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Abstract. Let X be a Banach space and T be a bounded linear operator on X. We
denote by S(T") the set of all complex A € C such that 7" does not have the single-valued
extension property at A. In this note we prove equality up to S(T") between the left Drazin
spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point
spectrum. As applications, we investigate generalized Wey!’s theorem for operator matrices
and multiplier operators.
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1. INTRODUCTION

Throughout this paper, X and Y are Banach spaces and B(X,Y") denotes the space
of all bounded linear operators from X to Y. For Y = X we write B(X,Y) = B(X).
ForT € B(X),let T*, N(T), R(T), o(T), 0s(T'), 0p(T') and 0,(T") denote the adjoint,
the null space, the range, the spectrum, the surjective spectrum, the point spectrum
and the approximate point spectrum of T, respectively. Let o(T') and B(T) be the
nullity and the deficiency of T defined by a(T") = dim N(T') and 3(T") = codim R(T).
If the range R(T) is closed and a(T") < oo (or B(T") < 00), then T is called an upper
(a lower) semi-Fredholm operator. If T € B(X) is either upper or lower semi-
Fredholm, then T is called a semi-Fredholm operator, and the index of T is defined
by ind(T) = «(T) — B(T). If both «(T) and G(T) are finite, then T is called a
Fredholm operator. An operator T is called Weyl if it is Fredholm of index zero.
The Weyl spectrum ow(T') is defined by ow(T) = {\ € C: T' — AI is not Weyl}.

For T' € B(X) and a nonnegative integer n define 7j,, to be the restriction of T' to
R(T™) viewed as a map from R(T") into R(T™) (in particular Tjo) = T'). If for some
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integer n the range space R(T") is closed and Tj,) is an upper (or a lower) semi-
Fredholm operator, then T is called an upper (a lower) semi-B-Fredholm operator. In
this case the index of T' is defined to be the index of the semi-Fredholm operator Tj,,;.
Moreover, if T, is a Fredholm operator, then 7' is called a B-Fredholm operator. A
semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm operator ([6], [8],
[13]). The upper semi-B-Fredholm spectrum oupr(T), the lower semi-B-Fredholm
spectrum oppr(T) and the B-Fredholm spectrum opp(T') of T are defined by

oupr(T) = {X € C: T — A is not an upper semi-B-Fredholm operator},
oLpr(T) ={A € C: T — A is not a lower semi-B-Fredholm operator},
opr(T) ={\ € C: T — A is not a B-Fredholm operator}.

We have
UBF(T) = OUBF (T) U O'LBF(T).

An operator T' € B(X) is said to be a B-Weyl operator if it is a B-Fredholm
operator of index zero. The B-Weyl spectrum opw(T) of T is defined by

opw(T) = {\ € C: T — A is not a B-Weyl operator}.

From [8, Lemma 4.1], T is a B-Weyl operator if and only if T'= F @ N, where F is
a Fredholm operator of index zero and N is a nilpotent operator.

We shall denote by SBF (X) (or SBFT(X)) the class of all 7' upper semi-B-
Fredholm operators (T lower semi-B-Fredholm operators) such that ind(7) < 0
(ind(T") > 0). The spectrum associated with SBF (X) is called the semi-essential
approzimate point spectrum and is denoted by OspR- (T)={Ne C: T—-)X ¢
SBF7 (X)}, while the spectrum associated with SBFT (X) is denoted by oggp+ (T) =
{AeC: T -\ ¢SBFT(X)}.

The ascent a(T) and the descent d(T') of T are given by a(T) = inf{n: N(T™) =
N(T"H} and d(T) = inf{n: R(T") = R(T"")}, with inf ) = co. It is well-known
that if a(T") and d(T') are both finite then they are equal, see [16, Proposition 38.3].

Recall that an operator T is Drazin invertible if it has a finite ascent and descent.
It is well known that T is Drazin invertible if and only if T = R & N where R
is invertible and N is nilpotent (see [20, Corollary 2.2]). The Drazin spectrum is
defined by op(T) = {A € C: T — Al is not Drazin invertible}. From [8, Lemma 4.1]
and [20, Corollary 2.2] we have

O'Bw(T) Q (TD(T).

40



Define the set LD(X) as
LD(X) = {T € B(X): a(T) < oo and R(T*D+1) is closed}.

From [21], LD(X) is a regularity and it is the dual version of the regularity RD(X) =
{T € B(X): d(T) < oo and R(TU™)) is closed}. An operator T' € B(X) is said to
be left (or right) Drazin invertible if T € LD(X) (T € RD(X)). The left Drazin
spectrum op(T) and the right Drazin spectrum o,p(T) are defined by op(T) =
(A€ C: T— A ¢ LD(X)} and o,p(T) = {\ € C: T — M ¢ RD(X)}. It is not
difficult to see that

O'D(T) = O’1D(T) @] O’rD(T).

2. PRELIMINARY RESULTS

An operator T € B(X) has the single-valued extension property at A\g € C (the
SVEP for short) if for every open disc D, centered at Ag, the only analytic function
f: Dy, — X which satisfies (T'— AI) f(A) = 0 for all A € Dj, is the function f = 0.
Trivially, every operator T" has the SVEP at all points of the resolvent; also T has
the SVEP at A € isoo(T') (isoo(T) is the set of all isolated points of o(T')). We say
that T" has SVEP if it has SVEP at every A € C, [15]. We denote by S(T) the set
of all A € C such that 7" does not have the single-valued extension property at A.
Note that (see [15], [19]) S(T') C 0p(T") and o(T') = S(T') Uos(T). In particular, if T'
(or T*) has the SVEP then o(T) = 05(T') (o(T) = 0.(T)).

Recall that if T'— AI has a finite ascent then it has the SVEP ([18]). Thus we have

S(T) C o1p(T) and S(T*) C op(T).

In the following theorem, we prove equality up to S(T') between the left Drazin
spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate
point spectrum.

Theorem 2.1. Let T € B(X). Then
UlD(T) = UUBF(T) U S(T) = USBF; (T) U S(T)

Proof. Let A ¢ oip(T), without loss of generality we assume that A = 0.
Then R(T*™)*1) is closed. Hence R(T*™)) is closed by [21, Lemma 12]. We shall
prove that Ti,(r) is upper semi-Fredholm. Let x € N(Tj4r)) then z € N(T) N
R(T*™). Hence z = T*T)y for some y € X. Then 0 = Tz = T4 *1y, Thus
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y € N(T*M+Y = N(TT)). Therefore 2 = 0 and hence Tia(r—x1)) 1s injective.
On the other hand, R(Tjq(ry)) = R(T*™+1) is closed. Thus Tiq(r)) is upper semi-
Fredholm and hence 0 ¢ oupr(T). Since S(T') C op(T') we have

UUBF(T) U S(T) - J]D(T).

Now let 0 ¢ [ousr(T)U(S(T)], then T is an upper semi-B-Fredholm operator. Hence
it follows from [7, Proposition 3.2] that there exist n such that R(T™) is closed and
Ty is semi-regular. Since T' has the SVEP at 0 then T}, has also the SVEP at 0.
Then from [1, Theorem 3.14], we conclude that T}, is injective with closed range.
Let & € N(T™*!), then TT"z = 0. Hence T"z € N(T) N R(T™) = N(T},)) = {0}.
Thus z € N(T™) , and hence N(T™) = N(T™"'). So T is of finite ascent and
a(T) < n. We have R(T"') = R(T},)) is closed with a(T) + 1 < n + 1. Hence
R(T*™M+1) is closed by [21, Lemma 12]. Thus T is left Drazin invertible. Therefore
J]D(T) C UUBF(T) @] S(T)

From [13, Lemma 2.12] we have TSBE; (T) C oip(T) and since oypr(T) C
USBF_T_ (T) we infer op (T) = OUBF (T) @] S(T) = O—SBF; (T) @] S(T) O

A useful consequence of the preceding result is that under the assumption of the
SVEP for T, the spectra oip(T"), oupr(T") and TSBE (T') are equal.

Corollary 2.1. If T € B(X) has the SVEP then
oin(T) = ousr(T) = ogpp - (T)-
By duality we get a similar result for the right Drazin spectrum.
Theorem 2.2. Let T € B(X). Then
o (T) = oLpr(T) US(T™) = oggp+ (1) US(T™).

Proof. Since oupr(T) = oupr(T™), ogpp+(T) = TsBE: (T*) and o,p(T) =
oip(T*) the assertion follows by Theorem 2.1. O

Corollary 2.2. If T* € B(X) has the SVEP then
orp(T) = oLpr(T) = Ogpp+ (T).
From Theorem 2.1 and Theorem 2.2 we get the following corollary.
Corollary 2.3. Let T € B(X). Then
(21)  op(T) = onr(T) US(T) US(T™)] = opw(T) U [S(T) US(T™).
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In particular if T and T* have the SVEP then
O'D(T) = UBF(T) = UBw(T).

The equality in (2.1) may be refined for op(T) and opw(T'). More precisely, we
have

Theorem 2.3. Let T € B(X) then
O’D(T) = O’Bw(T) U [S(T) n S(T*)]

Proof. Since opw(T)U(S(T)NS(T*)) C op(T) always holds, let A ¢ opw (T)U
(S(T) N S(T*)). Without loss of generality we assume that A = 0. Then T is a B-
Fredholm operator of index zero.

Case 1. If 0 ¢ S(T): Since T is a B-Fredholm operator of index zero, it follows
from [8, Lemma 4.1] that there exists a Fredholm operator F' of index zero and
a nilpotent operator N such that T'=F & N. If 0 ¢ o(F), then F' is invertible and
hence T is Drazin invertible. Now assume that 0 € o(F). Since T has the SVEP
at 0, F' has also the SVEP at 0. Hence it follows from [1, Theorem 3.16] that a(F')
is finite. F' is a Fredholm operator of index zero, hence it follows from [1, Theorem
3.4] that d(F) is also finite. Then a(F) = d(F) < oo which implies that 0 is a pole
of F' and hence an isolated point of o(F'). Operator N is nilpotent, hence 0 is an
isolated point of o(T'). From [8, Theorem 4.2] we get 0 ¢ op(T).

Case 2. If 0 ¢ S(T™), the proof goes similarly. O

Corollary 2.4 ([12]). If T or T* has the SVEP then
O’D(T) = O’Bw(T).

Recall that T is a Browder operator if T' is a Fredholm operator of finite ascent
and descent. Let op(T) be the Browder spectrum defined as the set of all A € C
such that T" — A is not Browder. Analogously, T is a B-Browder operator if for
some integer n, R(T") is closed and Tj, is Browder. Let opg(T’) be the B-Browder
spectrum. In [1, Corollary 3.53] it is proved that if T' or T™* has the SVEP, then

Uw(T) = O'B(T).

From [7, Theorem 3.6] we have op(T") = ogg(T), hence by Corollary 2.4, if T' or T*
has the SVEP then

O’Bw(T) = O’BB(T).
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Theorem 2.4. Let T € B(X) and let f be an analytic function on some open
neighborhood of o(T') which is nonconstant on any connected component of o(T).
Then

flopw(T)U[S(T) N S(T*)]) = opw (f(T)) U[S(F(T)) N S(f(T*))].
Proof. According to [21] the Drazin spectrum satisfies the spectral mapping

theorem for such a function f, hence the result follows at once from Theorem 2.3. [J

It is well known that if T has the SVEP then f(T) has also the SVEP [19]. Now
we retrieve the result proved in [2], [23]: f(opw(T)) = opw(f(T)) whenever T or
T* has the SVEP. Note that in [2], [23] the condition “f is nonconstant on any
connected component of o(T")” is dropped.

3. APPLICATIONS
3.1. Perturbations.

Lemma 3.1. Let T € B(X). Let N € B(X) be a nilpotent operator such that
TN = NT. Then
S(T+N)=S8(T).

Proof. See for instance [5, Lemma 2.1]. O
Lemma 3.2. LetT € B(X). If N € B(X) is a nilpotent operator which commutes

with T then
UlD(T—I-N) = UlD(T).

Proof. Assume that A\ = 0 ¢ o;p(T). Then a(T) is finite and R(T*T)+1)
is closed. Let m be the nonnegative integer such that N™ = 0 # N™ !, Let
s = max(a(T"), m). Then

2s = k k n72s—k
(T+N)*=> 5o )TN
S

k=0

1 2
_ (Y N2+ 4+ ) eNs 4 5t TsHINs— 44 (2712
2s 2s 2s 2s

(SN periyst o (25 s
2s 2s

—rs | (ST et (25 s
2s 2s
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Now let € N(T)?* = N(T)* that is (T)?**z = 0. Then it follows from the above
equality that (T+N)?*x = 0. Hence N(T)** C N(T+N)?*. With the same argument
for T+ N and —N we have N(T + N)?* C N(T)%. Thus N(T)?* = N(T + N)?s.
Since N(T) = N(T?%) = N(T?*t1), we get N(T+ N)?* = N(T+ N)?**1. Therefore
T+ N is of finite ascent. On the other hand, R(T+N)?* C R(T?) is closed. Hence by
[21, Lemma 12] R(T 4+ N)?**1 is closed. Thus 0 ¢ o1p(T + N). Hence oip (T + N) C
oip(T). With the same argument for T+ N and —N we get oip(T') C oip(T + N).

]

The next result follows from Theorem 2.1, Lemma 3.1 and Lemma 3.2.

Theorem 3.1. Let T € B(X). Let N € B(X) be a nilpotent operator which
commutes with T'. Then

Ospr (T + N)US(T) = o (T)US(T).

The following corollary which is proved in [3] gives an affirmative answer to the
question posed by Berkani-Amouch [9] in the case when T has the SVEP.

Corollary 3.1. Let T € B(X) have the SVEP. Let N € B(X) be a nilpotent
operator which commutes with T'. Then

USBF; (T+N)= USBF; (7).

3.2. Generalized Weyl’s theorem for operator matrices. Berkani [8, The-
orem 4.5] has shown that every normal operator T acting on a Hilbert space H
satisfies

(3.1) o(T)\ E(T) = opw(T),

where E(T) is the set of all isolated eigenvalues of T. We say that the generalized
Weyl’s theorem holds for T if equality (3.1) holds. This gives a generalization of the
classical Weyl’s theorem. Recall that T' € B(X) obeys Weyl’s theorem if

(3.2) o(T) \ Eo(T) = ow(T)

where FEo(T) denotes the set of the isolated points of o(T) which are eigenvalues
of finite multiplicity. By [13, Theorem 3.9] the generalized Weyl’s theorem implies
Weyl’s theorem and generally the reverse is not true.

For A € B(X), B€ B(Y) and C € B(Y, X) we denote by M¢ the operator defined
on X Y by

Mcz[A C].

0 B
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In general the fact that the generalized Weyl’s theorem holds for A and B does
not imply that the generalized Weyl’s theorem holds for M, = [‘3 Ig]. Indeed, let I
and I> be the identities on C and [o, respectively. Let S; and S5 be defined on Is by

Si(z1,22,...) = (0,421, 322,...), Sa(z1,22,...) = (0,321, 322,...).

Let Ty = [ ® Sy, To = S — Iz, A = T? and B = T%, then from [23, Example 1]
we have A and B obey the generalized Weyl’s theorem but M, does not obey it.
It also may happen that Mc obeys the generalized Weyl’s theorem while M, does
not obey it. Let A be the unilateral unweighted shift operator. For B = A* and
C =1 — AA*, we have that M¢ is unitary without eigenvalues. Hence M¢ satisfies
the generalized Weyl’s theorem (see [10, Remark 3.5]). But ow(Mp) = {A: |\ =1}
and o(Mo) \ Eo(Mo) = {\: |A| < 1}. Hence M, does not satisfy the Weyl’s theorem
and so by [13, Theorem 3.9] it does not satisfy the generalized Weyls theorem either.

A bounded linear operator T is said to be isoloid if every isolated point of o(T)
is an eigenvalue of T'.

Proposition 3.1. Let A and B be isoloids. Assume that opw (My) = opw (A) U
opw(B). If A and B obey the generalized Weyl’s theorem, then M, obeys the
generalized Weyl’s theorem.

Proof. Since A and B are isoloids, we have
E(Mo) = [E(A) No(B)]U[e(A) NE(B)]U[E(A) N E(B)].
Now if A and B obey the generalized Weyl’s theorem, then

E(Mo) = [o(A) Uo(B)]\ [ow (A) Uosw (B)]
= O'(Mo) \ O’Bw(Mo).

Then My obeys the generalized Weyl’s theorem. O
Lemma 3.3. Let A € B(X) and B € B(Y) have the SVEP. Then
UBW(MC) = UBw(A) @] O’Bw(B)

for all C € B(Y, X).

Proof. Since A and B have the SVEP, then it follows from [17, Proposition 3.1]
that M also has the SVEP. Hence opw (M¢) = op(Mc) by Corollary 2.4. Also
since A and B have the SVEP, it follows from [24, Corollary 2.1] that op(M¢) =
op(A)Uop(B). Therefore opw (Mc) = opw(A) U opw(B) by Corollary 2.4. O

46



Theorem 3.2. Let A and B be isoloids with the SVEP. If A and B obey the
generalized Weyl’s theorem, then M¢ obeys the generalized Weyl’s theorem for every
C e B(Y,X).

Proof. It follows from Proposition 3.1 and Lemma 3.3 that
E(My) = o(My) \ ow(Mo) = o(Mc) \ osw(Mc).

Hence it is enough to show that E(My) = E(M¢). Let A € E(M¢). Then A €
op(Mc) C op(A) Uop(B). Hence A € o,(Mg). Since A € isoo(M¢) = isoo(My) we
have A € E(My). Now let A € E(My). If A € 0(A) then A € isoo(A). Since A is an
isoloid, we have A € 0,(A) C 0,(M¢). Hence A € E(M¢). If A € 0(B) \ 0(A), then
A € 0p(B). Since A is invertible, we conclude that A € o,(M¢). Thus A € E(M¢).
Therefore E(My) = E(Mc). O

Let 7(T) be the set of all poles of the resolvent of T'. Recall from [14] that T is a
polaroid if isoo(T) C w(T'). Since w(T) C E(T) holds without restriction on 7', then
if T is a polaroid then E(T) = n(T).

Corollary 3.2. Let A and B be polaroids with the SVEP. Then M obeys the
generalized Weyl’s theorem for every C € B(Y, X).

Proof. A and B are polaroids hence F(A) = n(A) and E(B) = 7(B). Since 4
and B have the SVEP, we have by [4] that A and B satisfy the generalized Weyl’s
theorem. Hence we complete the proof by Theorem 3.2. ([

3.3. Multipliers on a commutative Banach algebra. Let A be a semi-simple
commutative Banach algebra. A mapping T: A — A is called a multiplier if

T(z)y =2T(y) forallz,ye A

By semi-simplicity of A, every multiplier is a bounded linear operator on A. Also
the semi-simplicity of A implies that every multiplier has the SVEP (see [1], [19]).

By [1, Theorem 4.36], for every multiplier 7" on a semi-simple commutative Banach
algebra A, E(T) = n(T) and since T has the SVEP we get from [4]

Proposition 3.2. Every multiplier on a semi-simple commutative Banach algebra
A obeys the generalized Weyl’s theorem.
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From Corollary 2.4 we have

Proposition 3.3 ([11]). Let T be a multiplier on a semi-simple commutative
Banach algebra A. Then the following assertions are equivalent:

i) T is B-Fredholm of index zero.
ii) T is Drazin invertible.

Now if we assume in addition that A is regular and Tauberian (see [19] for defi-
nition) then every multiplier 7" has the weak decomposition property (4 ) and then
T™* has also the SVEP (see [22] for definition and details). Hence we get from Corol-
lary 2.3

Proposition 3.4. Let T be a multiplier on a semi-simple regular Tauberian com-
mutative Banach algebra A. Then the following assertions are equivalent:

i) T is B-Fredholm.
ii) T is Drazin invertible.

For G a locally compact abelian group, let L'(G) be the space of C-valued func-
tions on G integrable with respect to Haar measure and M (G) the Banach algebra of
regular complex Borel measures on G. We recall that L!(G) is a regular semi-simple
Tauberian commutative Banach algebra. Then we have

Corollary 3.3. Let G be a locally compact abelian group, p € M(G) and X =
LY(G). Then every convolution operator T),: X — X, T,,(k) = uxk is B-Fredholm
if and only if it is Drazin invertible.

Acknowledgement. The authors are indebted to the referee for several help-
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http://www.emis.de/MATH-item?0783.47028
http://www.emis.de/MATH-item?0957.47004
http://www.emis.de/MATH-item?0177.17102
http://www.emis.de/MATH-item?0857.47002
http://www.emis.de/MATH-item?pre02159537
http://www.emis.de/MATH-item?1101.47002

