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1. Introduction

We will consider initial-boundary value problems for the system

Dtu −

n∑

i=1

Di[ai(t, x, u(t, x), Du(t, x) + g(w(t, x))Dw(t, x); u, w)](1.1)

+ a0(t, x, u(t, x), Du(t, x) + g(w(t, x))Dw(t, x); u, w) = G,

Dtw = F (t, x; u, w) in QT = (0, T )× Ω ⊂ R
n+1, T ∈ (0,∞)(1.2)

where the functions

ai : QT × R
n+1 × Lp1(0, T ; V1) × L2(QT ) → R

(with a closed linear subspace V1 of the Sobolev spaceW 1,p1(Ω), 2 6 p1 < ∞) satisfy

conditions which are generalizations of the usual conditions for quasilinear parabolic

differential equations considered when using the theory of monotone type operators.

Further,

F : QT × Lp1(0, T ; V1) × L2(QT ) → R
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satisfies a Lipschitz condition. In the second part of the paper the case g = 0 and in

the third part the general case will be considered.

Such problems with g = 0 arise, e.g., when considering diffusion and transport

in porous media with variable porosity, see [4], [6]. In [6] a nonlinear system was

numerically studied which consisted of a parabolic, an elliptic and an ordinary DE,

describing the reaction-mineralogy-porosity changes in porous media. System (1.1),

(1.2) is the case when the pressure is assumed to be constant. The case of general

g was motivated by non-Fickian diffusion in viscoelastic polymers and by spread of

morphogens (see [7], [8]). In [2], [5] similar degenerate systems of parabolic differen-

tial equations were considered without functional dependence and with more special

differential equations, by using other methods.

2. Case g = 0

Let Ω ⊂ R
n be a bounded domain having the uniform C1 regularity property (see

[1]) and let p1 > 2 be a real number. Denote by W 1,p1(Ω) the usual Sobolev space

of real valued functions with the norm

‖u‖ =

[∫

Ω

(|Du|p1 + |u|p1)

]1/p1

.

Let V1 ⊂ W 1,p1(Ω) be a closed linear subspace containing C∞
0 (Ω). Denote by

Lp1(0, T ; V1) the Banach space of the set of measurable functions u : (0, T ) → V1

such that ‖u‖p
V1
is integrable, and define the norm by

‖u‖p1

Lp1(0,T ;V1)
=

∫ T

0

‖u(t)‖p1

V1
dt.

For the sake of brevity we denote Lp1(0, T ; V1) by XT
1 . The dual space of XT

1 is

Lq1(0, T ; V ⋆
1 ) where 1/p1 + 1/q1 = 1 and V ⋆

1 is the dual space of V1 (see, e.g., [10],

[11]). Further, let XT = XT
1 × L2(QT ).

On functions ai we assume:

(A1) The functions ai : QT ×R
n+1×XT → R satisfy the Carathéodory conditions

for arbitrary fixed (u, w) ∈ XT (i = 0, 1, . . . , n).

(A2) There exist bounded (nonlinear) operators g1 : XT → R
+ and k1 : XT →

Lq1(QT ) such that

|ai(t, x, ζ0, ζ; u, w)| 6 g1(u, w)[|ζ0|
p1−1 + |ζ|p1−1] + [k1(u, w)](t, x), i = 0, 1, . . . , n

for a.e. (t, x) ∈ QT , every (ζ0, ζ) ∈ R
n+1 and (u, w) ∈ XT .
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(A3) n∑

i=1

[ai(t, x, ζ0, ζ; u, w) − ai(t, x, ζ0, ζ
⋆; u, w)](ζi − ζ⋆

i )

> [g2(u)](t)|ζ − ζ⋆|p1 , t ∈ (0, T ]

where

(2.1) [g2(u)](t) >
c2

1 + ‖u‖σ
Xt

1

with some constants c2 > 0, 0 6 σ < p1 − 1.

(A4) There exists a (nonlinear) operator k2 : XT → L1(QT ) such that

n∑

i=0

ai(t, x, ζ0, ζ; u, w)ζi > [g2(u)](t)[|ζ0|
p1 + |ζ|p1 ] − [k2(u, w)](t, x)

for a.e. (t, x) ∈ QT , all (ζ0, ζ) ∈ R
n+1, (u, w) ∈ XT and

(2.2) ‖k2(u, w)‖L1(QT ) 6 c3

[
‖u‖λ + ‖w‖µ + 1

]

with some nonnegative constants λ < p1 − σ, µ < 2.

(A5) There exists δ ∈ (0, 1] such that if (uk) → u in Lp1(0, T ; W 1−δ,p1(Ω)), a.e. in

QT , (ζ
k
0 ) → ζ0, (wk) → w weakly in L2(QT ) then for i = 0, 1, . . . , n, a.e. (t, x) ∈ QT ,

and all ζ ∈ R
n we have

ai(t, x, ζk
0 , ζ; uk, wk) − ai(t, x, ζ0, ζ; uk, w) → 0, k1(uk, wk) → k1(u, w) in L1(QT ).

(See (A1).) Further, if conditions (ζk) → ζ, (wk) → w a.e. in QT are satisfied, too,

then

ai(t, x, ζk
0 , ζk; uk, wk) → ai(t, x, ζ0, ζ; u, w), i = 1, . . . , n

for a.e. (t, x) ∈ QT and

a0(t, x, ζk
0 , ζk; uk, wk) → a0(t, x, ζ0, ζ; u, w)

for a.e. (t, x) ∈ QT , in the last case assuming also that (Duk) → Du a.e. in QT .

Assumptions on F : QT × R× XT → R:

(F1) For each fixed (u, w) ∈ XT , F (·, u; u, w) ∈ L2(QT ).

(F2) F satisfies the following (global) Lipschitz condition: there exists a constant

K such that for each t ∈ (0, T ], (u, w̃), (u, w̃⋆) ∈ XT we have

∫

Qt

e−2cτ |F (τ, x, w̃(τ, x)ecτ ; u, w̃ect) − F (τ, x, w̃⋆(τ, x)ecτ ; u, w̃⋆ect)|2 dτ dx(2.3)

6 K

∫

Qt

|w̃(τ, x) − w̃⋆(τ, x)|2 dτ dx
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for each positive number c. Further, there is a constant K0 such that

∫

QT

|F (t, x, 0; u, 0)|2 dt dx 6 K0(‖u‖
λ
Lp1(0,T ;W 1−δ,p1 (Ω)) + 1).

(F3) If (uk) → u in Lp1(0, T ; W 1−δ,p1(Ω)), a.e. in QT , (ηk) → η and (wk) → w in

L2(QT ), a.e. in QT , then for a.e. (t, x) ∈ QT

F (t, x, ηk; uk, wk) → F (t, x, η; u, w).

R em a r k. A sufficient condition for (2.3) to hold is the following inequality:

∫

Ω

|F (τ, x, w(τ, x); u, w) − F (τ, x, w⋆(τ, x); u, w⋆)|2 dx

6 K1

∫

Qτ

|w(s, x) − w⋆(s, x)|2 ds dx

+ K2

∫

Ω

|w(γ(τ), x) − w⋆(γ(τ), x)|2 dx, τ ∈ (0, T )

with some constants K1, K2 and a function γ ∈ C1 satisfying γ′ > 0, 0 6 γ(τ) 6 τ .

Definition. We define an operator A = (A1, A2) : XT → (XT )⋆ by

[A(u, w), (v, z)] = [A1(u, w), v] + [A2(u, w), z],

[A1(u, w), v] =

∫

QT

n∑

i=1

ai(t, x, u(t, x), Du(t, x); u, w)Div dt dx

+

∫

QT

a0(t, x, u(t, x), Du(t, x); u, w)v dt dx,

[A2(u, w), z] =

∫

QT

F (t, x, w(t, x); u, w)z dt dx,

(u, w), (v, z) ∈ XT , where the brackets [·, ·] mean the dualities in spaces (XT )⋆, XT ,

(XT
1 )⋆, XT

1 , [L
2(QT )]⋆, [L2(QT )], respectively.

Theorem 2.1. Assume (A1)–(A5) and (F1)–(F3). Then for any G ∈ (XT
1 )⋆,

H ∈ L2(QT ) there exists (u, w) ∈ XT such that Dtu ∈ (XT
1 )⋆, Dtw ∈ L2(QT ),

Dtu + A1(u, w) = G, u(0) = 0,(2.4)

Dtw + A2(u, w) = H, w(0) = 0.(2.5)

S k e t c h o f t h e p r o o f. Define a new unknown function w̃ (instead of w) by

w̃(t, x) = w(t, x)e−ct, i.e. w(t, x) = w̃(t, x)ect
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with constant c > 0. Further, define a function F̃ and operators Ã1, Ã2 by

F̃ (t, x, η; u, w̃) = e−ctF (t, x, ηect; u, w̃ect) + cη,

[Ã1(u, w̃), v] = [A1(u, w), v] =

∫

QT

n∑

i=1

ai(t, x, u(t, x), Du(t, x); u, w)Div dt dx

+

∫

QT

a0(t, x, u(t, x), Du(t, x); u, w)v dt dx,

[Ã2(u, w̃), z] =

∫

QT

F̃ (t, x, w̃(t, x); u, w̃)z dt dx

=

∫

QT

e−ctF (t, x, w̃(t, x)ect; u, w̃ect)z dt dx + c

∫

QT

w̃z dt dx.

Clearly, (u, w) is a solution of (2.4), (2.5) if and only if (u, w̃) satisfies

Dtu + Ã1(u, w̃) = G, u(0) = 0,(2.6)

Dtw̃ + Ã2(u, w̃) = e−ctH = H̃, w̃(0) = 0.(2.7)

By (A1)–(A5), (F1), (F2) the operator Ã : XT → (XT )⋆ is bounded and demicon-

tinuous (see [10], [11]).

By (F2), Ã2 is monotone for sufficiently large c > 0), thus, by using (A1)–(A5),

one can show that Ã is pseudomonotone with respect to the domain of L = Dt:

D(L) = {(u, w̃) ∈ XT : (Dtu, Dtw̃) ∈ (XT )⋆, u(0) = 0, w̃(0) = 0},

i.e.

(uk, w̃k) → (u, w̃) weakly in XT ,(2.8)

(Luk, Lw̃k) → (Lu, Lw̃) weakly in (XT )⋆,

and

(2.9) lim sup
k→∞

[Ã(uk, w̃k), (uk, w̃k) − (u, w̃)] 6 0

imply

(2.10) lim
k→∞

[Ã(uk, w̃k), (uk, w̃k) − (u, w̃)] = 0

and

(2.11) Ã(uk, w̃k) → Ã(u, w̃) weakly in (XT )⋆.
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Because, by (2.8)

(2.12) (uk) → u in Lp(0, T ; W 1−δ,p(Ω)) and a.e. in QT

for a subsequence (again denoted by (uk), for simplicity), see, e.g., [10]. We may

choose the number c > 0 such that c > K (see (F2)). We have

[Ã2(uk, w̃k), w̃k − w̃] = [Ã2(uk, w̃k) − Ã2(uk, w̃), w̃k − w̃](2.13)

+ [Ã2(uk, w̃) − Ã2(u, w̃), w̃k − w̃] + [Ã2(u, w̃), w̃k − w̃]

where by c > K, (F2) the first term on the right hand side is nonnegative, the

second term tends to 0 by (2.12), (F2), (F3), Vitali’s theorem, and Cauchy-Schwarz

inequality, while, finally, the third term converges to 0 by (2.8). Thus (2.9), (2.13)

imply (for a subsequence)

(2.14) lim sup
k→∞

[Ã1(uk, w̃k), uk − u] 6 0.

By using (A2), (A3), (A5), Vitali’s theorem and Hölder’s inequality, one obtains

from (2.8), (2.14)

(2.15) lim
k→∞

[Ã1(uk, w̃k), uk − u)] = 0,

hence by (A3) one obtains for a subsequence

(2.16) lim
k→∞

∫

QT

|Duk − Du|p1 dt dx = 0, thus (Duk) → Du a.e. in QT .

Further, by (2.15), (2.9), (2.13)

(2.17) lim
k→∞

[Ã2(uk, w̃k), w̃k − w̃)] = 0,

thus by assumption (F2) and due to c > K (for a subsequence)

(2.18) lim
k→∞

∫

QT

|w̃k − w̃|2 dt dx and so (w̃k) → w̃ a.e. in QT .

Consequently, from (A5), (2.12), (2.16) one obtains (by using Vitali’s theorem)

(2.19) Ã1(uk, w̃k) → Ã1(u, w̃) weakly in Lq(0, T ; V ⋆
1 ).
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Similarly, (2.18), (F2), (F3) imply

(2.20) Ã2(uk, w̃k) → Ã2(u, w̃) weakly in L2(QT ).

Thus (2.19), (2.20) imply (2.11) for a subsequence. Finally, (2.15), (2.17) imply

(2.10) (for a subsequence). One can prove in the standard way that the last facts

imply (2.10), (2.11) for the original sequence.

Finally, by (A4), (F2) (for sufficiently large c > 0), Ã is coercive:

lim
‖(u,w̃)‖

XT →∞

[Ã(u, w̃), (u, w̃)]

‖u‖ + ‖w̃‖
= +∞.

Since Ã : XT → (XT )⋆ is bounded, demicontinuous, pseudomonotone with respect

to D(L) and coercive, we obtain the existence of a solution (u, w̃) of (2.6), (2.7) and

thus the existence of a solution (u, w) of (2.4), (2.5). (See, e.g. [3], [10].)

E x am p l e. Conditions (A1)–(A5) are satisfied if e.g.

ai(t, x, ζi, ζ; u, w) = b(H(u))ζi|ζ|
p1−2, i = 1, 2, . . . , n,

a0(t, x, ζi, ζ; u, w) = b(H(u))ζ0|ζ0|
p1−2 + b0(F0(u)) + b1(F1(w))

where b, b0, b1 are continuous functions satisfying with some positive constants

c3, c4, c5 the inequalities

b(θ) >
c3

1 + |θ|σ
(0 6 σ < p1 − 1),

|b0(θ)| 6 c4(|θ|
λ−1 + 1) where 1 6 λ < p1 − σ,

|b1(θ)| 6 c5(|θ|
µ1−1 + 1) where 0 6 µ1 < 2 − 2/p1

and

H : Lp1(0, T ; W 1−δ,p1(Ω)) → C(QT ),

F0 : Lp1(0, T ; W 1−δ,p1(Ω)) → Lp1(QT ), F1 : L2(QT ) → R

are linear continuous operators. If b is between two positive constants, H may be

the same as F0.

Conditions (F1)–(F3) are satisfied if e.g.

F (t, x, η; u, w) = β(η)γ1(H1(u)) + γ2(H2(u))δ(G(w)) + γ3(H3(u))
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where β, δ are globally Lipschitz functions, γ1, γ2 are continuous and bounded, γ3 is

continuous and satisfies

|γ3(θ)| 6 c5|θ|
λ/2 + c6

with some constants c5, c6, and

G : L2(QT ) → L2(QT ), H1, H2 : Lp1(0, T ; W 1−δ,p1(Ω)) → Lp1(QT ),

H3 : Lp1(0, T ; W 1−δ,p1(Ω)) → L2(QT )

are continuous linear operators such that G satisfies for all w ∈ L2(QT )
∫

Ω

|[G(w)](τ, x)|2 dx 6 K1

∫

Qτ

|w(s, x)|2 ds dx + K2

∫

Ω

|w(γ(s), x)|2 dx

where γ ∈ C1, γ′ > 0, γ(s) 6 s.

3. Case g 6= 0

Now we shall consider equations (1.1), (1.2) with a bounded, continuous function g.

This problem will be transformed to the case g = 0, considered in Theorem 2.1. Let

f =
∫

g, f(0) = 0, p1 = p > 2.

Define

X̃T = Lp(0, T ; W 1,p(Ω)) × Lp(0, T ; W 1,p(Ω))

and an operator A1 : X̃T →
(
XT

1

)⋆
for (u, w) ∈ X̃T , v ∈ XT

1 by

[A1(u, w), v] =

∫

QT

{ n∑

i=1

ai(t, x, u, Du + g(w)Dw; u, w)Div

}
dt dx

+

∫

QT

a0(t, x, u(t, x), Du(t, x) + g(w(t, x))Dw(t, x); u, w)v dt dx.

Further, assume

(F4) F has the form F (t, x; u, w) = F1(t, x, [h(u)](t, x), w(t, x)) where F1 is contin-

uously differentiable with respect to the last three variables, the partial derivatives

are bounded and either h(u) = u or h : Lp(QT ) → Lp(0, T ; W 1,p(Ω)) is a continuous

linear operator such that h(u) ∈ Lp(0, T ; C1(Ω)) for all u ∈ Lp(QT ) and the following

estimate holds for any τ ∈ [0, T ] with a suitable constant:
∫

Ω

|[h(u)](τ, x)|2 dx 6 const

∫

Qτ

|u(s, x)|2 ds dx.

Further, there exists a constant c0 > 0 such that

F1(t, x, ζ0, η)η < 0 if |η| > c0.
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Theorem 3.1. Assume that (A1)–(A5) and (F1)–(F4) are satisfied with p1 = p >

2, δ = 1, σ < p − 2 such that for the operators g1, k1, g2, k2 in (A2)–(A4) we have

g1(u, w)q
6 const g2(u, w), k1(u, w)q

6 const k2(u, w) if w(t, x) 6 c0 a.e.

Further, let g be a bounded, continuous function. Then for any G ∈ (XT
1 )⋆ there

exists (u, w) ∈ X̃T such that u + f(w) ∈ Lp(0, T ; V1),

Dtu + Dt[f(w)] ∈ (XT
1 )⋆, Dtw ∈ L2(QT ),

Dtu + A1(u, w) = G, u(0) = 0,(3.1)

Dtw = F (t, x; u, w) for a.e. (t, x) ∈ QT , w(0) = w.(3.2)

S k e t c h o f t h e p r o o f. Instead of u introduce a new unknown function ũ by

(3.3) ũ(t, x) = u(t, x) + f(w(t, x)) (where f =
∫

g, f(0) = 0).

By using the formulas

(3.4) Dtũ = Dtu + f ′(w)Dtw, Dũ = Du + f ′(w)Dw

we obtain that (u, w) ∈ X̃T is a solution of (3.1), (3.2) if and only if (ũ, w) ∈ X̃T

satisfies

Dtũ + Ã1(ũ, w) = G, ũ(0) = 0,(3.5)

Dtw = F (t, x; ũ − f(w), w), w(0) = 0(3.6)

where

[Ã1(ũ, w), v]

=

∫

QT

{ n∑

i=1

ai(t, x, ũ(t, x) − f(w(t, x)), Dũ(t, x); ũ − f(w), w)Div

}
dt dx

+

∫

QT

{a0(t, x, ũ − f(w), Dũ; ũ − f(w), w) − f ′(w)F (t, x; ũ − f(w), w)} v dt dx.

One can show that by Theorem 2.1 there is a solution (ũ, w) ∈ XT of (3.5), (3.6)

(such that Dtw ∈ L2(QT )). Then one proves that w ∈ Lp(0, T ; W 1,p(Ω)), hence

(ũ, w) ∈ X̃T and thus with u = ũ − f(w), (u, w) satisfies (3.1), (3.2).
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