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ON SOME SINGULAR SYSTEMS OF
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Abstract. We will prove existence of weak solutions of a system, containing non-local
terms u, w.
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1. INTRODUCTION

We will consider initial-boundary value problems for the system

(11 Duu— Z Difai(t, z,u(t, x), Du(t, z) + g(w(t, z)) Dw(t, x); u, w)]

+ ao(t, z, u(t, z), Du(t, z) + g(w(t, ©)) Dw(t, x); u, w) = G,
(1.2) Dyw = F(t,z;u,w) in Qr = (0,T) x Q@ C R"™, T € (0,00)

where the functions
ai: Qr x R"™ x LP1(0,T; V1) x L*(Qr) — R

(with a closed linear subspace V; of the Sobolev space W11 (), 2 < p; < c0) satisfy
conditions which are generalizations of the usual conditions for quasilinear parabolic
differential equations considered when using the theory of monotone type operators.
Further,

F: Qr x LP*(0,T; V1) x L*(Qr) — R
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satisfies a Lipschitz condition. In the second part of the paper the case ¢ = 0 and in
the third part the general case will be considered.

Such problems with g = 0 arise, e.g., when considering diffusion and transport
in porous media with variable porosity, see [4], [6]. In [6] a nonlinear system was
numerically studied which consisted of a parabolic, an elliptic and an ordinary DE,
describing the reaction-mineralogy-porosity changes in porous media. System (1.1),
(1.2) is the case when the pressure is assumed to be constant. The case of general
g was motivated by non-Fickian diffusion in viscoelastic polymers and by spread of
morphogens (see [7], [8]). In [2], [5] similar degenerate systems of parabolic differen-
tial equations were considered without functional dependence and with more special
differential equations, by using other methods.

2. CASE g=0

Let Q C R™ be a bounded domain having the uniform C! regularity property (see
[1]) and let p; > 2 be a real number. Denote by W11(Q) the usual Sobolev space
of real valued functions with the norm

ww{AWMW+MMV?

Let Vi C WUP1(Q) be a closed linear subspace containing C$°(£2). Denote by
LP1(0,T; V1) the Banach space of the set of measurable functions u: (0,7) — V;
such that [|u||}, is integrable, and define the norm by

T
Il ey = | Tttt

For the sake of brevity we denote LP1(0,7;V;) by X{. The dual space of X7{ is
L1(0,T; V) where 1/p1 + 1/¢g1 = 1 and V;* is the dual space of V] (see, e.g., [10],
[11]). Further, let X7 = X{' x L*(Qr).

On functions a; we assume:

(A1) The functions a;: Q7 x R"™! x X7 — R satisfy the Carathéodory conditions
for arbitrary fixed (u,w) € X7 (i =0,1,...,n).

(A2) There exist bounded (nonlinear) operators g;: X? — Rt and k;: X7 —
L% (Qr) such that

|ai(t, 2, Co, G us w)] < gu(u, w)[|GoP ™ + [P + [k (w, )] (t,2), i=0,1,....n
for a.e. (t,7) € Qr, every ((p,¢) € R"™! and (u,w) € X7.
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(As) n
Z[ai(t,JT, COa C;U'a w) - ai(ta T, C07 C*; va)](@ - Cz*)

S p@I@c-cP, te©.1)

where

(2.1) [g2(w)](t)

> c2
T 1+l

with some constants c; > 0,0 < 0 <p; — 1.
(A4) There exists a (nonlinear) operator k2: X* — L'(Qr) such that

Y ailt,, o, Guyw)Gi > [ga(w)](8)[1Gol™ + 1¢17] = Rz (u, w)] (¢, 2)

i=0
for a.e. (t,7) € Qr, all ({o,¢) € R, (u,w) € XT and
(2.2) k2 (s ) 21 (@) < €3 [Ilull® + [lw][* +1]

with some nonnegative constants A < p; — o, pu < 2.

(As) There exists 0 € (0, 1] such that if (uz) — w in LP*(0,T; W'=%P1(Q)), a.e. in
Qr, (&) — o, (wg) — w weakly in L?(Qr) then for i =0,1,...,n, a.e. (t,z) € Qr,
and all ¢ € R™ we have

ai(t,x,cg,C;Uk,Wk) - Cli(t,.l?,CQ,C;’U,k,'LU) - Oa kl(uk,'l,Uk) - kl(U,UJ) in LI(QT)

(See (Ay).) Further, if conditions (¢¥) — ¢, (wx) — w a.e. in Qr are satisfied, too,
then
ai(taxag(l)cvgk;ukvwk) - ai(tvxvgoag;uaw)a 1= ]-a e, n

for a.e. (t,z) € Qr and

Cl()(t, Z, C§7 Ck;uka wk) - Cl()(t, x, C:O7 C7 ’LL,’LU)

for a.e. (t,z) € Qr, in the last case assuming also that (Duy) — Du a.e. in Qp.
Assumptions on F: Qr x Rx XT — R:
(F;) For each fixed (u,w) € XT, F(-,u;u,w) € L*(Qr).
(F2) F satisfies the following (global) Lipschitz condition: there exists a constant
K such that for each t € (0,7, (u, ), (u,w*) € X we have

(2.3) / e 2| F (1, z, 0 (T, 2)eT; u, we) — F(7, x, w* (7, 2)e; u, w*e)|* dr dz
t

< K/ |w(T, ) — @w* (7, z)|* dr dz
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for each positive number c¢. Further, there is a constant Ky such that

/ |F(t7x7 O; u, O)|2 dtdi[: < KO(HUH}:Pl(O’T;Wl*‘SvPl(Q)) + 1)

T

(F3) If (ug) — w in LP1(0, T; W1=9P1(Q)), a.e. in Qr, (nx) — 1 and (wy) — w in
L?(Q7), a.e. in Q7, then for a.e. (t,2) € Qr

F(t,x,ni; ug, wi) — F(t,z,n;u,w).

Remark. A sufficient condition for (2.3) to hold is the following inequality:

/Q |F (7, 2z, w(T, 2); u, w) — F(r, 2, w* (1, 2); u, w*) |* d

< Kl/Q lw(s, z) —w*(s,z)|* dsdz

+ KQ/Q lw(y(7), z) — w*(y(),2)|*dz, 7€ (0,T)
with some constants K7, Ko and a function v € C* satisfying v/ > 0, 0 < v(7) < 7.
Definition. We define an operator A = (A1, A2): X7 — (XT)* by
[A(u, w), (v, 2)] = [A1(u, w) v] + [A2(u, w), 2],

[A1(u, w),v / Zaltxu(t x), Du(t, x); u, w)D;vdt dz
Q

T =1

+ / ao(t, z,u(t, ), Du(t,x); u, w)v dt dz,
T

Aaww),2) = [ Plenu(to)uw)zdids,

T

(u,w), (v,2) € XT, where the brackets [-, -] mean the dualities in spaces (X7)*, X1,
(X)), XT, [LA2(Qr)]*, [L*(Q1)], respectively.

Theorem 2.1. Assume (A1)—(As) and (F1)—(F3). Then for any G € (X{)*,
H € L*(Qr) there exists (u,w) € XT such that Dyu € (X{)*, Dyw € L*(Qr),

(2.4) Diu+ Ay (u,w) =G, u(0)=0,
(2.5) Dyw + Az(u,w) = H, w(0) =0.
Sketch of the proof. Define a new unknown function @ (instead of w) by
W(t,x) = w(t,r)e” ", ie. w(t,x) = 0(t,x)e”
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with constant ¢ > 0. Further, define a function F and operators f~11, ZQ by
F(t,a,m;u,w) = e~ “F(t,x,ne; u, we™) + e,
n
[Zl(u,u?),v] = [A1(u,w),v] = Zai(t,x,u(t,m),Du(t,m);u,w)Dw dtdz

+ / ao(t, z,u(t,x), Du(t, z); u, w)v dt dz,

T

[Ag(u, @), 2] = / F(t, 2, 0(t, x); u, @)z dt do

= / e “LF(t,z,w(t,x)e; u, we)z dt dx + c/ wzdtdz.
T T

Clearly, (u,w) is a solution of (2.4), (2.5) if and only if (u,w) satisfies

(2.6) Dyu+ Ay (u, @) = G,  u(0) =0,

(2.7) Dyiv + Ag(u,w) = e " H = H, w(0)=0.

By (A1)—(As), (F1), (F2) the operator A: X7 — (X7T)* is bounded and demicon-
tinuous (see [10], [11]).

By (F5), Ay is monotone for sufficiently large ¢ > 0), thus, by using (A1)—(As),
one can show that A is pseudomonotone with respect to the domain of L = Djy:

D(L) = {(u,w) € XT: (Dyu, Dyw) € (XT)*, w(0)=0, w(0)=0},

ie.

(2.8) (ug, Wy) — (u,w) weakly in X7,
(Lug, Laby,) — (Lu, L) weakly in (X7)*,

and

(2.9) 11}131 suplA(up, i), (ug, Wg) — (u, )] < 0

imply

(2.10) Jim. [A(ug, ), (up, ) — (u, ®)] =0

and

(2.11) A(ug, W) — A(u, ) weakly in (XT)*.
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Because, by (2.8)
(2.12) (up) — u in LP(0,T; W'=%P(Q)) and a.e. in Qr

for a subsequence (again denoted by (ug), for simplicity), see, e.g., [10]. We may
choose the number ¢ > 0 such that ¢ > K (see (F2)). We have

(2.13) [Ag(ug, @y, B — W] = [Ag(up, Br) — A (ug, D), Wy — 0]

+ [Ag(up, @) — Ag(u, @), Wy — 0] + [Az(u, @), By — 0]

where by ¢ > K, (F2) the first term on the right hand side is nonnegative, the
second term tends to 0 by (2.12), (F2), (F3), Vitali’s theorem, and Cauchy-Schwarz
inequality, while, finally, the third term converges to 0 by (2.8). Thus (2.9), (2.13)
imply (for a subsequence)

(2.14) lim sup[A (wy, g ), ug — u] < 0.

k—oo

By using (A2), (As), (As), Vitali’s theorem and Hoélder’s inequality, one obtains
from (2.8), (2.14)

(2.15) Jim [ A (ug, @n), up — w)] = 0,
hence by (As) one obtains for a subsequence

(2.16) lim |Dui, — DulP* dt dz = 0, thus (Duy) — Du a.e. in Qr.

k—o0 Qr

Further, by (2.15), (2.9), (2.13)
(2.17) Jim [ Az (ug, @), @y, — @)] = 0,
thus by assumption (F2) and due to ¢ > K (for a subsequence)

(2.18) klim |y — w|? dt dz and so (W) — W a.e. in Q7.
T JQr

Consequently, from (As), (2.12), (2.16) one obtains (by using Vitali’s theorem)

(2.19) Ay (g, wy) — Ay (u, ) weakly in L(0,T; Vy).
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Similarly, (2.18), (F2), (F3) imply
(2.20) Ag(up, W) — Az(u, @)  weakly in L*(Qr).

Thus (2.19), (2.20) imply (2.11) for a subsequence. Finally, (2.15), (2.17) imply
(2.10) (for a subsequence). One can prove in the standard way that the last facts
imply (2.10), (2.11) for the original sequence.

Finally, by (A4), (F2) (for sufficiently large ¢ > 0), A is coercive:

[Au, ), (u, w)]

1 — = +00.
ll(ud) | xr—oo  [Jull + [|@|

Since A: XT — (XT)* is bounded, demicontinuous, pseudomonotone with respect
to D(L) and coercive, we obtain the existence of a solution (u, @) of (2.6), (2.7) and
thus the existence of a solution (u,w) of (2.4), (2.5). (See, e.g. [3], [10].)

Example. Conditions (A;)—(As) are satisfied if e.g.

ai(ta x, Ci7 C7 u, ’LU) = b(H(u))€1|C|pl_27 1= 1) 27 R I
ao(t, 2, Gi, G u, w) = b(H (w))Col¢o[" ™ 4 bo(Fo () + by (Fi (w))

where b, by, b; are continuous functions satisfying with some positive constants
c3, ¢4, c5 the inequalities

c3
b(0) >
©) 14 10|17

1bo(0)| < ca(|0]* 1 4 1) where 1 < A < py — o,
1b1(0)] < es(|0]** 1 +1) where 0 < 1 <2 —2/py

(O<U<p1_1)a

and

H: L0, T; W'07(Q)) — C(Q7),
Fy: LP(0, T; W' 0% (Q)) — LPY(Qr), Fi: L*(Qr) — R

are linear continuous operators. If b is between two positive constants, H may be
the same as Fj.

Conditions (F1)—(F3) are satisfied if e.g.

B(t,2,m;u,w) = Bn)y (Hi(w)) + 72 (Ha (w))d(G(w)) + v3(Hs(u))
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where 3,0 are globally Lipschitz functions, v, y2 are continuous and bounded, =3 is
continuous and satisfies
13(0)] < 5|02 + co

with some constants cs, cg, and

G: L*(Qr) — L*(Qr), Hi,Hy: LP*(0,T;W'=%P1(Q)) — LP'(Qr),
Hy: LP(0,T; W'°P1(Q)) — L*(Qr)

are continuous linear operators such that G satisfies for all w € L?(Qr)

/| Ta:|2da:<K1/ |w(s, x)|2dsdx+K2/|w ,x)|* da

.

where v € C1, v/ > 0, v(s) < s

3. CASE g #0

Now we shall consider equations (1.1), (1.2) with a bounded, continuous function g.
This problem will be transformed to the case g = 0, considered in Theorem 2.1. Let

f=[g,f(0)=0,p1=p>2.
Define
XT = LP(0,T; W(Q)) x LP(0, T WH($2))

and an operator A;: Xy — (XlT)* for (u,w) € X7, v e XT by

[A1(u, w),v] = /T { E": a;(t, z, u, Du+ g(w)Dw; u,w)Div} dt dx

i=1

+/ ao(t, z,u(t,x), Du(t,z) + g(w(t, z)) Dw(t, x); u, w)v dt dz.

Further, assume

(F4) F has the form F(t, x;u,w) = Fi(t, z, [h(uw)](t, ), w(t,z)) where F} is contin-
uously differentiable with respect to the last three variables, the partial derivatives
are bounded and either h(u) = u or h: LP(Q7) — LP(0,T; W1P(Q)) is a continuous
linear operator such that h(u) € LP(0,T; C1(Q)) for all u € LP(Q7) and the following
estimate holds for any 7 € [0, T] with a suitable constant:

/| N(r, )2 dz < const/ lu(s, z)|* ds dz.

P

Further, there exists a constant ¢y > 0 such that

Fl(tvxvcoan)n<0 if |77|>C()
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Theorem 3.1. Assume that (A1)—(As) and (F1)—(Fy4) are satisfied with p; = p >
2,0 =1, 0 < p— 2 such that for the operators g1, k1, g2, ko in (Ag)—(A4) we have

g1(u,w)? < const ga(u,w), ki(u,w)? < const ka(u,w) if w(t,z) < co a.e.

Further, let g be a bounded, continuous function. Then for any G € (X{)* there
exists (u,w) € X1 such that u + f(w) € LP(0,T; V),

Dyu+ Di[f(w)] € (X{)*, Dyw € L*(Qr),
(3.1) D+ Ay (u,w) =G, u(0)=0,
(3.2) Dyw = F(t,x;u,w) for a.e. (t,x) € Qr, w(0) = w.

Sketch of the proof. Instead of u introduce a new unknown function % by
(3.3) a(t,z) = u(t,z) + f(w(t,z)) (where f= [g, f(0)=0).
By using the formulas
(3.4) Dy = Dyu+ f'(w)Dyw, Du= Du+ f'(w)Dw

we obtain that (u,w) € X7 is a solution of (3.1), (3.2) if and only if (@, w) € X7

satisfies

(3.5) Dyt + A1 (@, w) = G, @(0) =0,
(3.6) Dyw = F(t,x;u — f(w),w), w(0)=0
where

[Ay (@1, w), V]

n

_ /QT { ;ai(t,x,ﬂ(t, 2) — f(w(t,2)), Da(t, z); i — f(w), w)Div} dt d

+ {ao(t,x,ﬁ - f(U)),Dﬁ,fl, - f(w)aw) - f’(w)F(t,x;ﬁ - f(w)vw)}vdtdx

One can show that by Theorem 2.1 there is a solution (@, w) € X7 of (3.5), (3.6)
(such that D;w € L?(Qr)). Then one proves that w € LP(0,T; W1?(Q)), hence
(i, w) € XT and thus with v = @ — f(w), (u,w) satisfies (3.1), (3.2).
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