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Abstract

We study the convergence of numerical solution of the compressible Navier-Stokes system to its
incompressible limit. The numerical solution is obtained by the combined finite element-finite volume
method based on the Crouzeix-Raviart finite elements for velocity and piecewise constant approxima-
tion for density. The convective terms are approximated using the upwinding. The distance between a
numerical solution of the compressible problem and the strong solution of the incompressible Navier-
Stokes equations is measured by means of the relative energy functional. For barotropic pressure
exponent v > 3/2 and for well-prepared initial data we obtain the uniform convergence of order

O(VAt, h% €), a = min {2'@—_3, 1}. Extensive numerical simulations also confirm that the numerical

solution of the compressible problem converges to the solution of the incompressible Navier-Stokes
equations as the discretization parameters A¢, h and the Mach number ¢ tend to zero.
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1 Introduction

We consider the scaled compressible Navier-Stokes systems in the low Mach number regime:

Oro + divg(pu) =0, (1.1)
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1
O(ou) + divy(ou @ u) + gvxp(g) = div,S(Vzu), (1.2)

where o and u € R? are the unknown density and velocity fields, while S and p stand for the viscous
stress and pressure characterizing the fluid material properties via the constitutive relations

2
S(Vzu) = p (qu + Viu— 3divxuﬂ> + ndivul, p>0,n >0, (1.3)
p € C?(0,00) N CL[0,00), p(0) =0, p'(0) >0 for all p > 0, (1.4)
- po) _ - Plo) _
2, g1 P 0, Jlim, =0 >0

where v > 1 and a < 1. The (small) number € > 0 is the Mach number. We notice that assumptions
(1.4) are compatible with the isentropic pressure law p(9) = o7 provided 1 < v < 2. To avoid the
problems with physical boundaries, we suppose the fluid motion is space-periodic, specifically

3
o=o(t,z), u=mwu(t,z), t€[0,T), 2 € T?, where T° = ([O, 1]\{071})
The problem is completed by imposing initial conditions
0(0,-) = eo, u(0,-) = ug, go >0 in T (1.5)

When € — 0, solutions of (1.1-1.5) are expected to approach the incompressible Navier-Stokes system
@(atv 1V, vxv) L VI = pAV, div,V =0, 3> 0 (1.6)

for suitable initial data
V(0) = Vo, (1.7)

see e.g. the seminal work by Kleinerman and Majda [30]. Problem (1.6), (1.7) admits a regular solution
in the class

oV € CH[0, T, WH (T RY), 1=0,1,2, 9Tl € CI((0, T); WF (%), j=0,1, k>4 (1.8)
defined on some maximal time interval [0, Tiyax) provided
Vo€ WR(T3; R?), div,Vy =0,

see e.g. [30]. The norm of (V/,II) in the function spaces (1.8) will be denoted by ||V, II|| y& .
T

Our goal is to estimate the distance between a discrete solution of a (convenient) numerical approxi-
mation of the compressible problem (1.1-1.5) and the exact solution V' of the system (1.6), (1.7) in terms
of the numerical mesh size h, the time step At, the Mach number ¢, in a convenient numerical discrete
function space with a convenient projection to the discrete numerical space of the unique strong solution
of problem (1.6-1.7) and a suitable norm of the difference of the initial data (g9, up) of the discrete
compressible problem and (g, V) of the incompressible target problem. The multiplicative constant in
this estimate must be independent of the specific numerical solution (and of course of h, At and ¢); it
may however depend on the norm of the strong solution V. In particular, we shall not require any other
extra restrictions on the numerical solution than those imposed by the numerical scheme and in this
sense our error analysis results are unconditional.

Taking into account the low Mach number regime, this type of error estimates are in particular
referred as asymptotic preserving. The concept of asymptotic preserving schemes has been introduced
by Jin et al., see [25], [28] and the references therein. A numerical scheme is called asymptotic preserving,
if it is uniformly consistent with respect to a singular parameter - the Mach number ¢ in our case. In



particular, the scheme reduces to a consistent approximation of the limit equation. In [2], [3], [4], [8],
[27], [37] asymptotic preserving properties, in the sense of uniform consistency with respect to e, has
been studied for the Euler equations of gas dynamics and some related problems, see also [1], [17],
(18], [31], [35], [36], [39] for some well-known low Mach number schemes. We would like to point out
that these schemes are usually based on a suitable splitting between the stiff and non-stiff parts of the
underlying PDE and the corresponding semi-implicit or implicit-explicit time discretization. To the best
of our knowledge, asymptotic error estimates uniform with respect to all three parameters e, At, h have
not yet been obtained for any discrete scheme approximating fully nonlinear Euler or Navier-Stokes
equations. On the other hand, in the case of a linear kinetic transport equation, such asymptotic error
estimates in a diffusive scaling have been recently presented in [27], [34].

In spite of the importance of this property for applications, the mathematical literature on this subject
is in a short supply, mostly due to the complexity of the problem. In this paper we present unconditional
and uniform result for the compressible Navier-Stokes equations providing quantitatively an uniform
convergence rate in terms of space-time discretization (h, At) and Mach number €. In particular, our
scheme is asymptotic preserving in the sense of Jin, cf. [28].

The relative energy method introduced on the continuous level in [11], [16], [15] and its numerical
counterpart developed in Gallouét et al. [22] seem to provide the convenient strategy to achieve this
goal. It is worth to mention the recent work of Fischer [19], which can be seen as a counterpart of
our approach. Specifically, he uses the relative energy functional to rigorously estimate the difference
between an approximate (numerical) solution to the incompressible Navier-Stokes equations and any
weak solution to the compressible Navier-Stokes system in the low Mach number regime.

We shall apply the relative energy technique to the rather academic numerical scheme suggested in
Karper [29] with fully implicit time discretization, where the convergence to a weak solution was proved
for v > 3. Using the concept of the relative energy method the error estimates could be obtained for v >
3/2 by Gallouét et al. [22]. The convergence result has been recently extended by Feireisl and Lukacova
[13] via dissipative measure valued solution for physically relevant range v € (1,2). The application to
other less academic numerical schemes, as mentioned above, is in the course of investigation.

2 Preliminaries

Before formulating our main result, it seems convenient to introduce the basic notation and knows facts
concerning the numerical apparatus used in the text.

2.1 Physical domain, mesh approximation

We assume that
T = Uker, K, (2.1)

where T}, is a family of closed tetrahedra (called triangulation of T?) having the following properties: If
KNL#0, K# L, then K N L is either a common face, or a common edge, or a common vertex. By
E(K), we denote the set of the faces o of the element K € Tj. The set of all faces of the mesh is denoted
by £. For each face of the mesh ¢ = K|L, n, i stands for the normal vector of o, oriented from K to L
(so that n, k = —n, ). We denote by |K| and |o| the (3 and 2 dimensional) Lebesgue measure of the
tetrahedron K and of the face o respectively, and by hx and h, the diameter of K and o respectively.
We measure the regularity of the mesh by the parameter 6 defined by

Gzinf{ii,Ke’ﬁb} (2.2)

where £x stands for the diameter of the largest ball included in K.
We denote by h the maximal size of the mesh,

h = 1[1(12%(]”(. (2.3)
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The triangulation 7} is supposed to be regular, meaning
0> 6y >0. (2.4)
In the sequel, we frequently omit the subscript h and write simply 7 instead of 7Tj.

2.2 Spaces of discrete functions

The symbol Q,(T?) denotes the space of piecewise constant functions:

Qu(T?) = {g € LA(T)| VK € T, q € R}; (2:5)
for v in C(T?), we set
1
VK = —/ vdz for K € T and Hgv(m) = Z vl (), = € T3, (2.6)
K| Jk KeT

where 1 is the characteristic function of K.
We introduce the Crouzeix-Raviart finite element spaces:

Va(T%) = {v € LXT%), VK € T, v € Py(K), Vo € &, 0 = K|L, /vm ds = / upds}h,  (27)
where P1(K) denotes the set of affine functions (on K'), along with the associated projection
I} : C(T3) — V,(T3), / I} [¢] S, = / ¢ dS, for all o € £. (2.8)
For a Sobolev function v € WH1(T3) having well defined traces on the faces, we set

Vo = ‘1 / vdS for o € £. (2.9)
0| Jo

We recall that each function v € V;,(T3) can be written in the form

v(x) = Z Voo (), x €T3, (2.10)
oef

where the set {¢y}oece C Vi(T?) is the Crouzeix-Raviart basis determined by
1
W(0,0') € €2, !’\/ 0o dS =6, . (2.11)
o'| Jor

Next, we recall the standard properties of the projection HX summarized in Lemmas 2.1-2.5 below;
the relevant proofs can be found in the Appendix of [22]. The reader may consult also the monograph
Brezzi, Fortin [5], the Crouzeix and Raviart paper [7], or Gallouét, Herbin, Latché [21].

Lemma 2.1. The following estimates hold true:

L (A1 o 1) ~ 111 Loc (10 (2.12)
forall K € T and ¢ € C(K);
¢ — HZWHLP(K) S V29l Lo (ic;r30), s =1,2, 1 < p < oo, (2.13)
and
V(¢ — HX[fﬁ])HLP(K;Rd) < ch* V0| po(aeipey s = 1,2, 1< p <o, (2.14)

forall K € T and ¢ € C*(K).



Remark 2.1. Here and hereafter expression a < b means inequality a < cb, where the positive number c
may depend on the Sobolev and Lebesque exponents involved in a and b (here s, p), diameter of T3, the
Lebesgue measure |T3| of T3 and 6y. In particular, it is independent of 0, h and Tj,.

Lemma 2.2. Let 1 < p < oco. Then

<
h Z |0-‘ ‘Ua‘p ~ HvHip('HB)? (2.15)
€€

with any v € Vi,(T3).
We shall need the following version of [12, Lemma 2.2] (see also [14, Theorem 10.7]).
Lemma 2.3. Let r > 0 be such that

0</ rdmza,/ﬂ dr <b.
T3 T3

Then the following Poincaré — Sobolev type inequality holds true:
2
<
ol = X [ IVavPdot ([ rlol ao) (2.16)
KeT
for any v € Vj,(T3), where the constant ¢ depends on a and b but not on h.

Lemma 2.4. There holds:

Z /Kq div 11} [v] dx:/TBq divv dez, (2.17)
KeT

for all v € CYT3, RY) and all ¢ € Qu(T3). In particular, if divo = 0, then divI} [v] = 0 on each
triangle K € T .

Lemma 2.5 (Jumps over faces in the Crouzeix-Raviart space). For all v € V},(T?) there holds

> flL/M?f,na ds = > / V,v|dz, (2.18)
o K

el KeT

where [V]gn, i a jump of v with respect to a normal n, to the face o,

_ _ ) (@) —ol(z) if ne =m0k
Veeo=K|Le&, [Von,(x)= { ol (x) — vl (@) i 1 = Mo

We will frequently use the Poincaré, Sobolev and interpolation inequalities on tetrahedra reported
in the following lemma.

Lemma 2.6.

(1) We have,
v — vl Lo (rey ~ BVl Lo (sc.msy for all K € T (2.19)

[v = Vol Loy = RV Lo rey for all o € E(K) (2.20)
v € WHP(K), where 1 < p < co.

(2) There holds

lv = vicll o (1) ~ IVl Logacsrey for all K € T (2.21)
lv = 0ol Lo 50y ~ IVl o2y for all o € E(K) (2.22)
veWLP(K), 1 <p<3, where p* = ??Tpp.



(3) We have,
v —vicll Lacry ~ Sy (k;r3) for all K € T (2.23)

< hBHVUHLp K;r3) Jor all o € E(K) (2.24)

lv = vollLacx

K)
veWHW(K), 1<p<3, wherefzg—k B p<q<pt
The following estimates are easy to obtain by means of scaling arguments:

<

1
vl Laor)y ~ 72 (HUHLq(K) + thxUHLq(K;m)) , 1< ¢ < oo for any v € C1(K), (2.25)

from which we readily deduce that
< 1

lwllpaary ~ 72 |wllLa(xy for any 1 < g<oo, w € P, (2.26)

where P,, denotes the space of polynomials of order m.
In a similar way, we obtain

1
ooy S P26 w]l o) 1< g < p < 00, w e P, (2.27)
and making use of the algebraic inequality (2.31) we deduce the global version
wllorsy = WG ]l sy 1< g < p < o0, for any w|k € P, K €T (2.28)

For future use, we record a version of (2.27) and (2.28) for the functions of the time variable t € (0,7T),
where the discretization is of order At, specifically,

1
lwllran < (A ] pean 1< g < p < o, (2.29)

and
1
lwll oo < (AT w1 < q<p < . (2.30)

We finish the section of preliminaries by recalling two usefull algebraic inequalities 1) the ‘imbedding’
inequality

ZL:]a,-V’ " ilazlq " (2.31)
s 2

for all @ = (ay,...,ar) € R, 1 < ¢ < p < oo and the discrete Holder inequality

L L L
> laillbi] < (Z|ai’q)1/q(2\ai\p)l/p, (2.32)
i=1 i=1 i=1

foralla:(al,...,aL)ERL,b:(bl,...,bL)eRL,%—i—%:l.

3 Main results
We will systematically use the following abbreviated notation:

6 =112[¢], ¢n = 11}[0], (3.1)
where the projections I1%, 11} are defined in (2.6) and (2.8). For a function v € C([0, T], L}(T?)) we set

v () = v(ty, x), (3.2)



where tg =0 <t] <...<tp_1 <tp <tpy1 <...ty =T is a partition of the interval [0, T]. Finally, for
a function v € V},(T?) we denote

Vipo(zx Z Vou(x)lg(z), divpv(x Z div,v( (x). (3.3)
KeT KeT

To ensure positivity of the approximate densities, we shall use the upwinding technique to discretize
the convective term in the mass equation. For ¢ € Q5 (T?) and u € V;,(T?; R?), the upwinding of ¢ with
respect to u is defined, for o = K|L € £ by

w qK .if Uy - Ng g >0 (3.4)
qrL if Ugs - nU,KSO'
3.1 Numerical scheme
Solutions (o, u) of the scaled system (1.1-1.5) will be approximated by (", u™) = (g™(At"2) qm(Abhe))
satisfying the following system of algebraic equations (numerical scheme):
For given initial data (0°, u®) we define
Qn S Qh(T3)7 Qn >0, u" € Vh(Tg;R3)7 n=0,1,...,N, (35)

Z ]K\Mqﬁ + Z Z lo|oy P (uy - 1o i )P = 0 for any ¢ € Qn(T3) andn=1,...,N,
KeT KeT oeé(K)

(3.6)
@ n oaAn n—1n—1 nupAnup
> I (QKUK O U ) v+ Y, Y, ook [ug - no k] - VK (3.7)
KeT KeT oe&(K)
Zp Z lo|ve - naK—i-,uZ/Vu : Vo dx
KeT ceé(K) KeT

—|—('§ +7 Z / divu"dive dz = 0, for any v € V3(T3; R3) and n=1,...,N.
KeT

Although the numerical solutions depend on the size h of the space discretization, the time step At,
and the Mach number ¢, we shall use a concise notation (¢”,u") instead of (g™ (At2) qm(Athe)),

The numerical method (3.5-3.7) was proposed in [29, Definition 3.1]; it is strongly nonlinear and
implicit. As shown by Karper [29, Proposition 3.3], problem (3.5-3.7) admits a solution (o}, u}),

oF € Qu(T?), ul? € Vj,(T% R?), n=0,1,...,N,

for any fixed h > 0, At > 0, and, moreover, g >0, n =1,..., N, provided Q?L > 0. The proof uses the
topological degree theory in the spirit of [20].

3.2 Error estimates

We introduce the 7elative enerqy IUTLCtZ'O’I'LUJl
£ ) ) 3 2 9
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where

2p(s
Bol2) = H(o) ~ H'()o—2) ~ H(:), H(o) =0 [ Pas 39
Note that under the assumption p/(p) > 0, the function ¢ — H(p) is strictly convex in (0, c0); whence
E(o|z) >0 and E(p|z) =0 & p==z.

We are ready to state the main result of the paper.

Theorem 3.1. Let the pressure satisfy (1.4) with v > 3/2. Let {o",u"}}o<n<n be a family of
numerical solutions resulting from the scheme (3.5-3.7), where the mesh satisfies assumptions (2.1-
2.4) and initial data (o°,u®) obey

E-(02, u?

2, Vo) < By < 00, My/2 < / Qdx < 2My, Mo =g|T?| (3.10)
T3

with My > 0, Ep > 0 and g > 0 independent of €, h, At. Moreover, suppose that [I1, V] is a classical

solution to the initial-boundary value problem (1.6-1.7) in [0,T] x T3 in the regularity class (1.8),

emanating from the initial data Vo € WE2(T3; R?), div,V =0, k > 4.

Then there exists a positive number

¢ = c( Mo, Bo, B, ' c1(g72.22) HV,HHX;TB), (3.11)
such that
sup £.(¢", 070 Vit ) + A6 Y [ V4" = oV (b, ) do (3.12)
1<n<N 1<nen /TP
\/_ a 0 ~0|=
<c(VAL+ht+e+&(ed,alle, Vo)),
where

a:min{27_3,1}. (3.13)
i

Here and hereafter, we denote by ¢ a generic positive constant that may depend on the parameters
from Remark 2.1 and also on 7. Its possible dependence on other parameters is always explicitly
indicated in the argument of ¢ (as in (3.11)). Moreover, c is always independent of €, At h, 6 and 7Tp,.

Remark 3.1.

o [f the initial data are ill prepared, specifically
E(el[o) ~ €2, /TJ Qi — Vol? da X1,

we obtain just an upper bound for the error.

On the other hand, if the initial data are well prepared, meaning
< . <
E(cllo) ~ ¥, /TS gdlad — Vof* dz ~ef, €> 0,

Theorem 3.1 gives uniform convergence as (h, At,e) — 0 of the numerical solution to the strong
solution of the incompressible Navier-Stokes equations, including the rate of convergence on the



time interval on which the strong solution is known to exist. The distance is measured in the
“norm” induced by the relative energy functional, namely

Qn _ E 2
g Lq(']T3)

85 (Qna ﬁn Y q = mln{2,'y}

o, V") z/w Q"a" =V (tn)|? dx—i—’

o Theorem 3.1 holds also in the 2D case for any 0 < a < # ifye (1,2 and a =1 if v > 2. Note
that in this case the limit system (1.6), (1.7) admits global-in-time smooth solutions as long as the
initial data are reqular.

The remaining part of the paper is devoted to the proof of Theorem 3.1. The main tool is a discrete
version of the relative energy inequality derived in [22]. To simplify presentation, we drop the index ¢ in
the notation used for initial data.

4 Uniform estimates

If we take ¢ = 1 in formula (3.6) we get immediately the conservation of mass:

Vn=1,...N, / Qndx:/ o dz. (4.1)
T3 T3

It is absolutely crucial for the subsequent discussion that the numerical scheme (3.5-3.7) gives rise to
a discrete version of the energy inequality stated below. The reader can consult Section 4.1 in Gallouét
et al. [20, Lemma 4.1] for its laborious but rather straightforward proof.

Lemma 4.1. Let (0", u"™) be a solution of the discrete problem (3.5-3.7) with the pressure p satisfying
(1.4). Then there exist

0y € [min(of, of ), max(0k, oz)l, o = K|[L €&, n=1,..., N,

_n—1,n

gy " € [min(gl ", o), max(gf L o)l K € T, n=1,...,N,

such that

3 K| (GeRtai? + 5 ERn) — Y 1K1 (5oklukl? + 5 (ko)

KeT KeT
+Atz Z u/ |Vou"?de + (5 +17)/ ]divu"\zdm)
n=1KeT K
JA JA
+ [Difme ™) + [Diie ™) + (DR + [Dla) = 0, (4.2)
forallm=1,..., N, with the dissipation defect
A [uf — ulk |2
tlnle “ Z Z |K| wt K ) (43&)
n= lKeT
2
D = L5~ S KE @ 1”>'QK LA (4.3
n= 1K€T
(uf — up)?
[Dgﬁa!?e“' Atnzzh,_}%%eg lo| o UP% luy - 1o Kl (4.3¢)
~ Qn _ Qn 2
Dy =S S ol B (434)

n=1o=K|Le€



Lemma 4.1 yields the following corollary.

Corollary 4.1. Under the assumptions of Lemma 4.1, and provided (3.10) holds, we have: There exists
¢ = c(My, Ep) > 0 (independent of n, h and At) such that

N
At Z/ |V u"?dr < ¢, (4.4)
n=1"K
N
ALY 2o gy < e (4.5)
n=1
SuPn:O,...NHQn’ﬂnPHLl(Ti’)) sc (4.6)
SUPn:O,...N||QnHm(T3) <c (4.7)
SUPy,—0,...N / E(¢"[o) < c2”. (4.8)
tor
N
At Z D(o",u") < c£?, (4.9)
n=1
where
D(o",u")
=Y ol Oy ekl lol(ek - )Ly -
o=K|LeE [max (o, of )] *7 - o—K[Lee
Proof

If condition (3.10) is satisfied, then the right hand side of the energy inequality (4.2) is uniformly
bounded. Estimates (4.4), (4.6-4.8)) thus follow directly from this inequality. Estimate (4.5) can be
deduced from (4.1), (4.4), (4.6), (4.7), the discrete Sobolev inequality (2.16), and the discrete Poincaré
inequality established in Lemma 2.3. Finally, estimate (4.9) follows from the bound (4.3d) for the upwind
dissipation by standard elementary reasoning employing assumption (1.4).

5 Discrete relative energy inequality

The starting point of our error analysis is the discrete relative energy inequality for the numerical scheme
(3.5-3.7) derived in Gallouét et al. [22, Theorem 5.1], slightly modified in order to accommodate the
presence of the small scaling parameter €.

Lemma 5.1. Let (o™, u") be a solution of the discrete problem (3.5-3.7) with the pressure p satisfying
(1.4). Then there holds for allm =1,...,N,

1 1
> Il (eRluf — URP = ofelul —ULP) + 5 X IKI(E(RIFR) — Eollri))
KeT KeT
6 (5.1)

+At§: > (N/KIV;c(u”—U”)|2da:+(%—i—n)/}(\div(u”—U”)lzdx) <>,

n=1KeT =1
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for any 0 < 7™ € Qup(T3), U™ € Vi (T3 R3), n=1,..., N, where

T = Atz Z /v U™ : V. U”—u”)dx+(%+n)/KdivU”div(U”—u”)dx),

n=1KeT
n—1 n
C Y g Uk U (VR Uk )
n=1KeT

(e

Ux+U7
Atzz 3 ol nup( * L anP) U [ul - no ),
n=1 KeT cc&(K)

o= K|L

ZZ 2 lolp(ef)lUs - mo ],

n=1KeT ce&(K)
o=K|L

=8y s W - g (0 0k) - 105,

n= 1K€T

= QZZ > loley P H (ri g - no k).
n=1KeT ce&(K)
oc=K|L

(5.2)

Remark 5.1. It is worth-noting that the relative energy inequality in the form (5.1) holds for any pair
of “test functions” r™, U™ that can be chosen conveniently according to the expected asymptotic limit.

6 Approximate discrete relative energy inequality

The next step is to take the discrete relative energy inequality (5.1) with test function (g, V'), where V
belongs to the same regularity class (1.8) as the velocity field of the target system, div,V = 0, and 7 is
a positive constant. Since g is a constant, terms 75 and Ty vanish trivially. Term T} vanishes as well, by
virtue of Lemma 2.4. We keep term 77 in its present form and transform terms 75 and T3 conveniently.
This will be done in several steps.

Transforming term Th
We have

n n—1
h,K

m Vi -V
Ty =Thy+ Roy + Roo, with Thy = At Y |K|Q7;{1’T"’K (Vik —uk), (6.1)

n=1KeT
and
RQl—AtZZR21, RQQ—AtZR22,
n=1KeT
where 1
RTL,K _ _@ n—1 (VZ»K B Vh,K) _ _@ n—1 ((v" - Vnil]h,K)Q
2,1 9 K At 9 OK At ’
and .
n VZK n— n
o= — 3 Kl VYR (o),

KeT
As the function ¢ — V (¢, z) is continuously differentiable, we get

vyl 1 1 [t
‘[ & }h,K‘ _ ’!K|/K [E[ 8tV(z,ac)dz}h}d$‘

tn—1
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1 1 gt
=iz (a2 ] V)] @az]ar| < 10V Dollmoryemam < N0V

P 0,7)xT3;R3)’

where we have used (2.12). Therefore, thanks to the mass conservation (4.1), we get
M
K 0
Ry | < 7|K|At||atv||%°°((0,T)><'JI‘3;R3)' (6.2)

To treat term R, we use the discrete Holder inequality and identity (4.1) in order to get

\R3,2| < At CMOHatv||%°°(0,T;W1’°°(’]I‘3;R3))

1/9 -~ _ 1/2
+eMy (3 K] oh it — i) N0V | e omyxmo i
KeT

whence, by virtue of estimate (4.2) for the upwind dissipation term (4.3a), one obtains

|Ra 2| < VAt (Mo, Eo, [|0:V || Lo ((0,1)xT3;R3))- (6.3)

Transforming term Ts.
Employing the definition (3.4) of upwind quantities, we easily establish that

T3 =131+ R31,

m m
. ~ iy n,o
with Tyy = At>" S 3 Jolop ™ (ap™ — Vi) - Vi guh nox, Rsi=At> S Ry,
n=1KeT cc&(K) n=1lce&

Vik = Vil Ve = Vikl?
2 2
ertlng VZ,K_VZ7L:V2,K_VZ+VZI_ Z,U+V’;ZL7O'_ ’Z"—V’Z’_ 27[/7 U:K’L€57 and
employing estimates (2.19) then (2.14)s—1 and (2.20) after (2.14)5=1 to evaluate the L®-norm of

the first and second terms, and performing the same for the last two terms, we get

and RyY = |o|ok [ul n,r]", Yo=K|L€E&.

[u} - no k|t +|olo}

IV k = Viollzexurrs) < chIVV | oo (kur;r); (6.4)
consequently

|RyY

<12 |V V[T ((oyxre.re o]0k + o) [ugl, Vo = K|L € €,

whence

n " 5/6
[Raal S B el VV [ wqomprnan (X2 D hlol(dk +02)™?) "
KeT o=K|Le&E(K)

A (S Y welr) )

n=1 KeT oc&(K)

(6.5)
< h ¢(My, Ey, ||VV||L°°(QT;R9))’

provided 7 > 6/5, thanks to the discrete Holder inequality, the equivalence of norms (2.15) and
energy bounds listed in Corollary 4.1.

Clearly, for each face 0 = K|L € £, u)} - Ny g + ujy - ny 1, = 0; whence, finally

m
Toy=AtY > > ooy (ap™ = V') - (Vi = Vig)up -mox.  (6.6)
n=1KeT ce&(K)

12



Before the next transformation of term 751, we write
Vik = Vie = Vg = Vi + Vi = Vi
whence by virtue of (2.19-2.20) and (2.14)s=1, similarly to (6.4),
IVhx = Vihellpe:rs) < chlIVaV | poo(o,m)x13;R3%3)), 0 C K. (6.7)
Let us now decompose the term 7531 as

m
Ty =Ts2 4 Rsp, with Rgo = At > RE,,

n=1

T30 = At Z Z Z lo|oy P (VZ ;p Agup) : (VZ,J - VZ,K)ﬁg’up ‘Mg, and
n=1KeT oce&(K)

n nup (yr7UPanup n n n __ snup
32 = Z Z ‘O—‘Q (Vha Uy ) ' (Vh,a - Vh,K) (ua — U, ) "N K-
KeT ce&(K)

By virtue of discrete Holder’s inequality and estimate (6.7), we get

~ n,up|2y 1/2
R5al < el VaV pwiouuny( 3 D hlolape|az™ —vii'|)
KeTaeé’(K)
1/
(Z > h|0HQ"up|WO> 7O(z: > h\0|‘u ) "
KeT océ(K KeT oe&(K)

where 3 + ﬁ + 5 =1, v= min{% 3} and v > 3/2. For the sum in the last term of the above
product, we have

D h|a|‘u ar|" <o ST S hlofjul — uplf

KeT oeé(K) KeT 0e€(K)

/2
<e( > (fup—un|l, KRS>+ZHu | emny) < ch B0 (X IVau )

KeT oe&(K) KeT

where we have used the definition (3.4), the discrete Minkowski inequality, interpolation inequalities
(2.23-2.24) and the discrete “imbedding” inequality (2.31). Now we can go back to the estimate
of Rj,, and, taking into account the upper bounds (4.4), (4.7-4.8), we may use Young’s inequality
to get

m
|R32| < h* c(Mo, Eo, V2V || Lo (@piro)) +AL Z(Sg(g”,ﬁ"@, VZ), (6.8)
n=1
provided v > 3/2, where a is given in (6.13).
Finally, we rewrite term 73 o as
m
T372 = T373 + R3’3, with R373 = At Z Réﬁg,
n=1
T33 = At Z Z Z lo|oly up( nup — ,ag,up) . (V;LLJ — )VZ zp Mo K, and (6.9)

n=1 KeT ce&(K)

n n,up n up ~n,up n n,up n,up .
3,3 = Z Z |U|Q ( — Uy ) ’ <Vh,o Vh K) ( Vh o ) MoK;
KeT oe&(K)

whence

IR33| < c(|VaV || (r.r)) At D E(o", 4™ |7, V). (6.10)

n=1

13



We have proved the following lemma:

Lemma 6.1 (Approximate relative energy inequality). Let (o™, u™) be a solution of the discrete problem
(8.5-8.7) emanating from the initial data (3.10), where the pressure satisfies (1.4) with v > 3/2. Then
there exists

c=c (Mt)’ Ey, HVHWLOC((O,T)xTS;RS)) ,
such that for allm =1,..., N, we have:

AN 1 ~ 0 1
M| M 2 m | — 01~0 2 0=
/T3 (ol - V| + 5 E(e |Q))d37—/TS G + 5 E(e 0))da

m 3
FAEY S (1 IVaw = VDR w4 (5 ) [ v - V)P de) < 3785+ Riia+ G
1K K 3 K - ’
n= eT i=1
(6.11)
for any pair of functions (9, V'), where g = const. > 0 and
V e CY([0,T] x T3 R®), div,V = 0.
Here m
S =ty % u/ VLV VLV — o) de
n=1KeT K
S n— VZK B VZ_I n n
SQZAtZ Z |K |0 ITK< h,K—uK)7 (6.12)
n=1 KeT
Ss=At> > 3 Joley (Vi — @) - (Vi = Vi) Vi o,
n=1KecT oce&(K)
and .
G™ < e AtY " E(o™ 4o, V"), |Ri'A, < (VAL + h%), (6.13)

n=1

with the power a given by (3.13) and with the relative energy functional &, introduced in (3.8). Here, in
accordance with our notation convention (2.9), (5.1-3.3), we have set V' =11V [V (t,)], Vik=[Vilk,

ho = [Vile, " = Hg[r(tn)], where projections I, IV are defined in (2.6) and (2.8).

7 Consistency error

This section is devoted to the proof of a discrete identity satisfied by any strong solution of problem
(1.6-1.7) in the class (1.8).

Lemma 7.1 (A discrete identity for strong solutions). Let (o™, u™) be a solution of the discrete problem
(8.5-3.7) emanating from the initial data (3.10), with the pressure satisfying (1.4), where v > 3/2. Let
(IT, V') belonging to the regularity class (1.8) with k > 4 be a (strong) solution of the incompressible
Navier-Stokes system (1.6-1.7).
Then there exists
¢ = (Mo, Eo, |V, | ) >0,
T,13

such that

3
Y Si+Ria =0, forallm=1,...,N, (7.1)
i=1

14



where

Si = AtZZ,u/VVh VT~ u) de

n=1KeT

-V
IND D Yl (AL LT Y LT
n=1KeT

SAS S S lela(V = an) - (Vi = Vi) Vi ok

n=1KecT oce&(K)

and

5y —6
m b _ .
Ryl < e(h +At+€),b_m1n{ > ,1}.

The remaining part of this section is devoted to the proof of Lemma 7.1.

7.1 Essential and residual sets

We start with an auxiliary algebraic inequality whose straightforward proof is left to the reader.

Lemma 7.2. Let p satisfies assumptions (1.4). Let o > 0. Then there exists ¢ = ¢(@) > 0 such that for
all o € [0,00) and there holds

0 E(of2) > (1r\g2za + € Ly\gj2em + (0~ 2 Ligjocm)- (7.2)
where E(-|) is defined in (3.9).
Now, for fixed number ¢ and fixed functions ¢", n =0,..., N, we introduce the residual and essential

subsets of T? (relative to ") as follows:
Ni, = {r € T*| 52 < 0'(s) < 22}, Npb = T*\ N, (7.3)
and we set
[9less(z) = g(2)1ng, (@), [glres(z) = g(2)1ng, (2), 2 €T°, g LY(T).
Integrating inequality (7.2) we deduce

WSS 0, o] e -d o s

res ess

u" (o, V"), (7.4)

for any pair (g, V) with V belonging to the class (1.8) and any 0" € Qn(T3), o™ > 0, u,, € V,(T3; R?).
We are now ready to prove Lemma 7.1.

Since (II, V') satisfies (1.6-1.7) on (0,7) x T? and belongs to the class (1.8), equation (1.6) can be

rewritten in the form

20,V + 9V - VV + VII — uAV =0 in (0,7T) x T3.
From this fact, we deduce the identity

where

T = —At ZI/TS (AV") - (V" — ) de, T = At Zl/w 2OV - (V" —u) da,

75:AtZ/TB@V”-VV”'(V”—u”)dm, ﬁ——Atzl/TBVH"-undx.
n=1 n—=

In the steps below, we handle each term 7;.
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7.2 Viscous term

Integrating by parts, we get:

Ti=Tig+Ri,
with 711 = Atz > / pVVE YV (VE—u")dz, and Ry = ) + I, with
n=1KeT
I = Atz Z/W V) V(VE —u™)dz,
n= 1K€T (76)

L=-AY Y Y [ eIV (Vi —uyds

n=1KeT cc&(K)

:_Atz Z/mg Ve[V s,

n=1 ce€ e

where in the last line n, is the unit normal to the face o and [-].p, is the jump over sigma (with respect
to n,) defined in Lemma 2.5.

To estimate I; we use the Cauchy-Schwartz inequality, employ estimates (2.14)s—9 to evaluate the
norms involving V(V"™ — V7)), and use (2.13)s=1, (4.4), the Minkowski inequality to estimate the norms
involving V(V} —u™). We get

[I1| < h (Mo, Eo, |[VV, V2V || e (07150 (15, R36)))-
Since the integral over any face o € £ of the jump of a function from Vj,(T?) is zero, we may write

I = Atz Z/mg- (VaV" = (VV™)o) - [w V3] as;

n=1 c€€ oo

whence by means of the mean value formula applied x — VV"(x) to evaluate the differences V, V" —
(V:V"), and Holder’s inequality,

L] < Ath ¢|| V2V e (parery Z S\ /lo|Va ( H[un -vi] » .R3))
n=1o€c€ Mo DL
2 n 2
< Athc HV VHLOO(QT R27 Zl Zg (‘U’h + - 7 H|: Vh:| oo LQ(U;R?))).
n oc
Therefore,
|R1,1| < hC(M(), Ey, HVHLW(O,T;WQ’OO(TS;RS))? (77)
where we have employed Lemma 2.5, together with (4.4) and (2.13).
7.3 Term with the time derivative
Let us now decompose the term 7s.
Step 1:
7-2 = 7-2 1+ RZ 1
Vn 1 m n
Wlth%l—AtZZ/ A(Vy —u")da, Rz,lZAtZZRz,lK,
n=1KeT n=1KeT
n n n n — n \ anl n n
and RO[* :/ oo V)" - (V' =Vy)de +/ Q([@tV] - T) (V5 —u")de.
’ K K t
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. K .
The remainder Ry’ can be rewritten as follows

1 tn tn
Ryt = [ dlovy (v - Vi) + 7/ ol [ GV (2. )dzds] - (Vi — u") dor
K At tn—1 8

whence, by the Holder inequality,
R5T| < (At +h)o [HatVHL‘X’ Qrs) K POV | s iy + 1V oll o))

))-

HNOFV | pors s, oy (1w | o ey + |

Consequently,
Ro| < (At + k) e(Mo, Eo, 0, IV, 0V, VV) | 1o (@ririoys 102V [l 120 .05 (75,3 ) (7.8)

where we have used the discrete Holder and Young inequalities, the estimates (2.12) and the energy
bound (4.4) from Corollary 4.1.
Step 2: Term T3;1. We decompose the term 75 as

T21 =To2+ Rap,

n—1

Vv
Wlthm_mz Z/ —hK.< P um)de, Rgg_AtZ S RpE,
n=1KeT n=1KeT
nK ~ Vn_vn—l Vn_vn—l " "
and Ry’ :/KQ( AL _[ AL }h)( ho —u")dz

LoV, - 2, ) i - waa= 1 vt

Next, we calculate

1| = 1Q‘/K ({/t:nlﬁtV(z)dz]h - ttn OV (:)dz] ) -(u" — V) dal

At - h,K

<Tp /t V. [0V (2)]

where we have used the Fubini theorem, Holder’s inequality and (2.19), (2.14)s—;. Further, employing
the Sobolev inequality on the Crouzeix-Raviart space V4 (T?), (2.16), the Hélder inequality and estimate
(2.14)5=1, we get

[u" = Vi oll o).

rIILS/5(K;R3)

V.8,V (2)

tn
S 18] < gyl = Vil [

z
Ker tn_1 L6/5(T3;R3)

We reserve the similar treatment to the term I#*. Resuming these calculations, and summing over n
from 1 to m we get by using Corollary 4.1 , (2.12),

|Ra2| < he(Moy, Eo, 0, ||(V,V,V, 8tV)HLoo(QT;R16), HatvvHLQ(O,T;L6/5(’H‘3;R9)))' (7.9)

Step 3: Term T2 3. We rewrite this term in the form

T23="Toa+Rou, Roa= At Z Z Rg,i(?

n=1KeT
Vi — Vil
with Toa = ALY 3 / p R (g~ V) d, (7.10)
n=1KeT
VhK - Vzi

n,K n— ) K n n n n
and R274 :/K'TK 1T' ((U —UK)—(Vh— h,K)) dx.

17



n n—1

Vv —
We estimate the L norm of W as in (6.2) and get, similarly to the above,

|Roa| < hec (Mo,Eo,@ HVHWLoo((o,T)xTS;RS)) : (7.11)
7.4 Convective term
Step 1: Term Ts.
Let us first decompose T3 as
T3 =T31 +R3,
with 71 = Aty Y / Vi VV" (Vi —uf)de, Rai=Aty > Ry,
n=1 KeT K n=1KeT

and Ry1* = / (VP =V .YV (V] —u")da
’ K
[ V= Vi) YV (Vi - wda
—I-/ oV -VV™. ( h=Vig— (u"— u}l{)) dz.
K
We have, by virtue of (2.13)s=1,
V" = Vil ey ~ RIVV™ | e im0
and, by virtue of (2.19), (2.13)s=1 (2.14)4=1,
IV = Vi il ey = BV oo (o)

and, finally, by virtue of (2.19),
" — |l 2 (k. m8) ~ Rl Vo™ || 22 (k. 59)-
Consequently, employing Holder inequality (for the integrals over K) and the discrete Holder in-
equality (for the sums over K € 7)), and using estimate (4.4), we arrive at
|R31| < hc(Mo, Eo, 0, |V, Vi V)l Lo (0 r12))- (7.12)

Now we shall deal with term 73 ;. Integrating by parts, we get:

J Vi IV (Vi —uide = 30 JolalVii - masd(Vi = Vi) - (Vi = u)
ceé(K)

due to the the fact that 3, cex) [, Vi k- Mo xdS = 0.

Step 2: Term 731
Next we write

T30 =Tz2+R32, Rza=AL Z Ry 9,

n=1

18



T2 =AY S N JololViy noxl(VE= Vi) (Vg —am™), (7.13)
n=1KecT oce&(K)

and Ry 2 Z Z ’U‘Q[(Vh K~ VZ gp) : na,K} (Vg — VZ,K) : (VZ,K - ug)

KeT oce&(K)
A N, up n n n,up n ~ 7,1
+ Z Z lo|o[ Vha ng k](Vy — Vh,K) : ((VhK Vha ) — (uk — “h,ap)>-
KeT ce&(K)

We use repeatedly the Taylor formula along with (2.13),-1, (2.19), (2.14)s=1, to get the bound

3
Ryl < hea(1+ |V wie@rirn) D hlollukl
KeT

2
+0(1+ IV Iwrsioumn ) > Y. Alolluf —upl.
KeT ce&(K)

We obtain, by Holder inequality,

~1/6 1/2
S hlolluil < e 3 hlolluil®) T <e( X IVetnlZagem))

KeT oceT KeT
1/2 1/2
S hlolluf —ugl <e[( X It = ukliagms) < he( D 1VewnlFagenn) s
KET 0e&(K) KeT KeT

where we have used (2.21),—2, (2.19-2.20),—2. Consequently, we may use (4.4) to conclude

Rasl < he(Mo, Bo, 0, |V, VaV | e (@rir) ) (7.14)
Step 3: Term T3
Finally, we replace in 732 the term Vg — V' i by Vi | — V7 . We get

m
Ts2 =T33+ Raz Rssz=AtY Ry,
n=1
m ~_n,up O, Up
Taa=AtY. > > |oolVil noxl(Vie = Vi) (Vi —ap™), (7.15)
n=1KecT oce&(K)
and
_ conup
= > > lofeVik mox (V" = Vals = Vi = Vilk) - (Vi — @),
KeT ce&(K)

committing the error

Ry < he(Mo, Bo, 0, |V, VaV | L~ (@rir2) ). (7.16)
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7.5 Pressure term

Step 1: A useful formula for upwind discretization
We will need the following formula proved in [12, Formula (2.16), Lemma 8.1].

/Tgm'vmdm— Yo D lolrsPu-nokF (7.17)
KeT oe&(K)
+> 2 H [wng ] dS+ > Y /¢ru Ug): naK+Z/ (F' — ¢)rdivudx
KeT oeé(K) 7oK KeT oe&(K) KeT

for any r, F € Q,(T3), u € V3(T?), ¢ € C1(R3).
We also report the straightforward formula:

-3 > |0|r Puy no P =3 Jo|riPu, - ng | F| (7.18)

KeT oe&(K €€ oo

for any r, F' € Qp(T?), u € Vh('ﬂ‘?’).
The strategy is to use formula (7.17) with r = o, u = u", ¢ = II", F = II" in combination with the
discrete continuity equation (3.6) to show that the term 7y is proportional to e.

Step 2: Discrete time derivative in the continuity equation (3.6)
We get by direct calculation

J = AtZ/ H”dx— Z/ (0" —0) — (0" @))ﬁ"dx
:i/w ((Qn_@)n ("t - 1 dx+z/ o) (1"t — I")dx

Hn—l _ ﬁn

=/T3<g”—g>HN—/T3<g°—g>H°+At;A3<gn—l—g)Atdx.

Therefore, as in (6.2),

o — of n
ME At’ Z > / KiKH dX’ < e(1+ At) e(Mo, Eo, ||| Lo @z 10Xl L1 0,70 (13)))s - (7-19)
n=1KeT

p = max{2,7'}, where we have used (4.8) and Lemma 7.2.

Step 3: Error of upwind discretization

We write
_72_72/ o vnndx+—z/ Y - Ve = —Tiq — Ra, (7.20)
where
At o n _
Rl = 7 > /T;(Q— 0" )u" - VIl ‘ < e ¢(Mo, Eo, 0, V2| oo ((0,7)xT3))-
n=1 )

Using the formula (7.17) with r = o", u =u", F = Hg [ITI"] we check without difficulty that

Riz= - [ 0w Vldr = 3 5 Jolop"Puy - np Ty
T KeT oc&(K)
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=X 3 [(r-m)[e],, | teeeras,

KeT oe&(K) "7

—Z Z /H” "(u" —ul) ngr dS; —i—Z( @)g”divmu"dw.

KeT ce&(K) KeT

We shall now estimate conveniently terms /7" — I3 in three steps.

Step 3a: Term I.
First, we have by using Holder’s inequality,

S S (e m) ] e s,

KeT 0e&(K)
12
SRR > [ ., 7l fas.)
~ T oo 3 7 . ’
L ((o,T)xT) e B nax max (0%, o7 )% o
X(Z Z /maXQK,QL) dS)QW(Z Z /‘u naKhédS)
KeT oe&(K) KET oct(K)

with any 0 < § < v and any E C T3, where we have used estimate (2.19). Therefore employing
(2.25-2.26) and estimates (4.5), (4.7), (4.9), we obtain

N
At I R eh'2e(My, Eo, || VaII|| Lo (0.1 x79))- (7.22)
n=1

Step 3b: Term Is.
We observe that

BI=|Y Y far-me e —up)-
K)

KeT oe&(

S N LU 1 T [P g v i
ce€

LVO -1 (o;R3)

< n n n
~ HVmH||L°°(<o,T>x1r3)gTH@ logey o™ = wgll 0

5v09—6 n n 1/2
S h 20 llo HLWO('JT?’)( Z IVu ||%2(K;R3X3)) Hva:HHLOO((O,T)xT?’)-
KeT

with 79 = min{2,~}, where we have used Holder’s inequality, trace estimates (2.25-2.26), and interpo-
lation estimates (2.24) together with estimate (4.4).

Consequently,
Atz ()] < h e oMy, Bo, |V, || 00 (73)) (7.23)
Step 3c:Term Is.
We have
=] 5 [ (@ - diveutda] & b S (10" [diveu” a0 | Vol e oy
KeT KeT
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whence

Atz |13 (t)] < he(Mo, Eo, [| V21| oo (0,7 <13 )- (7.24)

Step 4: Conclusion
According to (7.20), (7.21) and (3.6),

T Q ZR42+R41_*j

n=1

whence, taking into account (7.19), (7.22), (7.23), (7.24), we infer

570 —6 .
T4l < (e +h 20 ) (Mo, Eo, 0, |[IL, VaIl|| Lo (0,7) <132 10| L1 0,723 (13) )5 Y0 = min{2,~v}. (7.25)

Now it suffices to put together formulas (7.6), (7.10), (7.15) together with (7.7), (7.8), (7.9), (7.11),
(7.12), (7.14), (7.16) and (7.25) in order to get the statement of Lemma 7.1.

8 A Gronwall type inequality

In this section we put together the relative energy inequality (6.11) and the identity (7.1) derived in the
previous section. The final inequality resulting from this manipulation is formulated in the following
lemma.

Lemma 8.1. Let (0", u") be a solution of the discrete problem (3.5-3.7) emanating from initial data
(3.10) with the pressure satisfying (1.4), where -y > 3/2. Then there exists a positive number

Cc = C(M[:h EO)E? ’p/’01[§/272§}7 HV7 HHX’IIi,T?’)

such that for allm =1,..., N, there holds:

0w o VAL S Y [ v - viax

n=1KecT

<ol + VAL + e+ E(" w0, Va(0)] + c At Y £ u"o, V),

n=1

with any couple (I, V') belonging to the class (1.8)k>4 satisfying (1.6-1.7) on [0,T) x T3, where a is
defined in (3.13) and & is given in (3.8).

Proof. Gathering the formulas (6.11) and (7.1), one gets

E-(o" u" (2, V) — E-(o", w2, Vi (0 +uAt§j§j]v v <P 4Q, (81)
n=1KeT L (K57
where
Vik = Vi n n
AtE E |K|(o )T< h,K_uK)y

n=1KecT

P2=Ati S Y ol -2) (Vie - ap) - (Vi - Vi) Vi o,

n=1KeT c=K|LeEK
Q= Rp'ar + Ri'ay +G™.
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Now, we estimate conveniently the terms P; and Po in two steps.

vn o _yn— 1
Step 1: Term P;. We estimate the L* norm of hTthK by L* norm of 3,V in the same

manner as in (6.2). According to Lemma 7.2, [0 — 7[71g,\(5/2,26)(0) < c(p)EP(o|r), with any p > 1; in
particular,

lo— 7"|6/51R+\[§/2,2§}(Q) < cE(o|r). (8.2)
We get by using the Holder inequality,

Vig-Vig " "
‘ > IK|(e )T’ : ( hK — UK)’ < |0V | Loo (@psR3) X
KeT
1/2 5/6
(2 1Kl = ol 1gpag (o) + (D2 [Kllok " = 2" 1a,\gaglox)) |

KeT KeT

n 1

" n61/6 o
(S KV, —ui] )" < cll@V)llim g2 (@ a2 Vi)

KeT
5/3g5/6( ;n—1 gn—1l15 {r"~ 1 n - 1/6
+ePE (e A o, V )(ZHVh,K—UKHLG(K;RS)) ;
KeT

where we have used (8.2) and estlmate (4.8) to obtain the last line. Now, we write V o — uj =
([VE—u"|g — (Vi —u"))+ (V] —u") and use the Minkowski inequality together with formulas (2.21),
(2.16) to get

1/6 1/2
(vaz,K—u%n%e(K;m) < (S IVOVE =) o) -
KeT KeT

Finally, employing Young’s inequality, and estimate (4.8), we arrive at
‘Pl‘ < e 6(57 MO7 E07 0, H(V7 vl‘vﬂ atV)HLOO(QT,RH’))
m m
0140 1,0 A AT Y
x (Atﬁe(go,u0|r0, Vi) + AL S E(o", ", VZ)) +HOALS ST IVVE = u) 3 ipsy (8:3)
n=1 n=1KeT
with any ¢ > 0, provided ¢ € (0, 1).
Step 2: Term Py. We rewrite Vi, — Vi o = Vi = Vi + [V = Vils + [V — Vilk and es-
timate the L> norm of this expression by h||Vy V|1 (qg.;re) by virtue of (2.19-2.20), (2.14)s=1. Now
we write Po = At > | P3 where Lemma 7.2 and the Holder inequality yield, similarly as in the previous

step,
P3| < c(@, IVV | Loo(@rsR9)) X

n . n _ n,up n,up ~n.u
S X lolh(BV2(r ) + EY (a5 l0)) [Vion| Vo — @

KET oeé(K)
< @ (V. YV imiune)[( X 3 loln(Eerl2)
KeTUEE(K)
XYY bebEen) < (XY ra|h\v22"~zup N,
KeT oe&(K) KeT oeé(K

provided v > 3/2. Next, we observe that the contribution of the face ¢ = K|L to the sums ) pcr

n,up

Yoee(k) |oIhE(03™P[0) and Y ger Yoes(k) ]a|h]Vha — @"P|% is less or equal than 2|o|h(E(0%|2) +
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E(0}[2)), and than 2|a|h(|V}, j — u|S + \Vir— u?|%), respectively. Consequently,we get by the same
reasoning as in the previous step, under assumption v > 3/2,

[Pl < (8, Mo, Eo, 3, [(V, VV)|| o (@psmiz)) At D E(0" @[, Vi) +0AL Y > [V(ViE—u")[F2.59)-
n=1 n=1KeT
(8.4)

Gathering the formulas (8.1) and (8.3)-(8.4) with § sufficiently small (with respect to x1), we conclude
the proof of Lemma 8.1 and a fortiori also proof of Theorem 3.1 by applying Gronwall inequality to
Lemmma 8.1. O

9 Numerical experiments

To illustrate the behavior of the present scheme, we perform two numerical tests in the simplified 2D
geometry. We use the equation of state p(0) = o7 with the Poisson adiabatic constant of dry air v = 1.4.
In order to guarantee convergence of the fixed point iterations of the discrete nonlinear system, we
impose the time step via the standard CFL-condition At = CFLW, ¢ = \/vp/p, with the choice of
CFL = 0.6.

9.1 Example 1

Following Haack et al. [25] we consider the flow of a vortex in the box Q = [—1,1]?, supplemented
with the no-slip boundary conditions for the velocity. The initial data of the compressible Navier-Stokes
System are

up(z,y,0) = sin?(7z) sin(2my)

ug(x,7y,0) = —sin(27rx) sin?(7y) (9.1)

plz,y,0)=1-— % tanh(y — 0.5).

Time evolution of the flow field at t = 0, 0.1, 0.2 is shown in Figure 1. As time evolves the amplitude
of solution decreases due to physical diffusion. Table 1 presents the experimental order of convergence
for the scheme (3.5-3.7) for different values of the Mach number ¢ ranging from 0.8 to 0.001. The error
is evaluated by means of the reference solution computed at a fine mesh h = 1/256. The simulations
are performed on consecutively refined meshes with h = 1/2V, N =3,...,7, T = 0.01. We can clearly
recognize the expected first order convergence rate in the momentum (q1,¢2), which is uniform with
respect to e. Numerical convergence rate for velocity tends to the second order, as will be expected. The
velocity gradients as well as density converge linearly. The first order convergence rate for density for
low Mach number € = 0.001 would be recovered using finer grid resolution.

Relative energy error between the compressible and the incompressible Navier-Stokes
equations in the low Mach number limit

In order to highlight the convergence result of Theorem 3.1, we evaluate the difference between the
compressible and incompressible numerical solutions. The solution of the compressible Navier-Stokes
system is computed by means of the scheme (3.5-3.7) for different meshes. The solution of the limit
incompressible Navier-Stokes equations is obtained by the pressure stabilized Lagrange-Galerkin method
of Notsu and Tabata [38] at a fine mesh h = 1/512.

Let o0,p = 07, u be the numerical solution of the compressible Navier-Stokes systen, and let 7, V' be
the solution of incompressible Navier-Stokes equations; we set

2= (1+ 2.
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The error is measured by

eg = sup &E(p",a"z(t",), V(",")), evou = [Va(u = V)|[L200,1:L2(0)
1<n<N

ey = [lu — V||L2(0,T;L2(Q)> ep=llp— Z”L2(0,T;L2(Q)7 ep=|lp— ZWHLQ(O,T;L2(Q)-

Table 2 presents the results for two different viscosity constants, 4 = 0.01 and u = 1. We set € = h.
Numerical simulations show the second order convergence rate for the relative entropy with respect to
h and e and indicate that our theoretical convergence rates of first order (for v > 3) are suboptimal.
Furthermore, numerical experiments show that pressure and density of the compressible Navier-Stokes
system converge to their incompressible limit with the second order rate.

9.2 Example 2

In this numerical experiment we choose a particular solution of the incompressible Navier-Stokes equa-
tions, the so-called unsteady Taylor vortex flow with periodic boundary conditions in x— and y— direc-
tions

Vi(z,y,t) = sin(2rz) cos(27my) g8 ut
Va(z,y,t) = — cos(2mx) sin(2my) e 87kt (9.2)

H(z,y,t) = i (cos(4mz) + cos(4my)) e—16m%put

For the compressible Navier-Stokes system the corresponding initial data are

p(z,y,0) = 1+ *1l(x,y,0)
ul(x,y,O) = Vvl(xvyvo) (93)
u2(x7 Y, O) = ‘/2($7 Y, 0)

Time evolution of the flow field at t = 0, 0.1, 0.2 is shown in Figure 2. Analogously as in the previous
experiment we present in Table 3 experimental orders of convergence for different Mach numbers varying
from 0.8 to 0.001. We obtain the first order convergence rates for the momentum, velocity gradients and
density uniformly with respect to the Mach number. The L?-norm of velocity converges with the second
order.

To study the relative energy error between the compressible solution and its incompressible limit we
use the exact solution of the incompressible Taylor vortex flow (9.2) and apply the numerical scheme
(3.5-3.7) to solve numerically the compressible Navier-Stokes system (1.1-1.2). In Figure 3 the error of
velocity component uy for different Mach numbers and mesh sizes is presented. As expected, the error
between the compressible and incompressible solution decreases, when either the mesh size h or the Mach
number € tend to 0. Table 4 and 5 demonstrate the same results. Table 4 presents the convergence rates
for physically relevant adiabatic exponent v = 1.4, which is not covered by our theoretical analysis. On
the other hand, Table 5 shows the convergence rates, for the case, when Theorem 3.1 gives the first order
convergence of the relative energy. In both cases we obtained for different viscosities 4 = 0.01 and p =1
the second order convergence of the relative energy, density and pressure and the first order rates for
the velocity and its gradient.

10 Conclusion

In the present paper we have studied both theoretically and numerically convergence of the solution
of the compressible Navier-Stokes esystem (1.1-1.2) to its incompressible limit (1.6-1.7). The distance
between a discrete solution of a (convenient) numerical approximation of the compressible problem and
the exact solution of the incompressible Navier-Stokes equations is measured by means of the relative
energy functional &, cf. (3.8). For the numerical scheme we use the combined finite element-finite volume
method based on the Crouzeix-Raviart finite elements for velocity and piecewise constant approximation
for density. The convective terms are approximated by means of upwinding.
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Our main result is presented in Theorem 3.1. We have shown that in the case that the data are well-

prepared, cf. Remark 3.1, we obtain the uniform convergence of order O(V' At, h®, ¢), a = min {@, 1},

v > 3/2. First of all we have shown the uniform apriori estimates in suitable norms, see Section 4.
The crucial step of the proof is to derive the discrete relative energy inequality. Consistency analysis
presented in Section 7 shows suitable discrete identities and estimates for the discrete relative energy,
that are obtained in the case when the strong solution of the incompressible Navier-Stokes equations is
a test function in the discrete relative energy. A Gronwall-type argument concludes the proof and yields
the corresponding convergence rates.

As far as we know this is the first result for the error estimates between the numerical solution of
the compressible Navier-Stokes equations and the solution of the limiting incompressible Navier-Stokes
equations. We would also like to point out that these estimates are uniform with respect to all three
parameters At, h and the Mach number . Thus, our results demonstrate asymptotic preserving property
of the proposed numerical scheme. Our extensive numerical experiments show second order convergence
rate of the relative energy. Consequently, theoretical results presented in Theorem 3.1 seem to be
suboptimal.
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Figure 1: Example 1: Time evolution of the streamline and velocity components with p = 0.01, h =
1/64, £ =0.001 at t = 0, 0.1, 0.2 from left to right.




Table 1: Example 1: Experimental order of convergence, p = 0.01.

(a) e=8e—1
h ol EOC  lailrz EOC  ig2flz EOC [,z EOC [[Vu|,2 EOC
1/8  6.61e-03 - 6.73e-02 - 6.70e-02 - 1.63e-02 - 9.55e-01 -
1/16  3.34e-03 0.98 3.38¢-02 0.99 3.37e-02 0.99 6.56e-03 1.31 4.95¢-01 0.95
1/32  1.70e-03 0.97 1.68e-02 1.01 1.67e-02 1.01 2.37e-03 1.47 2.36e-01 1.07
1/64 8.37e-04 1.02 8.30e-03 1.02 8.27e-03 1.01 7.55e-04 1.65 9.23e¢-02 1.35
1/128 3.99e-04 1.07 4.03e-03 1.04 3.98¢-03 1.06 2.10e-04 1.85 3.32e-02 1.48
(b)ye=1le—1
h ol EOC  laill,z EOC  ig2fl;z EOC  fjujl,2  EOC  [[Vu|j,2 EOC
1/8  3.49¢-04 - 6.70e-02 - 6.69e-02 - 1.63e-02 - 9.33e-01 -
1/16  1.94e-04 0.85 3.37e-02 0.99 3.36e-02 0.99 7.49¢-03 1.12 5.61e-01 0.73
1/32  8.50e-05 1.19 1.67e-02 1.01 1.67e-02 1.01 2.76e-03 1.44 2.79¢e-01 1.01
1/64 3.35e-05 1.34 8.27e-03 1.01 8.25e-03 1.02 9.02¢e-04 1.61 1.18e-01 1.24
1/128 1.36e-05 1.30 4.01e-03 1.04 3.97¢-03 1.06 2.67e-04 1.76 4.95e-02 1.25
(c)e=1le—2
h lpllz— EOC a2 BEOC  lg2ll,z EOC a2 EOC  |[Vul[2 EOC
1/8  2.09e-05 - 6.73e-02 - 6.74e-02 - 2.06e-02 - 1.02e+00 -
1/16  1.80e-05 0.22 3.42e-02 0.98 3.42e-02 0.98 1.36e-02 0.60 8.11e-01  0.33
1/32  1.36e-05 0.40 1.70e-02 1.01 1.70e-02 1.01 6.87e-03 0.99 5.79e-01  0.49
1/64 1.04e-05 0.39 8.32¢-03 1.03 8.33e-03 1.03 2.12e-03 1.70  2.36e-01  1.29
1/128 4.33e-06 1.26 3.99e-03 1.06 4.01e-03 1.05 5.52e-04 1.94 8.35e-02 1.50
(d)e=1le—3
h el EOC  laill,z EOC  igzflz EOC  juj[,2  EOC  [[Vu|j,2 EOC
1/8  1.17e-07 - 6.73e-02 - 6.73e-02 - 1.87e-02 - 9.40e-01 -
1/16  7.96e-08 0.56 3.37e-02 1.00 3.37e-02 1.00 7.05e-03 1.41 4.40e-01 1.10
1/32  5.69e-08 0.48 1.68e-02 1.00 1.68e-02 1.00 3.31e-03 1.09 2.70e-01 0.70
1/64 247e-08 1.20 8.30e-03 1.02 8.30e-03 1.02 1.74e-03 0.93 1.94e-01 0.48
1/128 3.16e-08 -0.36 4.00e-03 1.05 4.00e-03 1.05 5.10e-04 1.77 8.72¢-02 1.15
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Table 2: Example 1. Convergence of the compressible solution to the incompressible solution for different
viscosities u, t = 0.01.

(a) e=h,u=0.01

h eg EOC eV, u EOC eu EOC ep EOC ep EOC
1/8  1.12¢-03 - 4.91e-01 - 1.82e-03 - 3.65e-04 - 5.11e-04 -
1/16  3.74e-04 1.58 2.55e-01 0.95 1.18e-03 0.63 7.90e-05 2.21 1.11e-04 2.20
1/32  1.09e-04 1.78 2.29e-01 0.16 7.87e-04 0.58 1.50e-05 2.40 2.09e-05 2.41
1/64 1.91e-05 2.51 1.26e-01 0.86 3.24e-04 1.28 3.31e-06 2.18 4.64e-06 2.17

1/128 4.50e-06 2.09 4.41e-02 1.51 1.41e-04 1.20 8.73e-07 1.92 1.22e-06 1.93
1/256 1.14e-06 1.98 1.54e-02 1.52 6.32e-05 1.16 2.06e-07 2.08 2.88e-07 2.08

(bye=h,u=1
h e EOC eV, u EOC eu EOC €p EOC ep EOC
1/8  5.42¢-03 — 4.66e-01 - 2.99¢-03 - 8.81e-04 — 1.23e-03 -

1/16  1.34e-03 2.02 1.73e-01 1.43 2.17e-03 0.46 1.79¢-04 2.30 2.5le-04 2.29
1/32  3.66e-04 1.87 6.58¢-02 1.39 1.17¢-03 0.89 3.78e-05 2.24 5.30e-05 2.24
1/64 1.06e-04 1.79 2.37e-02 1.47 6.13e-04 0.93 8.21e-06 2.20 1.15e-05 2.20
1/128 2.96e-05 1.84 8.26e-03 1.52 2.78e-04 1.14 1.81e-06 2.18 2.54e-06 2.18
1/256 7.96e-06 1.89 2.97e-03 1.48 1.31e-04 1.09 4.09e-07 2.15 5.73e-07 2.15
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Figure 2: Example 2: Time evolution of the streamline and velocity components with ¢ = 0.01, h =
1/64, £ =0.001 at t = 0, 0.1, 0.2 from left to right.




Table 3: Example 2: Experimental order of convergence, pn = 0.01.

(a) e=8e—1
h lpllz EOC  lgillrz EOC  lgoll,z EOC  jufl,2  EOC  [[Vu|[,2 EOC
1/8  3.06e-02 - 9.58e-02 - 9.57e-02 - 4.04e-02 - 8.65e+00 -
1/16  1.56e-02 0.97 4.83e-02 0.99 4.83e-02 0.99 2.51e-02 0.69 7.39e+00 0.23
1/32  7.81e-03 1.00 2.40e-02 1.01 2.40e-02 1.01 9.23e-03 1.44 3.97e4+00 0.90
1/64 3.87e-03 1.01 1.19e-02 1.01 1.19e-02 1.01 2.57¢-03 1.84 1.50e+00 1.40
1/128 1.92e-03 1.01 5.73e-03 1.05 5.72¢-03 1.06 6.64e-04 1.95 545e-01 1.46
(b)ye=1le—1
h lpllz EOC  laillrz EOC  lgall;z EOC  Jjufl,2  EOC  [[Vul[,2 EOC
1/8  1.53e-03 - 9.46e-02 - 9.46e-02 - 3.21e-02 - 6.77e-+00 -
1/16  1.14e-03 0.42 4.78¢-02 0.98 4.78¢-02 0.98 1.93e-02 0.73 5.19e4+00 0.38
1/32  5.63e-04 1.02 2.38¢-02 1.01 2.38e-02 1.01 8.89¢-03 1.12 3.22e+00 0.69
1/64 1.77e-04 1.67 1.17e-02 1.02 1.17e-02 1.02 2.83e-03 1.65 1.35e4+00 1.25
1/128 4.66e-05 1.93 5.64e-03 1.05 5.64e-03 1.05 7.12e-04 1.99 4.99e-01 1.44
(c)e=1le—2
h lpllz EOC a2 BEOC  lg2ll,z EOC a2 EOC  |[Vul[2 EOC
1/8  1.02e-05 - 9.49e-02 - 9.49e-02 - 3.11e-02 - 6.08e+00 -
1/16  6.84e-06 0.58 4.84e-02 0.97 4.84e-02 0.97 2.05e-02 0.60 4.65e+00 0.39
1/32  1.37e-06 2.32 2.41e-02 1.01 241e-02 1.01 1.03e-02 0.99 3.28¢+00 0.50
1/64 7.75e-07 0.82 1.18-02 1.03 1.18e-02 1.03 3.22¢-03 1.68 1.35e+00 1.28
1/128 4.38¢-07 0.82 5.64e-03 1.07 5.64e-03 1.07 7.73e-04 2.06 4.94e-01 1.45
(d)e=1le—3
h ol EOC  laillrz EOC  igoll;z EOC  jufl,2  EOC  [[Vu|[,2 EOC
1/8  1.00e-07 - 9.50e-02 - 9.49e-02 - 3.13e-02 - 6.09e+00 -
1/16  4.07e-08 1.30 4.76e-02 1.00 4.76e-02 1.00 1.09e-02 1.52 2.70e+00 1.17
1/32  1.95e-08 1.06 2.37e-02 1.01 2.37e-02 1.01 4.55e-03 1.26 1.49e+00 0.86
1/64 8.34e-09 1.23 1.17e-02 1.02 1.17e-02 1.02 2.55e-03 0.84 1.13e+00 0.40
1/128 3.01e-09 1.47 5.64e-03 1.05 5.64e-03 1.05 7.49e-04 1.77 5.05e-01  1.16

33



-0.0145 0.0145 0.0038 -0.00098 0.00098

o o
-0.00295 0.00295 -0.000403  0.000403

(b)e=1le—3

Figure 3: Example 2: Error of velocity component u; for different mesh sizes and Mach numbers; h =
. &5, 35 (left to right), e = 0.1, 0.001 (top to bottom).
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Table 4: Example 2: Convergence of the compressible solution to the incompressible solution for different
viscosities u, t = 0.01, v = 1.4.

(a) e =h,u=0.01

h e EOC eV, u EOC eu EOC €p EOC ep EOC
1/8 1.22e-02 — 2.57e-01 - 5.54e-03 - 3.39e-04 - 3.34e-04 -
1/16  1.09e-03 3.48 1.47e-01 0.81 1.92e-03 1.53 7.40e-05 2.20 6.82e-05 2.29
1/32  2.02e-04 243 1.16e-01 0.34 9.09¢-04 1.08 1.31e-05 2.50 1.05e-05 2.70
1/64  2.63e-05 2.94 7.90e-02 0.55 3.20e-04 1.51 2.51e-06 2.38 1.91e-06 2.46
1/128 4.45e-06 2.56 3.86e-02 1.03 8.79e-05 1.86 5.21e-07 2.27 3.91e-07 2.29
1/256 9.86e-07 2.17  2.09e-02 0.89 2.84e-05 1.63 1.22e-07 2.09 7.63e-08 2.36

(b)e=h,p=1
h es EOC ev,u EOC €u EOC €p EOC ep EOC
1/8  6.68e-04 —  3.40e-02 —  1.24e-03 —  2.16e-04 —  3.54e-04 -

1/16  1.69e-04 1.98 1.80e-02 0.92 6.27e-04 0.98 3.49e-05 2.63 6.25e-05 2.50
1/32  4.19e-05 2.01 8.70e-03 1.05 2.33e-04 1.43 5.78e-06 2.59 9.09e-06 2.78
1/64 1.06e-05 1.98 4.25e-03 1.03 8.11e-05 1.52 1.25e-06 2.21 1.48e-06 2.62
1/128 2.68e-06 1.98 2.11e-03 1.01 3.18e-05 1.35 3.07e-07 2.03 2.93e-07 2.34
1/256 7.52e-07 1.83 1.05e-03 1.01 1.48e-05 1.10 7.65¢-08 2.00 6.81e-08 2.11

Table 5: Example 2: Convergence of the compressible solution to the incompressible solution for different
viscosities u, t = 0.01, v = 3.

(a) e=h,u=0.01

h eg EOC eV, u EOC eu EOC €p EOC ep EOC
1/8  3.60e-02 — 3.57¢-01 - 7.56e-03 - 3.66¢-04 — 4.22¢-04 -
1/16  3.04e-03 3.57 1.94e-01 0.88 2.35e-03 1.69 8.67e-05 2.08 9.08e-05 2.22
1/32  2.98e-04 3.35 1.30e-01 0.58 9.44e-04 1.32 1.92e-05 2.17 1.76e-05 2.37
1/64  5.26e-05 2.50 8.35e-02 0.64 3.25e-04 1.54 4.36e-06 2.14 3.45e-06 2.35
1/128 1.46e-05 1.85 4.46e-02 0.90 1.11e-04 1.55 1.08¢-06 2.01 1.06e-06 1.70
1/256 3.88¢-06 1.91 2.22e-02 1.01 4.05e-05 1.45 2.65e-07 2.03 2.34e-07 2.18

(b) e=h, p=1
h eg EOC eV, u EOC eu EOC €p EOC ep EOC
1/8  1.54e-03 — 4.38e-02 - 2.20e-03 - 1.26e-04 - 7.06e-04 -

1/16  3.63e-04 2.08 2.14e-02 1.03 1.04e-03 1.08 3.02¢-05 2.06 1.20e-04 2.56
1/32  1.18e-04 1.62 9.99e-03 1.10 4.29e-04 1.28 1.03e-05 1.55 2.41e-05 2.32
1/64  3.95e-05 1.58 4.84e-03 1.05 1.92e-04 1.16 2.70e-06 1.93 5.22e-06 2.21
1/128 1.22e-05 1.69 2.40e-03 1.01 9.26e-05 1.05 6.89e-07 1.97 1.25e-06 2.06
1/256 3.45e-06 1.82 1.20e-03 1.00 4.59¢-05 1.01 1.74e-07 1.99 3.10e-07 2.01
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