{B^{i}} + \frac{a_{j}}{B^{i}} \right) + a_{j}.$$

It follows from Eq. (18) that

$$A^j \leqslant b_i(I+S) + a_i$$

and so it follows that

$$I \geqslant S$$
.

Therefore

$$I = S$$
.

zbl

zbl

zbl

This completes the proof.

## References

- [1] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed: On the periodic nature of some max-type difference equation. Int. J. Math. Math. Sci. 14 (2005), 2227–2239.
- [2] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed: On the difference equation  $x_{n+1} = \frac{\alpha x_{n-k}}{\beta + \gamma \prod_{i=0}^{k} x_{n-i}}$ . J. Conc. Appl. Math. 5 (2007), 101–113.
- [3] H. El-Metwally, E. A. Grove, G. Ladas, H. D. Voulov. On the global attractivity and the periodic character of some difference equations. J. Difference Equ. Appl. 7 (2001), 837–850.
- [4] H. El-Metwally, E. A. Grove, G. Ladas, L. C. McGrath: On the difference equation  $y_{n+1} = (y_{n-(2k+1)} + p)/(y_{n-(2k+1)} + qy_{n-2l})$ . Proceedings of the 6th ICDE, Taylor and Francis, London, 2004.
- [5] G. Karakostas: Asymptotic 2-periodic difference equations with diagonally self-invertible responses. J. Difference Equ. Appl. 6 (2000), 329–335.

| [6] | ${\it G.\ Karakostas:}$                         | Convergence | of a | difference | equation | via | the | full | limiting | sequences |
|-----|-------------------------------------------------|-------------|------|------------|----------|-----|-----|------|----------|-----------|
|     | method. Diff. Equ. Dyn. Sys. 1 (1993), 289–294. |             |      |            |          |     |     |      |          |           |

- [7] V. L. Kocic, G. Ladas: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic Publishers, Dordrecht, 1993.
- [8] W. A. Kosmala, M. R. S. Kulenovic, G. Ladas, C. T. Teixeira: On the recursive sequence  $y_{n+1} = p + y_{n-1}/qy_n + y_{n-1}$ . J. Math. Anal. Appl. 251 (2001), 571–586.
- [9] M. R. S. Kulenovic, G. Ladas, N. R. Prokup: A rational difference equation. Comput. Math. Appl. 41 (2001), 671–678.
- [10] M. R. S. Kulenovic, G. Ladas, N. R. Prokup: On the recursive sequence  $x_{n+1} = (\alpha x_n + \beta x_{n-1})/(A + x_n)$ . J. Difference Equ. Appl. 6 (2000), 563–576.
- [11] M. R. S. Kulenovic, G. Ladas, W. S. Sizer: On the recursive sequence  $x_{n+1} = (\alpha x_n + \beta x_{n-1})/(\gamma x_n + \delta x_{n-1})$ . Math. Sci. Res. Hot-Line 2 (1998), 1–16.
- [12] Wan-Tong Li, Hong-Rui Sun: Dynamics of a rational difference equation. Appl. Math. Comp. 163 (2005), 577–591.

Author's address: E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, e-mail: emelabbasy@mans.edu.eg, helmetwally@mans.edu.eg, emelsayed@mans.edu.eg.

zbl