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1. Introduction

The aim of our paper is to give some conditions for existence of Kneser solutions

of the differential equation

(L) L(y) ≡ 0,

where

L(y) ≡ Lny +
n−1∑
k=1

Pk(t)Lky + P0(t)f(y),

L0y(t) = y(t),

L1y(t) = p1(t)(L0y(t))′ = p1(t)
dy(t)
dt

,

Lky(t) = pk(t)(Lk−1y(t))′ for k = 2, 3, . . . , n− 1,
Lny(t) = (Ln−1y(t))′,
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n is an arbitrary positive integer, n � 2, Pk(t), k = 0, 1, . . . , n − 1, pi(t), i =
1, 2, . . . , n−1 are real-valued continuous functions on the interval Ia = [a,∞), −∞ <

a <∞; f(t) is a real-valued function continuous on E1 = (−∞,∞).
If n = 1, then L(y) ≡ L1y + P0(t)f(y) = y′ + P0(t)f(y), P0(t) and f(t) are

real-valued continuous functions on Ia and on E1, respectively.

It is assumed throughout that

(A) Pk(t) � 0, pi(t) > 0 for all t ∈ Ia, k = 0, 1, . . . , n−1, i = 1, 2 . . . , n−1; f(0) �= 0,
f(t) � 0 for all t ∈ E1; P0(t) is not identically zero in any subinterval of Ia; n
is an arbitrary positive integer, n � 2. If n = 1, then P0(t) � 0 and f(t) � 0
for all t ∈ Ia and E1, respectively.

The problems of existence of monotone or Kneser solutions for third order ordinary
differential equations with quasi-derivatives were studied in several papers ([5], [7],

[8], [10]). The equation (L), where pi(t) ≡ 1, i = 1, 2, 3 (n = 4) was studied, for
example, in ([6], [9], [12]). Equations of the fourth order with quasi-derivatives were

also studied, for instance, in ([1], [3], [13]).

Existence of monotone solutions for n-th order equations with quasi-derivatives

was studied in [4].

In our paper, Theorem 1 and Theorem 2 give sufficient conditions for existence of a

Kneser solution of (L) on [a,∞) for n an even number or for an odd one, respectively.
Now we explain the concept of a Kneser solution, and other useful ones:

Definition 1. A nontrivial solution y(t) of a differential equation of the n-th

order is called a Kneser solution on Ia = [a,∞) iff (y(t) > 0, (−1)kLky(t) � 0) or
(y(t) < 0, (−1)kLky(t) � 0) for all t ∈ Ia, k = 1, 2, . . . , n− 1.

Definition 2. Let J be an arbitrary type of an interval with endpoints t1, t2,
where −∞ � t1 < t2 � ∞. The interval J is called the maximum interval of existence

of u : J → En1 , where u(t) is a solution of the differential system u′ = F (t, u) iff u(t)
can be continued neither to the right nor to the left of J.

Definition 3. Let y′ = U(t, y) be a scalar differential equation. Then y0(t) is

called the maximum solution of the Cauchy problem

(∗) y′ = U(t, y), y(t0) = y0

iff y0(t) is a solution of (∗) on the maximum interval of existence and if y(t) is
another solution of (∗), then y(t) � y0(t) for all t belonging to the common interval

of existence of y(t) and y0(t).

We give some preliminary results.
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Lemma 1. Let A(t, s) be a nonpositive and continuous function for a � t �
s � t0. If g(t), ψ(t) are continuous functions in the interval [a, t0] and

ψ(t) � g(t) +

t∫
t0

A(t, s)ψ(s) ds for t ∈ [a, t0],

then every solution y(t) of the integral equation

y(t) = g(t) +
∫ t

t0

A(t, s)y(s) ds

satisfies the inequality y(t) � ψ(t) in [a, t0].

�����. See [6], page 331. �

Lemma 2. (Wintner) Let U(t, u) be a continuous function on a domain t0 �
t � t0 + α, α > 0, u � 0, let u(t) be a maximum solution of the Cauchy problem
u′ = U(t, u), u(t0) = u0 � 0 (u′ = U(t, u) is a scalar differential equation) existing on
[t0, t0 + α]; for example, let U(t, u) = ψ(u), where ψ(u) is a continuous and positive

function for u � 0 such that ∫ ∞ du
ψ(u)

=∞.

Let us assume f(t, y) to be continuous on t0 � t � t0 + α, y ∈ En1 , y arbitrary, and

to satisfy the condition

|f(t, y)| � U(t, |y|).
Then the maximum interval of existence of a solution of the Cauchy problem

y′ = f(t, y), y(t0) = y0,

where |y0| � u0, is [t0, t0 + α].

�����. See [2], Theorem III.5.1. �

Lemma 3. Let (A) hold, and let there exist real nonnegative constants a1, a2
such that f(t) � a1|t|+ a2 for all t ∈ E1. Let initial values Lky(a) = bk be given for

k = 0, 1, . . . , n − 1. Then there exists a solution y(t) of (L) on [a,∞), which fulfils
these initial conditions.

�����. See [4], Lemma 3. �
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2. Results

Lemma 4. Let us assume g(t, z) to be continuous on t0−α � t � t0, α a positive

constant, z ∈ En1 , z is arbitrary and satisfies a condition

|g(t, z)| � ψ(|z|),

where ψ(t) is a continuous and positive function for t � 0 such that
∫ ∞ dt

ψ(t)
=∞.

Then the maximum interval of existence of a solution of the Cauchy problem

z′ = g(t, z), z(t0) = z0,

is [t0 − α, t0].

�����. Let us consider the Cauchy problem

(u) u′ = ψ(u), u(−t0) = u0 = |z0|.

According to the assumptions, the problem (u) admits a single solution u0(t) on
[−t0,∞), where

u0(t) = R−1(t+ t0)

and R : [u0,∞) → [0,∞), R(u) =
∫ u
u0

1
ψ(t) dt, R−1(R(u)) = u, u ∈ [u0,∞). Let us

consider the Cauchy problems

u′ = U(t, u) = ψ(u), u(−t0) = u0 = |z0|, (t, u) ∈ [−t0,−t0 + α]× [0,∞),(U)

y′(t) = g(−t,−y), y(−t0) = −z0, (t, y) ∈ [−t0,−t0 + α]× En1 ,(y)

z′(t) = g(t, z), z(t0) = z0, (t, z) ∈ [t0 − α, t0]× En1 .(z)

Then u0(t) = R−1(t+ t0) is the maximum solution of (U) on the maximum interval
of existence [−t0,−t0+α]. According to Lemma 2 there exists a solution y0(t) of (y)
on [−t0,−t0+α]. Then the Cauchy problem (z) admits the solution z0(t) = −y0(−t)
on [t0 − α, t0] because of

z′0(t) = y
′
0(−t) = g(t,−y0(−t)) = g(t, z0(t))

on [t0 − α, t0]. So the maximum interval of existence of (z) is [t0 − α, t0]. �
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Lemma 5. Let (A) hold, and let there exist nonnegative real constants a1, a2
such that f(t) � a1|t|+ a2 for all t ∈ E1. Let initial values Lky(t0) = bk be given for
k = 0, 1, . . . , n− 1, t0 > a. Then there exists a solution y(t) of (L) on [a,∞), which
fulfils these initial conditions.

�����. According to Lemma 3 there exists a solution of (L) on [t0,∞) such
that the initial conditions hold. To prove our lemma we need to prove existence of

a solution y(t) of (L) on [a, t0] satisfying the given initial conditions. Consider now
the following system (S), which corresponds to the equation (L):

(S)

u′k(t) =
uk+1(t)
pk(t)

, k = 1, 2, . . . , n− 1,

u′n(t) = −
n−1∑
k=1

Pk(t)uk+1(t)− P0(t)f(u1(t)),

where uk(t) = Lk−1y(t), k = 1, 2, . . . , n, fk = uk+1/pk, k = 1, . . . , n − 1, fn =
−∑

Pkuk+1 − P0f(u1), F = (f1, f2, . . . , fn), u = (u1, u2, . . . , un), u′ = (u′1, u
′
2, . . . ,

u′n), |u| =
n∑
k=1

|uk|, |F | =
n∑
k=1

|fk|, (t, u) ∈ [a, t0]× En1 . Then

|F (t, u)| =
n−1∑
k=1

∣∣∣uk+1
pk

∣∣∣+
∣∣∣∣−

n−1∑
k=1

Pkuk+1 − P0f(u1)

∣∣∣∣

�
n−1∑
k=1

(−Pk + 1
pk
)|uk+1| − P0(a1|u1|+ a2) � K1|u|+K2 = ψ(|u|),

where K1, K2 are appropriate positive real constants. It is obvious that

∫ ∞ ds
ψ(s)

=∞

for s ∈ E1, s > 0. Lemma 4 yields existence of a solution of (S) on [a, t0]. This fact

implies existence of a solution y(t) of the equation (L) on [a, t0] which satisfies the
given initial conditions. The lemma is proved. �

Lemma 6. Let (A) hold, and let y(t) be a solution of (L) on [t1,∞), where
t1 � a. Let (B) hold, where (s0 = s)

(B)
n−1∑
k=1

(−1)k−1Mk(t, s) � 0, Nn(t) � 0, n � 2
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and

Mk(t, s) =

s∫
t

ds1
pn−2(s1)

s1∫
t

ds2
pn−3(s2)

. . .

sk−2∫
t

−Pn−k(sk−1)
pn−1(s)

dsk−1,

M1(t, s) = − Pn−1(s), Nn(t) =

t∫
t2

n−1∑
k=1

(−Pn−k(s)Gk(s)) ds,

Gk(s) = Ln−ky(t2) + (−1)1Ln−k+1y(t2)
t2∫
s

ds1
pn−k+1(s1)

+ (−1)2Ln−k+2y(t2)

×
t2∫
s

ds1
pn−k+1(s1)

t2∫
s1

ds2
pn−k+2(s2)

+ . . .+ (−1)k−2Ln−2y(t2)

×
t2∫
s

ds1
pn−k+1(s1)

t2∫
s1

ds2
pn−k+2(s2)

. . .

t2∫
sk−3

dsk−2
pn−2(sk−2)

for k = 2, 3, . . . , n− 1, G1(s) = 0.
a) Let n be an even number and t2 ∈ (t1,∞) such that (−1)kLky(t2) � 0 for

k = 0, 1, . . . , n− 1. Then (−1)kLky(t) � 0 for t ∈ [t1, t2], k = 0, 1, . . . , n− 1.
b) Let n be an odd number and t2 ∈ (t1,∞) such that (−1)kLky(t2) � 0 for

k = 0, 1, . . . , n− 1. Then (−1)kLky(t) � 0 for t ∈ [t1, t2], k = 0, 1, . . . , n− 1.

�����. Let n � 2. Integration of the identity Lny = (Ln−1y)′ over [t2, t], where
t1 � t � t2 (n can be an even number as well as an odd one) yields

Ln−1y(t)

= Ln−1y(t2)−
∫ t

t2

n−1∑
k=1

Pk(s)Lky(s) ds−
∫ t

t2

P0(s)f(y(s)) ds

= Ln−1y(t2) +
∫ t

t2

(−P0(s)f(y(s))) ds+
∫ t

t2

n−1∑
k=1

(−Pn−k(s)Ln−ky(s)) ds.

Let us denote the expression Ln−1y(t2) +
t∫
t2

(−P0(s)f(y(s))) ds by Kn(t). It is

obvious that Kn(t) � 0 for all t ∈ [t1, t2]. We have

Ln−1y(t) = Kn(t) +
∫ t

t2

n−1∑
k=1

(−Pn−k(s)Ln−ky(s)) ds.
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It can be proved that

Ln−ky(s)

= Ln−ky(t2) + Ln−k+1y(t2)
∫ s

t2

ds1
pn−k+1(s1)

+ Ln−k+2y(t2)
∫ s

t2

ds1
pn−k+1(s1)

∫ s1

t2

ds2
pn−k+2(s2)

+ . . .

+ Ln−2y(t2)
∫ s

t2

ds1
pn−k+1(s1)

∫ s1

t2

ds2
pn−k+2(s2)

. . .

∫ sk−3

t2

dsk−2
pn−2(sk−2)

+
∫ s

t2

ds1
pn−k+1(s1)

∫ s1

t2

ds2
pn−k+2(s2)

∫ s2

t2

ds3
pn−k+3(s3)

. . .

∫ sk−2

t2

Ln−1y(sk−1) dsk−1
pn−1(sk−1)

for k = 2, 3, . . . , n − 1. By interchanging the upper and the lower bounds in the
previous integrals, we have

Ln−ky(s)

= Ln−ky(t2) + (−1)1Ln−k+1y(t2)
∫ t2

s

ds1
pn−k+1(s1)

+ (−1)2Ln−k+2y(t2)
∫ t2

s

ds1
pn−k+1(s1)

∫ t2

s1

ds2
pn−k+2(s2)

+ . . .

+ (−1)k−2Ln−2y(t2)
∫ t2

s

ds1
pn−k+1(s1)

∫ t2

s1

ds2
pn−k+2(s2)

. . .

∫ t2

sk−3

dsk−2
pn−2(sk−2)

+ (−1)k−1
∫ t2

s

ds1
pn−k+1(s1)

∫ t2

s1

ds2
pn−k+2(s2)

. . .

∫ t2

sk−2

Ln−1y(sk−1) dsk−1
pn−1(sk−1)

.

Denoting the last (k − 1)-dimensional integral by Ik(s), the previous sum by Gk(s),
I1(s) = Ln−1y(s), G1(s) = 0 for k = 1, 2, . . . , n− 1 (s0 = s) we obtain

Ln−ky(s) = Gk(s) + (−1)k−1Ik(s).

Hence

Ln−1y(t)

= Kn(t) +
∫ t

t2

n−1∑
k=1

(−Pn−k(s)[Gk(s) + (−1)k−1Ik(s)]) ds

= Kn(t) +
∫ t

t2

n−1∑
k=1

(−Pn−k(s)Gk(s)) ds+
∫ t

t2

n−1∑
k=1

(−Pn−k(s)(−1)k−1Ik(s)) ds.
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Denoting Kn(t) +
∫ t
t2

n−1∑
k=1
(−Pn−k(s)Gk(s)) ds by gn(t) and denoting

∫ t
t2
(−Pn−k(s)×

(−1)k−1Ik(s)) ds by (−1)k−1Jk(t) we have

Ln−1y(t) = gn(t) +
n−1∑
k=1

(−1)k−1Jk(t),

where Jk(t) is the k-dimensional integral

Jk(t) = −
∫ t2

t

(−Pn−k(s)) ds
∫ t2

s

ds1
pn−k+1(s1)

∫ t2

s1

ds2
pn−k+2(s2)

. . .

. . .

∫ t2

sk−2

Ln−1y(sk−1) dsk−1
pn−1(sk−1)

for k = 2, 3, . . . , n− 1 and J1(t) = − ∫ t2
t (−Pn−1(s)Ln−1y(s)) ds.

By changing the notation of the variables we have

Jk(t) = −
∫ t2

t

(−Pn−k(sk−1)) dsk−1
∫ t2

sk−1

dsk−2
pn−k+1(sk−2)

∫ t2

sk−2

dsk−3
pn−k+2(sk−3)

. . .

. . .

∫ t2

s1

Ln−1y(s) ds
pn−1(s)

.

Jk(t) is a k-dimensional integral on a k-dimensional domain. This domain can be
described as an elementary domain in the following way:

t � sk−1 � t2

sk−1 � sk−2 � t2

sk−2 � sk−3 � t2
...

s2 � s1 � t2

s1 � s � t2,

as well as like

t � s � t2

t � s1 � s

t � s2 � s1
...

t � sk−2 � sk−3

t � sk−1 � sk−2
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for k = 2, 3, . . . , n− 1. Hence

Jk(t)

= −
∫ t2

t

Ln−1y(s) ds
∫ s

t

ds1
pn−2(s1)

∫ s1

t

ds2
pn−3(s2)

. . .

∫ sk−2

t

−Pn−k(sk−1)
pn−1(s)

dsk−1.

The last integral can be rewritten into the form

Jk(t) = −
∫ t2

t

Mk(t, s)Ln−1y(s) ds =
∫ t

t2

Mk(t, s)Ln−1y(s) ds,

where

Mk(t, s) =
∫ s

t

ds1
pn−2(s1)

∫ s1

t

ds2
pn−3(s2)

. . .

∫ sk−2

t

−Pn−k(sk−1)
pn−1(s)

dsk−1

for k = 2, 3, . . . , n− 1, M1(t, s) = −Pn−1(s). Hence

Ln−1y(t)

= gn(t) +
n−1∑
k=1

(−1)k−1Jk(t) = gn(t) +
n−1∑
k=1

(−1)k−1
∫ t

t2

Mk(t, s)Ln−1y(s) ds

= gn(t) +
∫ t

t2

[n−1∑
k=1

(−1)k−1Mk(t, s)

]
Ln−1y(s) ds = gn(t) +

∫ t

t2

An(t, s)Ln−1y(s) ds,

where An(t, s) =
n−1∑
k=1
(−1)k−1Mk(t, s). We note that s � t2, si � t2, t � s,

t � si for i = 1, 2, . . . , n − 3. According to the assumptions of the lemma, we have
gn(t) = Kn(t) +Nn(t) and gn(t) � 0, An(t, s) � 0. According to Lemma 1 we have
Ln−1y(t) � 0 for all t ∈ [t1, t2]. By virtue of

Ln−2y(t) = Ln−2y(t2) +

t∫
t2

Ln−1y(s)
pn−1(s)

ds � Ln−2y(t2) � 0,

we have Ln−2y(t) � 0 on [t1, t2]. By using of a similar procedure (n can be an even
number or an odd one), we get for n � 2:
a) (−1)kLky(t) � 0 on [t1, t2] for k = 0, 1, . . . , n− 1, for n an even number,
b) (−1)kLky(t) � 0 on [t1, t2] for k = 0, 1, . . . , n− 1, for n an odd number.

If n = 1, then the assertion of the lemma is obvious. �
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Lemma 7. Consider a solution y(t) of (L) on [t1,∞), t1 � a such that (A)

holds, let n be an even number and t2 ∈ (t1,∞) such that (−1)kLky(t2) � 0 for
k = 0, 1, . . . , n− 1. Let Pk(t) ≡ 0 on [t1, t2] for all odd integers k ∈ [1, n]. Then (B)
holds.

�����. We have Gk(s) � 0 for all even numbers k ∈ [1, n], and Gk(s) � 0 for all
odd ones. If k is an odd number, then n− k is an odd number too, and Pn−k(t) ≡ 0
on [t1, t2]. Therefore Nn(t) =

t∫
t2

n−1∑
k=1
(−Pn−k(s)Gk(s)) ds � 0. Similarly, Mk(t, s) = 0

for all odd k � n. So An(t, s) =
n−1∑
k=1
(−1)k−1Mk(t, s) � 0 because Mk(t, s) � 0 for

all k = 1, 2, . . . , n− 1. �

Lemma 8. Consider a solution y(t) of (L) on [t1,∞), t1 � a such that (A)

holds, let n > 1 be an odd number and t2 ∈ (t1,∞) such that (−1)kLky(t2) � 0 for
k = 0, 1, . . . , n− 1. Let Pk(t) ≡ 0 on [t1, t2] for all even integers k ∈ [1, n]. Then (B)
holds.

�����. The proof is similar to the proof of the previous lemma, so it is omitted.
�

Lemma 9. Let {ym(t)}∞m=n0 be a sequence of solutions of (L) on [t0,∞), where
a < t0 < n0, n is an even number, and Lkym(m) = (−1)k for all m � n0, k =

0, 1, . . . , n− 1. Let (A) hold, and let Pk(t) ≡ 0 on [a,∞) for all odd integer numbers
k ∈ [1, n]. Let −∞ <

∞∫
t0

P0(s) ds = P < 0,
∞∫
t0

Pk(s) ds � − 12 for k = 1, 2, . . . , n − 1,

let Pk be nondecreasing functions for k = 0, 1, . . . , n − 1,
∞∫
t0

1/pr(s) ds � 1
2 for

r = 1, 2, . . . , n− 1, and let K be a real positive constant such that 0 � f(t) � K for

t ∈ (−∞,∞). Then there exists a subsequence of {ym(t)}∞m=n0 which converges to
ϕ0(t). This function ϕ0(t) is a solution of (L) on [t0,∞), and (−1)kLkϕ0(t) � 0 on
[t0,∞) for k = 0, 1, . . . , n− 1.

�����. Because Lnym(t) � 0 on [t0,m] for m = n0, n0 + 1, . . . (this follows

from Lemma 7 and Lemma 6, part a)), we have that Ln−1ym(t) is nondecreasing
and negative on [t0, n0] for m > n0. If we prove that Ln−1ym(t0) is bounded from
below, it means Ln−1ym(t) is uniformly bounded on [t0, n0]. Using the expression
(C) several times, where

(C) Lkym(s) = Lkym(m) +
∫ s

m

(
Lk+1

ym(s)
pk+1(s)

)
ds for k = 0, 1, . . . , n− 2,
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we obtain for n > 3, 2 � k < n− 1 (s0 = s):

(D)

Lkym(s) = Lkym(m) + Lk+1ym(m)

s∫
m

ds1
pk+1(s1)

+ Lk+2ym(m)

s∫
m

ds1
pk+1(s1)

s1∫
m

ds2
pk+2(s2)

+ . . .

+ Ln−2ym(m)

s∫
m

ds1
pk+1(s1)

s1∫
m

ds2
pk+2(s2)

. . .

sn−k−3∫
m

dsn−k−2
pn−2(sn−k−2)

+

s∫
m

ds1
pk+1(s1)

s1∫
m

ds2
pk+2(s2)

. . .

sn−k−2∫
m

Ln−1ym(sn−k−1)
pn−1(sn−k−1)

dsn−k−1.

Integration of (L) over [t0,m] yields

Ln−1ym(t0)

= Ln−1ym(m) +
∫ m

t0

P0(s)f(ym(s)) ds+

n
2−1∑
k=1

∫ m

t0

P2k(s)L2kym(s) ds

= Ln−1ym(m) +
∫ m

t0

P0(s)f(ym(s)) ds+

n
2−1∑
k=1

∫ m

t0

P2k(s)[B2k(s) + C2k(s)] ds,

where Ck(s) is the last integral in (D) and Bk(s) is the rest of the right-hand side of

(D). Let us denote the expression Ln−1ym(m) +
m∫
t0

P0(s)f(ym(s)) ds by Fm. Then

Ln−1ym(t0)

= Fm +

n
2−1∑
k=1

∫ m

t0

P2k(s)B2k(s) ds+

n
2−1∑
k=1

∫ m

t0

P2k(s)C2k(s) ds

� Fm +

n
2−1∑
k=1

∫ m

t0

P2k(s)B2k(s) ds+ Ln−1ym(t0)

×
n
2−1∑
k=1

∫ m

t0

P2k(s)

[∫ s

m

ds1
p2k+1(s1)

∫ s1

m

ds2
p2k+2(s2)

. . .

∫ sn−2k−2

m

dsn−2k−1
pn−1(sn−2k−1)

]
ds

� Fm +

n
2−1∑
k=1

∫ m

t0

P2k(s)B2k(s) ds+ Ln−1ym(t0)

×
n
2−1∑
k=1

∫ ∞

t0

[
− P2k(s)

[ ∫ ∞

t0

ds1
p2k+1(s1)

∫ ∞

t0

ds2
p2k+2(s2)

. . .

∫ ∞

t0

dsn−2k−1
pn−1(sn−2k−1)

]]
ds.

59



(We have used the fact that the last integral has the dimension n− 2k, which is an
even number, and t0 � si � m < ∞ for i = 1, 2, . . . , n− 2k − 2, t0 � s � m < ∞).
An easy arrangement yields

Ln−1ym(t0)
[
1 +

n
2−1∑
k=1

∫ ∞

t0

P2k(s) ds
∫ ∞

t0

ds1
p2k+1(s1)

∫ ∞

t0

ds2
p2k+2(s2)

. . .

. . .

∫ ∞

t0

dsn−2k−1
pn−1(sn−2k−1)

]
� Fm +

n
2−1∑
k=1

∫ m

t0

P2k(s)B2k(s) ds.

According to the assumptions, the expression in the parentheses above is a positive

number because of
n
2−1∑
k=1

∞∫
t0

[−P2k(s)] ds . . .
∞∫
t0

dsn−2k−1
pn−1(sn−2k−1)

�
n
2−1∑
k=1
(12 )

n−2k < 1. There-

fore

Ln−1ym(t0) �
Fm +

n
2−1∑
k=1

m∫
k0

P2k(s)B2k(s) ds

1 +
n
2−1∑
k=1

∞∫
t0

P2k(s) ds
∞∫
t0

ds1
p2k+1(s1)

. . .
∞∫
t0

dsn−2k−1
pn−1(sn−2k−1)

.

We have

Fm = Ln−1ym(m) +

m∫
t0

P0(s)f(ym(s)) ds � −1 +
∞∫
t0

P0(s)f(ym(s)) ds

� −1 +K
∞∫
t0

P0(s) ds = −1 +KP,

B2k(s) = L2kym(m) + L2k+1ym(m)

s∫
m

ds1
p2k+1(s1)

+ . . .+ Ln−2ym(m)

s∫
m

ds1
p2k+1(s1)

. . .

. . .

sn−2k−3∫
m

dsn−2k−2
pn−2(sn−2k−2)

= 1 + 1

m∫
s

ds1
p2k+1(s1)

+ . . .+ 1

m∫
s

ds1
p2k+1(s1)

. . .

. . .

m∫
sn−2k−3

dsn−2k−2
pn−2k−2(sn−2k−2)

� 1 + (n− 2k − 2)1
2

� n

because of s � m, si � m for i = 1, 2, . . . , n− 2k − 3. So we have
n
2−1∑
k=1

∫ m

t0

P2k(s)B2k(s) ds � n

n
2−1∑
k=1

∫ m

t0

P2k(s) ds

� n

n
2−1∑
k=1

∫ ∞

t0

P2k(s) ds � −n(n
2
− 1)1

2
.
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Hence

Ln−1ym(t0) �
−1 +KP − n

2 (
n
2 − 1)

1 +
n
2−1∑
k=1

∞∫
t0

P2k(s) ds
∞∫
t0

ds1
p2k+1(s1)

. . .
∞∫
t0

dsn−2k−1
pn−1(sn−2k−1)

= Sn−1 ∈ (−∞, 0)

for n > 3. If n = 2, then Ln−1ym(t0) = Fm � −1 +KP ∈ (−∞, 0). It implies that

{Ln−1ym(t0)}∞m=n0 is bounded from below for any fixed even number n � 2. So we
have

0 � Ln−2ym(t0) = Ln−2ym(m) +

m∫
t0

−Ln−1ym(s)
pn−1(s)

ds � 1− Ln−1ym(t0)

∞∫
t0

ds
pn−1(s)

� 1− Sn−1

∞∫
t0

ds
pn−1(s)

= Sn−2 ∈ (0,∞),

0 � Ln−3ym(t0) = Ln−3ym(m) +

m∫
t0

−Ln−2ym(s)
pn−2(s)

ds � −1− Ln−2ym(t0)

∞∫
t0

ds
pn−2(s)

� −1− Sn−2

∞∫
t0

ds
pn−2(s)

= Sn−3 ∈ (−∞, 0).

Similarly, it can be proved that {Lkym(t0)}∞m=n0 is bounded for k = 0, 1, . . . , n− 1.
However,

0 � Lnym(t) = −
n
2−1∑
k=1

P2k(t)L2kym(t)− P0(t)f(ym(t))

� −
n
2−1∑
k=1

P2k(t0)L2kym(t0)− P0(t0)K

� −
n
2−1∑
k=1

P2k(t0)S2k − P0(t0)K = Sn ∈ (0,∞),

and this implies that {Lnym(t)}∞m=n0 is uniformly bounded on [t0, n0] for m � n0

and so Ln−1ym(t) are uniformly equicontinuous on [t0, n0] for m � n0. According to
Arzelà-Ascoli theorem, there exists a subsequence {Ln−1ykm}∞m=n0 of {Ln−1ym}∞m=n0
such that {Ln−1ykm}∞m=n0 converges uniformly on [t0, n0] to, for example, a function
ϕn−1(t).
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To ensure uniform convergence of {Ln−2ykm}∞m=n0 on [t0, n0] to, for instance, a
function ϕn−2(t), it suffices to show convergence of {Ln−2ykm}∞m=n0 at an inner point
of [t0, n0]. This follows from the fact that Ln−2ykm(t0 + ε) � Ln−2ykm(t0) � Sn−2
for ε > 0, ε < n0 − t0. Then there exists a convergent subsequence {Ln−2yklm

(t0 +

ε)}∞m=n0 of {Ln−2ykm(t0 + ε)}∞m=n0 and therefore {Ln−2yklm
}∞m=n0 converges uni-

formly to ϕn−2(t) on [t0, n0]. It is obvious that Ln−1yklm
⇒ ϕn−1 on [t0, n0], too.

In a similar way we can prove uniform convergence of a subsequence {yrm}∞m=n0 of
{ym}∞m=n0 such that Lkyrm(t)⇒ ϕk(t) on [t0, n0] for k = 0, 1, . . . , n. Due to the fact

that uniform convergence makes changing of the order of limit processes possible
(a quasi-derivative is a certain kind of limit), we have

0 = lim
m→∞L(yrm(t))

= lim
m→∞Lnyrm(t) +

n
2−1∑
k=1

P2k(t) lim
m→∞L2kyrm(t) + P0(t)f( limm→∞ yrm(t))

= ϕn(t) +

n
2−1∑
k=1

P2k(t)ϕ2k(t) + P0(t)f(ϕ0(t))

for all t ∈ [t0, n0].
But ϕk(t) = lim

m→∞Lkyrm(t) = Lk( lim
m→∞ yrm(t)) = Lk( lim

m→∞L0yrm(t)) = Lkϕ0(t),

so ϕ0(t) fulfils (L) on [t0, n0]. It is important that we are able to continue ϕ0(t) on

[t0, n0+1] in such a way that ϕ0(t) be a solution of (L) on [t0, n0+1]. Indeed, it suffices
to repeat the whole previous part of the proof with the sequence yrm for m � n0+1
instead of ym form � n0. Now it is obvious that ϕ0(t) can be continued on [t0, n0+v]

(v is an arbitrary integer greater than 1) and therefore ϕ0(t) fulfils (L) on [t0,∞).
Now let us take an arbitrary point t1 ∈ [t0,∞). Then there exists m0 ∈ {1, 2, . . .},
t1 < m0 and a subsequence {ysm}∞m=n0 of {ym}∞m=n0 such that Lkysm ⇒ Lkϕ0(t)
on [t0,m0]. But (−1)kLkysm(t) � 0 on [t0,m0]. Therefore (−1)kLkϕ0(t1) � 0. It
implies that (−1)kLkϕ0(t) � 0 for all t � t0, k = 0, 1, . . . , n− 1. �

Lemma 10. Let {ym(t)}∞m=n0 be a sequence of solutions of (L) on [t0,∞),
where a < t0 < n0, n is an odd number, and Lkym(m) = (−1)k−1 for all m � n0,

k = 0, 1, . . . , n − 1. Let (A) hold, and let Pk(t) ≡ 0 on [a,∞) for all even integers
k ∈ [1, n]. Let −∞ <

∞∫
t0

P0(s) ds = P < 0,
∞∫
t0

Pk(s) ds � − 12 for k = 1, 2, . . . , n − 1,

let Pk be nondecreasing functions for k = 0, 1, . . . , n − 1,
∞∫
t0

1/pr(s) ds � 1
2 for

r = 1, 2, . . . , n− 1, and let K be a real positive constant such that 0 � f(t) � K for

t ∈ (−∞,∞). Then there exists a subsequence of {ym(t)}∞m=n0 which converges to
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ϕ0(t). This function ϕ0(t) is a solution of (L) on [t0,∞), and (−1)kLkϕ0(t) � 0 on
[t0,∞) for k = 0, 1, . . . , n− 1.
�����. The proof is similar to the proof of Lemma 9 (instead of Lemma 6,

part a), and Lemma 7 we use Lemma 6, part b) and Lemma 8, respectively), so it is
omitted. �

Theorem 1. Let n be an even number. Let (A) hold, and let Pk(t) ≡ 0 on [a,∞)
for all odd integers k ∈ [1, n]. Let Pk(t) be nondecreasing functions on [a,∞) such
that

∞∫
a

Pk(s) ds > −∞ for k = 0, 1, . . . , n−1,
∞∫
a

1/pr(s) ds <∞ for r = 1, 2, . . . , n−1,
and let K be a real positive constant such that 0 � f(t) � K for all t ∈ (−∞,∞).
Then (L) admits a Kneser solution y(t) on [a,∞), i.e. y(t) > 0, (−1)kLky(t) � 0 on
[a,∞) for k = 1, 2, . . . , n− 1.

�����. Let us take t0 ∈ (a,∞) such that
∞∫
t0

Pk(s) ds � − 12 ,
∞∫
t0

1/pr(s) ds � 1
2 for

k = 1, 2, . . . , n−1; r = 1, 2, . . . , n−1. According to Lemma 5, there exists a sequence
{ym(t)}∞m=n0 of solutions of (L) on [t0,∞) such that Lkym(m) = (−1)k for all m �
n0 > t0, k = 0, 1, . . . , n− 1. Lemma 7 ensures validity of (B), and Lemma 6, part a),
yields that {ym(t)}∞m=n0 has the required properties from Lemma 9. According to
the last-mentioned lemma, there exists a function y(t) such that L(y(t)) ≡ 0 on
[t0,∞), (−1)kLky(t) � 0 on [t0,∞) for k = 0, 1, . . . , n − 1. This solution y(t) of
(L) on [t0,∞) can be continued onto [a,∞) by Lemma 5. According to Lemma 6,
part a), y(t) is a Kneser solution of (L) on [a,∞) because y(t) > 0 on [a,∞) (this
follows from f(0) �= 0). �

Theorem 2. Let n be an odd number. Let (A) hold, and let Pk(t) ≡ 0 on [a,∞)
for all even integers k ∈ [1, n]. Let Pk(t) be nondecreasing functions on [a,∞) such
that

∞∫
a

Pk(s) ds > −∞ for k = 0, 1, . . . , n−1,
∞∫
a

1/pr(s) ds <∞ for r = 1, 2, . . . , n−1
and let K be a real positive constant such that 0 � f(t) � K for all t ∈ (−∞,∞).
Then (L) admits a Kneser solution y(t) on [a,∞), i.e. y(t) < 0, (−1)kLky(t) � 0 on
[a,∞) for k = 1, 2, . . . , n− 1.
�����. The proof is similar to that of the previous theorem (instead of

Lemma 6, part a) and Lemma 9 we will use Lemma 6, part b) and Lemma 10,
respectively) and so it is omitted. �
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3. Examples

�����	
 1. The equation

(t4(t3(t2y′)′)′)′ − 1
t2
(t3(t2y′)′) + [(

72
t8

− 1296
t4
)
√
1 + t−18]

1√
1 + y2

≡ 0

admits a Kneser solution y(t) = t−9 on [1,∞) according to Theorem 1 because
∞∫
1
(1/pr(t)) dt < ∞ for r = 1, 2, 3, P0(t) is nonpositive and nondecreasing on [1,∞),

∞∫
1
Pk(t) dt > −∞ for k = 0, 1, 2, 3, 0 � 1/

√
1 + y2 � 1, f(0) �= 0.

�����	
 2. The equation of the n-th order (n is an even number)

Lny +

n
2−1∑
k=1

P2k(t)L2ky + P0(t)f(y) ≡ 0,

where P2k(t) = −t−2k−2 for k = 0, 1, . . . , n2 − 1, pr(t) = t3r for r = 1, 2, . . . , n − 1,
f(t) = e−t

2
admits a Kneser solution on [1,∞) according to Theorem 1 because

∞∫
1
(1/pr(t)) dt < ∞ for r = 1, 2 . . . , n − 1,

∞∫
1
P2k(t) dt > −∞ for k = 0, 1, . . . , n2 − 1,

0 � e−t
2 � 1, f(0) �= 0.

�����	
 3. The equation

L5y − 1
t6
L3y − 1

t2
L1y + (12t

−13 + 1188t−12 − 14256t−3)
√
1 + t−48√
1 + y4

≡ 0,

where pr(t) = tr+1 for r = 1, 2, 3, 4 admits a Kneser solution y(t) = −t−12 < 0 on
[1,∞) according to Theorem 2 because

∞∫
1
(1/pr(t)) dt < ∞ for r = 1, 2, 3, 4, P0(t)

is nonpositive and nondecreasing on [1,∞),
∞∫
1
Pk(t) dt > −∞ for k = 0, 1, 2, 3, 4,

0 � 1√
1+y4

� 1, f(0) �= 0.
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