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1. INTRODUCTION

The aim of our paper is to give some conditions for existence of Kneser solutions

of the differential equation

(L) L(y) =0,
where
L) = Loy + 3 Belt) ey + Po(t)/(v),
k=1
LOZ/ t) = y(t)7

= O Eou(t)) = pa() A0,

(t)
(t)

Liy(t) = pe(t)(Lp—1y(t))" for k=2,3,....n—1,
(t)
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n is an arbitrary positive integer, n > 2, Py(t), k = 0,1,...,n — 1, p;(t), i =
1,2,...,n—1 are real-valued continuous functions on the interval I, = [a, c0), —c0 <
a < oo; f(t) is a real-valued function continuous on E; = (—o0, 00).

Ifn =1, then L(y) = Liy + Po(t)f(y) = v + Po(t)f(y), Po(t) and f(t) are
real-valued continuous functions on I, and on Ej, respectively.

It is assumed throughout that
(A) Pp(t) <0,pi(t) >0forallt € I,, k=0,1,...,n—1,i=1,2...,n—1; f(0) #0,

f(@) =0 for all ¢t € Fy; Py(t) is not identically zero in any subinterval of I,; n
is an arbitrary positive integer, n > 2. If n = 1, then Py(t) < 0 and f(¢t) > 0
for all t € I, and E1, respectively.

The problems of existence of monotone or Kneser solutions for third order ordinary
differential equations with quasi-derivatives were studied in several papers ([5], [7],
[8], [10]). The equation (L), where p;(t) = 1, i = 1,2,3 (n = 4) was studied, for
example, in ([6], [9], [12]). Equations of the fourth order with quasi-derivatives were
also studied, for instance, in ([1], [3], [13]).

Existence of monotone solutions for n-th order equations with quasi-derivatives
was studied in [4].

In our paper, Theorem 1 and Theorem 2 give sufficient conditions for existence of a
Kneser solution of (L) on [a, 00) for n an even number or for an odd one, respectively.

Now we explain the concept of a Kneser solution, and other useful ones:

Definition 1. A nontrivial solution y(t) of a differential equation of the n-th
order is called a Kneser solution on I, = [a,00) iff (y(t) > 0, (—=1)¥Lyy(t) = 0) or
(y(t) <0, (=1)*Lyy(t) <0) forallt € I,, k=1,2,...,n— 1.

Definition 2. Let J be an arbitrary type of an interval with endpoints t1, ts,
where —oo < t1 < t9 < oco. The interval J is called the maximum interval of existence
of u: J — E}, where u(t) is a solution of the differential system v’ = F(¢, ) iff u(t)
can be continued neither to the right nor to the left of J.

Definition 3. Let y' = U(t,y) be a scalar differential equation. Then yo(t) is
called the maximum solution of the Cauchy problem

(*) y' =U(t,y), y(to) = o

iff yo(¢) is a solution of (%) on the maximum interval of existence and if y(t) is
another solution of (x), then y(t) < yo(t) for all ¢ belonging to the common interval
of existence of y(t) and yo(t).

We give some preliminary results.
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Lemma 1. Let A(t,s) be a nonpositive and continuous function for a < t <
s < tg. If g(t), ¥(t) are continuous functions in the interval [a,to] and

W) > g(t) + / A(t, s)b(s) s for t € [a, ko),

then every solution y(t) of the integral equation

u(t) = g(t) + / A(t, s)y(s) ds

satisfies the inequality y(t) < ¥(t) in [a, to].

Proof. See [6], page 331. O

Lemma 2. (Wintner) Let U(t,u) be a continuous function on a domain ty <
t<to+a, a>0 u>0,let u(t) be a maximum solution of the Cauchy problem
w =U(t,u), u(to) =up = 0 (v = U(t,u) is a scalar differential equation) existing on
[to, to + «]; for example, let U(t,u) = v(u), where ¥(u) is a continuous and positive
function for u > 0 such that

< odu
U(u)
Let us assume f(t,y) to be continuous on ty < t < to + «, y € ET, y arbitrary, and
to satisfy the condition

Lf(ty)l U [yl)-

Then the maximum interval of existence of a solution of the Cauchy problem

y/ = f(t7y)’ y(tO) = Yo,

where |yo| < ug, is [to, to + .

Proof. See [2], Theorem IIL5.1. O

Lemma 3. Let (A) hold, and let there exist real nonnegative constants ai, as
such that f(t) < a1|t| + aq for all t € Ey. Let initial values Lyy(a) = by, be given for
k =0,1,...,n — 1. Then there exists a solution y(t) of (L) on [a,o0), which fulfils
these initial conditions.

Proof. See [4], Lemma 3. O
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2. RESULTS

Lemma 4. Let us assume g(t, z) to be continuous on to—«a < t < to, « a positive
constant, z € EY, z is arbitrary and satisfies a condition

l9(t, 2)| < ¥(]=1),
where 1)(t) is a continuous and positive function for t > 0 such that

©odr

¥(t)

Then the maximum interval of existence of a solution of the Cauchy problem
7= 9(t, 2), 2(to) = 2o,

is [to — Ol,to].

Proof. Let us consider the Cauchy problem
(u) u' = (), u(~to) = uo = |20

According to the assumptions, the problem (u) admits a single solution wug(t) on
[—to, 00), where
uo(t) = R_l(t + to)

and R: [ug,00) — [0,00), R(u) = f;o ﬁdt, R_1(R(u)) = u, u € [ug,00). Let us

consider the Cauchy problems

(U) o' =U(t,u) =(u), u(—ty) =uo = |20/, (t,u) € [~to, —to + a] X [0, 0),
—t,—y), y(—to) = —z0, (t,y) € [~to, —to +af x ET,
t,z), z(to) = zo, (t,2) € [to — a, to] X ET.

Then ug(t) = R_1(t + to) is the maximum solution of (U) on the maximum interval
of existence [—tg, —to + a]. According to Lemma 2 there exists a solution yo(t) of (y)
on [—tg, —tg+ a]. Then the Cauchy problem (z) admits the solution zo(t) = —yo(—t)
on [ty — a, ty] because of

20(t) = yo(—t) = g(t, —yo(—1)) = g(t, 20(t))
on [to — o, tg]. So the maximum interval of existence of (z) is [to — «, to]. O
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Lemma 5. Let (A) hold, and let there exist nonnegative real constants a1, as
such that f(t) < a1|t| + a2 for all t € E;. Let initial values Lyy(to) = by, be given for
k=0,1,...,n—1, tog > a. Then there exists a solution y(t) of (L) on [a,c0), which
fulfils these initial conditions.

Proof. According to Lemma 3 there exists a solution of (L) on [tg, c0) such
that the initial conditions hold. To prove our lemma we need to prove existence of
a solution y(t) of (L) on [a, to] satisfying the given initial conditions. Consider now
the following system (S), which corresponds to the equation (L):

up1(t)
pr(t)

n—1
up(t) = — Z Py (H)ug41(t) — Po(t) f(u1(t)),
k=1

wy () = . k=1,2....n—1,

where ug(t) = Lp—1y(t), k = 1,2,...,n, fr = ugs1/pk, k= 1,...,n—1, f,, =
_Z-Pkuk:+l _POf(ul)7 F = (f17f27"'7fn)7 u = (U]_7’ll,2,...,un), ul = (uaauéw"?
un), lul = > |ul, |F) = Y | fel, (t,u) € [a,to] X E}. Then

k=1 k=1

n—1 n—1
u
Fw = 3[4 '— S Pt — Pof (un)
k=1 k=1

Pk
n—1
1
<D (P ]3_k)|Uk+l| — Po(ar|ur| + az2) < Kiu| + Kz = ¢(|ul),
k=1

where K7, K5 are appropriate positive real constants. It is obvious that

> ds

¥(s)

for s € Eq, s > 0. Lemma 4 yields existence of a solution of (S) on [a, to]. This fact
implies existence of a solution y(t) of the equation (L) on [a,t] which satisfies the
given initial conditions. The lemma is proved. O

Lemma 6. Let (A) hold, and let y(t) be a solution of (L) on [t1,0), where
t1 > a. Let (B) hold, where (sp = s)

n—1

(B) > (=1F I My(t,s) <0, Nu(t) <0, n>2
k=1
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and

s S1 Sk—2

B dsy dss —Pp_i(Sk—1) 5
My (t,s) = /pn—2(81)t/pn_3(82)"' / (s dsg—_1,

t

Mi(t,s) = — Po_1(s),  Ny(t) :/z_:(—Pn_k(s)Gk(s))ds,
i k=1

to
ds
Gr(s) = Ln—gy(ta) + (—1)' Ln_s1y(t2) / o+ (= 1)’ L2y (t2)
Pn—k+1(51)
to d ta d
51 52 k—2
X + ...+ (-1 L, _oy(t
/pn—k+1(31) /pn—k+2(32) ( ) 2y( 2)
S S1
to ta to
% / dsl / d82 / dsk,Q
pn—k+1(31) pn—k+2(52) pn—Q(Sk—Q)
s S1 Sk—3

fork=2,3,...,n—1,G1(s) =0
a) Let n be an even number and ty € (t1,00) such that (—1)FLyy(t2) > 0 for
k=0,1,...,n—1. Then (—=1)¥Lyy(t) > 0 for t € [t1,t2], k =0,1,...,n— L.
b) Let n be an odd number and ty € (t1,00) such that (—1)FLyy(ts) < 0 for
k=0,1,...,n—1. Then (—1)*Lyy(t) <0 for t € [t1,t2], k=0,1,...,n— 1.

Proof. Letn > 2. Integration of the identity L,y = (Ln—_1y)’ over [t2,t], where
t;1 <t <ty (n can be an even number as well as an odd one) yields

Ln—ly(t)
tn—1
= Lp_1y(t2) Pr(s)Lry(s)ds — | Po(s)f(y(s))ds
1y(t2) /t2 ’; % (8)Liy(s / 0 Y
= Lo_1y(te) + | (—Py(s)f( ))ds + (8)Lpn—ky(s))ds.

¢
Let us denote the expression L,_1y(t2) + [(—=Po(s)f(y(s)))ds by K, (t). It is

ta

obvious that K, () < 0 for all ¢ € [t1,t2]. We have

1

Lp_qy(t / (s)Ln—ry(s))ds.

t2 =1
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It can be proved that

Ln—ky(s)

s d81
= Ly _xy(t2) + Ln—ks1y(t2 / —
( ) * ( ) to pnkarl(sl)

s d81 51 d32
+ L _k+2y(t2)/ / +...
" t Pn—kt+1(51) Ju, DPn—it2(s2)

s d81 51 d82 Sk=3 dsk,Q
+Ln,2yt2/ / / _ Aoz
(t2) to Pn—k+1(81) S, Pn—kt2(s2) Sy, Pn—2(Sk—2)

+/s ds; /51 dsg /S2 dss /S’“*2 Lyp_1y(sp—1) dsg—1
ts Pn—k1(51) Jo, Pnowra(s2) Ji, Pnowis(ss) i, Pn—1(8k-1)

for K = 2,3,...,n — 1. By interchanging the upper and the lower bounds in the

previous integrals, we have

Lnfkty(s)

t2 ds
= L_py(tz) + (_1)1Ln7k+1y(t2)/ :

Pr—k41(51)

2 dg t2 dsy
+ (=1)%L,_ t / / !
(-1) K42y (t2) s DPn-kt1(51) Js, Pn—rt2(52)
1)Lyt )/h - /tg - /“ s
n—2Y(l2 s pnfk+l(81) s1 pn7k+2(82) o Sk—3 pn,2(8k72)

+(_1)k_1/t2 dsy /t2 dsy /t2 Lp—1y(sk—1) dsk—1
s pn—k+1(31) s1 pn—k+2(32).“ Sk_2 pn—l(sk—l) '

Denoting the last (k — 1)-dimensional integral by I(s), the previous sum by Gy(s),
Ii(s) = Lp—1y(s), G1(s) =0 for k =1,2,...,n — 1 (sp = s) we obtain

Ln—ry(s) = Gr(s) + (—l)kflfk(s).

Hence
Ln—ly(t)
5,0+ [ S (Pas(o)[Gi(s) + (CDF () ds
2 p=1
tn—1 tn—1
= K,(t) + / (=Ph—k(s)Gg(s)) ds + Z(—Pn_k(s)(—l)k_llk(s)) ds
2 p—1 b2 =1
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n—1
Denoting K, (t) + f; > (—Po—k(5)Gk(s)) ds by g,(t) and denoting fti(—Pn,k(s) X
k

=1

(—=1)k=115.(s)) ds by (=1)*~1Jy(¢) we have

n—1

Lnay(t) = ga(t) + Y (1) 1k (1),

k=1

where Jj(t) is the k-dimensional integral

b2 t2 d81 t2 dSQ
Ji(t) = — —P,_ d
k( ) /t ( k(s)) s/ﬁ pn—k+1(31) /51 pn—k+2(32)

/t2 Ly_1y(sk—1) dsk—1
e, Prn—1(8k—1)

for k=2,3,...,n—1and Ji(t) = — ttg(—Pn,l(s)Ln,ly(s)) ds.
By changing the notation of the variables we have

2 & dsp— 2 dsp—
Jp(t) = _/ (—Pn_k(sk_l))dsk_l/ Sh—2 / Sh—3
t E

si_y Pn—kr1(Sk—2) Js,_, Pn—k+t2
/t2 L,_1y(s)ds
e pai(s)

Ji(t) is a k-dimensional integral on a k-dimensional domain. This domain can be

described as an elementary domain in the following way:

t

< 8p—1 < 12
Sk—1 < Sg—2 S 12
Sk—2 < Sk—3 < t2
59 < 81 < t2
51 < 5 < to,
as well as like
t < S < tg
t<s1<s
t <52 <81
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for k=2,3,...,n— 1. Hence

Ji(t)
to s d81 S1 d32 Sk—2 _P —k(sk—l)
. sds/ / / “hoklSion) g
/t 19(%) t Pn72(81) ¢ Pn—3(s2) t pnfl(s) o

The last integral can be rewritten into the form

to t
Ji(t) = — My (t,8)Ly—1y(s)ds = My(t, 8)Ln—1y(s) ds,

t t2

where

5 ds /51 dsa /5""2 —Po_k(Sk-1)
My(t,s) = ——~dsi—
k(t,s) / poal) e pratsn) T T pea(s) O

for k=2,3,...,n—1, Mi(t,s) = —P,_1(s). Hence

Lnfly(t)
n—1 n—1 t
=00+ Y (1) = 000 + S0 [ Mt ) L) ds
k:tl . k=1 t
= gn(t) +/ [Z(—l)kle(t, s)] Ly_1y(s)ds = gn(t)+ [ An(t,s)Lp_1y(s)ds,
t2 Ly t2

n—1

where A,(t,s) = > (=1)*"1M;(t,s). We note that s < ta, s; < ta, t < s,
k=1

t<s; fori=1,2,...,n—3. According to the assumptions of the lemma, we have

gn(t) = Kn(t) + Nu(t) and g, (t) <0, An(t,s) < 0. According to Lemma 1 we have
Ln—1y(t) <0 for all t € [t1,t2]. By virtue of

t
Ly,_1y(s
Ln—2y(t) = Ln—2y(t2) + / Laowls) ds > Ly—2y(t2) 2 0,
pnfl(s)
ta
we have L,,_2y(t) > 0 on [t1,t2]. By using of a similar procedure (n can be an even
number or an odd one), we get for n > 2:
a) (=1)*Lyy(t) = 0 on [t1,ts] for k =0,1,...,n — 1, for n an even number,
b) (=1)*Lyy(t) <0 on [t1,ts] for k =0,1,...,n — 1, for n an odd number.
If n = 1, then the assertion of the lemma is obvious. O
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Lemma 7. Consider a solution y(t) of (L) on [t1,00), t1 > a such that (A)
holds, let n be an even number and ty € (t1,00) such that (—1)*Ly(ta) > 0 for
k=0,1,....,n—1. Let Py(t) =0 on [t1,ts] for all odd integers k € [1,n]. Then (B)
holds.

Proof. Wehave Gi(s) > 0 for all even numbers k € [1,n], and G (s) < 0 for all
odd ones. If k is an odd number, then n — k is an odd number too, and P,,_;(t) =0

tn—1
on [t1,t2]. Therefore Ny, (t) = [ 3 (—Pn—r(s)Gr(s))ds < 0. Similarly, M;(t,s) =0
ty k=1

n—1

for all odd k < n. So A,(t,5) = > (—=1)* 1My (t,s) < 0 because My(t,s) = 0 for
k=1

alk=1,2,...,n—1. O

Lemma 8. Consider a solution y(t) of (L) on [t1,00), t1 = a such that (A)
holds, let n > 1 be an odd number and t3 € (t1,00) such that (—1)*Lyy(t2) < 0 for
k=0,1,...,n—1. Let Py(t) =0 on [t1, 2] for all even integers k € [1,n]. Then (B)
holds.

Proof. The proof is similar to the proof of the previous lemma, so it is omitted.
O

Lemma 9. Let {ym(t)}n—,, be a sequence of solutions of (L) on [tg, o0), where
a < ty < ng, n is an even number, and Lyy,,(m) = (=1)F for all m > ng, k =
0,1,...,n—1. Let (A) hold, and let Py(t) = 0 on [a, 00) for all odd integer numbers

k€ [1,n]. Let —0o < [ Po(s)ds =P <0, [Py(s)ds > —% fork=1,2,....,n—1,
to tO

let P, be nondecreasing functions for k = 0,1,...,n — 1, [1/p,(s)ds < % for
to

r=1,2,...,n—1, and let K be a real positive constant such that 0 < f(t) < K for
t € (—00,00). Then there exists a subsequence of {ym(t)}55_,,, which converges to
¢o(t). This function py(t) is a solution of (L) on [tg,00), and (—1)¥Lipo(t) > 0 on
[to,0) for k =0,1,...,n—1.

Proof. Because L,y (t) = 0 on [tg,m] for m = ng,no + 1,... (this follows
from Lemma 7 and Lemma 6, part a)), we have that L,_1y,,(¢) is nondecreasing
and negative on [tg,ng] for m > ng. If we prove that L, _1ym(to) is bounded from
below, it means L, _1ym,(t) is uniformly bounded on [tg,n]. Using the expression
(C) several times, where

S

(Lk+]_ Ym (5) )ds for k=0,1,...,n—2,

(C) Liym(s) = Liym(m) +/ Pr+1(8)

m
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we obtain forn > 3,2 < k<n—1 (so =)

Liym(s) = Lrym(m) + Ly t1ym(m /
pk+1 31

m
S S1

d d
+ Li+2ym(m) / o1 / 2 _ 4.

Per1(s1) J Prya(s2)

m

(D) S "7:91 Sn—k—3
d81 d32 dSn_k_Q
L sy (m / / / _dsnnz
2ym(m) Pry1(s1) J prg2(s2) Prn—2(Sn—k—2)

m m

Sn—k—2

/ / / Ln—lym(sn—k—l)d
. Sn—k—1-
Pr+1(51) J Prya(s2) Prn—1(Sn—k—1)

m m m

Integration of (L) over [to, m] yields

Ln—lym(tO)

= LocagmOm) + [ B m (@) ds+ Y [ Pas) iy (s) s
k=1 "%to

to

to

m %71 m
— Locagm(m) + [ Ru(s)fum () ds+ Y- [ Pus)[Barls) + Cans)] ds
k=1 "%to

where C(s) is the last integral in (D) and By(s) is the rest of the right-hand side of
(D). Let us denote the expression Ly, 1y, (m) + [ Po(s)f(ym(s)) ds by Fy,. Then
to

Ln 1ym(t0)
=1 m
=F,+ Z / ng ng d8+ Z / ng(s)CQk(s) ds
to
%71 m
>Fun+ Y [ Pa(s)Bak(s)ds + Ln_1ym(to)
k=1 "0

m s d81 /51 dSQ /Sn—Qk—2 dSn—Qk—l :|
X Py (s . — | ds
kZ to 25 (%) |:/n1 P2k+1(51) S D2r2(52) m Prn—1(Sn—2k—1)

n

> F + Z / Pay(5)Bak(s) ds + Ly—1ym(to)

® dsp /00 dss /00 dsp_2x—1
X — P .. —— || ds.
Z / 2 /to P2k+1(51) to Par+2(52) to pn71(3n72k71):|:|
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(We have used the fact that the last integral has the dimension n — 2k, which is an
even number, and t)p < s; <m<oofori=1,2,...,n—2k—2,t < s <m < ).
An easy arrangement yields

n_q
2 oo o dS oo dS
Lo 1ym(to) [1+ Z/t ng(s)ds/ ! /t >
k=1 /to 0

to p2k+1(31) p2k+2(82) o

n_1
00 dsn, _ 2 m

/ —%1)} > F,, + Z/ Pai(s)Ba(s) ds.
to k=1 Y to

pn—l(sn—Qk—l

According to the assumptions, the expression in the parentheses above is a positive
2-1o00

number because of E J1=Pax(s)]ds... [ M < E( )"~2k < 1. There-
to

Pn—1(Sn—2k-1)

k=1 to
fore )
F, + Z | P2y (8)Bai(s) ds
k=1k
Lnflym(tO) 2 n_q . .
2 ® ds w® ds, _or_
1+ kz fPQk( )dsf p2k+1t31) f pnfl(sn%—kal—l)
=14 to
We have
For = Lcagm(m) + [ Po(5)f(om(s)) ds > =1+ [ Polo)f () ds
to

> —1+K/P0(s)ds=—1+KP,

/ dsl / dsl
Bow(8) = Logym(m) + L mm/i—i—...—i—Ln, mm/i...
2k() 2y ( ) 21y ( ) p2k+1(31) 2 ( ) p2k+1(31)
Sn—2k—3 d m d m d
ﬂ:1+1/$+...+1/$...
pn—Q(Sn—Qk—Q) p2k+1(31) p2k+1(31)
T s, ok 1
/ Sn%2 g4 (p 9k —2)% <
pn—Qk—Q(Sn—Qk—Q) 2
Sn—2k—3
because of s <m, s; <mfori=1,2,...,n— 2k — 3. So we have
n 1
/ Poy,(8)Bak (s Z/ Po(s
to k=1
F—1 e}
n
> P. ds> —n(=—1)=
nkzl/to 2k (8) ds n(2 )
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Hence

Lnflym(tO) 2 21 o ~ 2 ~
ds dsp_2k—1
1+ ’; f PQk(S) ds f P2k+1?31) e f Pn—1(5n—2k-1)
=1 to to to

forn > 3. If n =2, then L,_1ym(to) = Fy = =1+ KP € (—00,0). It implies that
{Ln—1ym(to)}55=r, is bounded from below for any fixed even number n > 2. So we
have

m—Ln,lym(s) /0o ds
0 < Ly—2ym(to) = Ly—2ym(m +/7ds<1—Ln, m(t
2Y (0) 2Y ( ) pn_1(3) 1Y (0) pn—l(S)
to tO
7 ds
<1-5,_ /7:&1, € (0,00),
L (e~ 2 €00
to
m—Ln,gym(s) /0o ds
0> Ly_3ym(to) = Ly—3ym(m +/7ds>—l—Ln, m(t
3Y (0) 3Y ( ) pn_g(s) 2y (0) pn_g(s)
to tO
7 ds
>-1-5,_ / = Sp-3 € (—00,0).
t) ) e (700
0

Similarly, it can be proved that {Lyym(to)}55—,, is bounded for £ =0,1,...,n — 1.
However,

nq
0 < Lpym(t) = = Y Por(t) Larym (t) — Po(t)f (ym(t))
k=1
1
< - Z Py (to)Lorym(to) — Po(to) K
-
< =Y Paklto)Sar — Po(to) K = S, € (0,00),
k=1

and this implies that {L,ym(t)}—,, is uniformly bounded on [tg,no] for m > ng
and so Ly, —1ym(t) are uniformly equicontinuous on [tg, ng| for m > ng. According to
Arzela-Ascoli theorem, there exists a subsequence { Ly, 1Yk, }rv—no Of { Ln—1Ym }ri—nq
such that { L, _1Yr,, }v=n, converges uniformly on [to, no] to, for example, a function
n—1(t)-
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To ensure uniform convergence of { L, 2y, }v—pn, o0 [to,no] to, for instance, a
function ¢, _»(t), it suffices to show convergence of { L,,_oyk,, } pv—n, at an inner point
of [to,no]. This follows from the fact that L,_oyk,, (to +€) < Lp—2yk,, (to) < Sn—2
for e > 0, € < ng — tg. Then there exists a convergent subsequence {Ln,gyk,m (to +
)} —no Of {Ln_2yr,, (to + €)}p5—,, and therefore {L, oyr, }ro_,, converges uni-
formly to ¢, _2(t) on [to,no]. It is obvious that L, 1Yk, = @n—1 on [to,n0], too.
In a similar way we can prove uniform convergence of a subsequence {y;,, }ov—,, of
{Ym }ov=n, such that Lyy,  (t) = ¢k (t) on [to,no] for k = 0,1,...,n. Due to the fact
that uniform convergence makes changing of the order of limit processes possible
(a quasi-derivative is a certain kind of limit), we have

0= lim L(y., ()

m—00

21

= lim Lyy,, () + Z P (t) W}l_rfloo Lokyr,, (t) + PO(t)f(n}i_rfloo Yr, (1)
k=1

m—00

21

on(t) + > Po(t)par(t) + Po(t) f(¢o(t))
k=1

for all ¢ € [tg, no]-

But @u(t) = I Ligr, (1) = Le( lim o, (1) = Li( im_Loyr,. (1)) = Lecolt),
s0 o (t) fulfils (L) on [tg, no]. It is important that we are able to continue g(t) on
[to, no+1] in such a way that ¢o(t) be a solution of (L) on [tg, no+1]. Indeed, it suffices
to repeat the whole previous part of the proof with the sequence y,., for m > ng+1
instead of y,,, for m > ng. Now it is obvious that ¢g(¢) can be continued on [tg, ng+v]
(v is an arbitrary integer greater than 1) and therefore ¢g(t) fulfils (L) on [tg, 00).
Now let us take an arbitrary point ¢; € [tg,00). Then there exists mo € {1,2,...},
t1 < mg and a subsequence {ys,, }oo—, Of {¥m =y, such that Lpys,, = Lrpo(t)
on [tg,mo]. But (—1)*Lyys, (t) = 0 on [tg,mo]. Therefore (—1)*Lypo(t) = 0. It
implies that (—1)*Lypo(t) =0 for all t > tg, k=0,1,...,n— 1. O

Lemma 10. Let {y,(t)}55-,, be a sequence of solutions of (L) on [to,00),
where a < ty < ng, n is an odd number, and Lyy,,(m) = (—1)*=! for all m > ny,
k=0,1,...,n—1. Let (A) hold, and let Py(t) = 0 on [a,00) for all even integers

k€ [1,n]. Let —0o < [ Py(s)ds =P <0, [Py(s)ds > —3 fork=1,2,....,n—1,
to to
let P, be nondecreasing functions for k = 0,1,...,n — 1, [1/p,(s)ds < % for
to

r=1,2,...,n—1, and let K be a real positive constant such that 0 < f(t) < K for
t € (—o0,00). Then there exists a subsequence of {ym(t)}5—,, Which converges to
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¢o(t). This function ¢o(t) is a solution of (L) on [tg,00), and (—1)¥ Lypo(t) < 0 on
[to,0) for k =0,1,...,n—1.

Proof. The proof is similar to the proof of Lemma 9 (instead of Lemma 6,
part a), and Lemma 7 we use Lemma 6, part b) and Lemma 8, respectively), so it is
omitted. O

Theorem 1. Let n be an even number. Let (A) hold, and let Py (t) = 0 on [a, 00)
for all odd integers k € [1,n]. Let Py(t) be nondecreasing functions on [a,c0) such

that [ Py(s)ds > —oo fork =0,1,...,n—1, [ 1/p,(s)ds < oo forr =1,2,...,n—1,

and let K be a real positive constant such that 0 < f(t) < K for all t € (—00,00).
Then (L) admits a Kneser solution y(t) on [a,c0), i.e. y(t) >0, (=1)*Lyy(t) > 0 on
[a,00) for k=1,2,...,n—1.

Proof. Let ustakety € (a,00) such that [ Py(s)ds > —1, [ 1/p,(s)ds < 3 for
t to

k=1,2,....n—1;r=1,2,...,n—1. Accordin(:g, to Lemma 5, there exists a sequence
{ym(t)}35_,,, of solutions of (L) on [to,00) such that Liym,(m) = (—1)* for all m >
ng >tg, k=0,1,...,n—1. Lemma 7 ensures validity of (B), and Lemma 6, part a),
yields that {ym (t)} o =n,
the last-mentioned lemma, there exists a function y(¢) such that L(y(t)) = 0 on
[to,00), (=1)*Lxy(t) > 0 on [tg,00) for k = 0,1,...,n — 1. This solution y(¢) of
(L) on [tg,00) can be continued onto [a,c0) by Lemma 5. According to Lemma 6,

has the required properties from Lemma 9. According to

part a), y(t) is a Kneser solution of (L) on [a, c0) because y(t) > 0 on [a,o0) (this
follows from f(0) # 0). O

Theorem 2. Letn be an odd number. Let (A) hold, and let Py (t) = 0 on [a, 00)
for all even integers k € [1,n]. Let Py(t) be nondecreasing functions on [a,c0) such
that [ Py(s)ds > —oofork =0,1,...,n—1, [ 1/p,(s)ds < oo forr=1,2,...,n—1
and let K be a real positive constant such that 0 < f(t) < K for all t € (—o0,00).
Then (L) admits a Kneser solution y(t) on [a,c0), i.e. y(t) <0, (=1)*Lxy(t) < 0 on
[a,00) for k=1,2,...,n—1.

Proof. The proof is similar to that of the previous theorem (instead of
Lemma 6, part a) and Lemma 9 we will use Lemma 6, part b) and Lemma 10,
respectively) and so it is omitted. O
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3. EXAMPLES

Example 1. The equation

1 72 1296
t4t3t2////__t3t2// e 14 ¢—18 =0
@YY - @) + G5~ SV e
admits a Kneser solution y(t) = ¢t~ on [1,00) according to Theorem 1 because

J(1/p,(t))dt < oo for r = 1,2,3, Py(t) is nonpositive and nondecreasing on [1, o),
1

[ P(t)dt > —oo for k =0,1,2,3,0 < 1/3/T+ 52 < 1, £(0) £ 0.
1

Example 2. The equation of the n-th order (n is an even number)

21

Loy + Y Po(t)Lary + Po(t) f(y) =0,
k=1

where Py (t) = =t 22 for k =0,1,...,2 =1, p(t) =3 for r = 1,2,...,n — 1,

fi) = e~ admits a Kneser solution on [1,00) according to Theorem 1 because
o0

J@/pr(t))dt < oo for r=1,2...,n—1, [ Py(t)dt > —o0 for k =0,1,...,2 — 1,
1 1

0<e ™ <1, f(0)#£0.

Example 3. The equation

1 1 V14 ¢—48
Loy — —Lay — =Ly + (12613 + 1188t12 — 142561 %) Y — o,
tG t2 1 + y4
where p,.(t) = t"*! for » = 1,2, 3,4 admits a Kneser solution y(t) = —t~12 < 0 on

[1,00) according to Theorem 2 because [(1/p,(t))dt < oo for r = 1,2,3,4, Py(t)
1
is nonpositive and nondecreasing on [1,00), [ Py(t)dt > —oo for k = 0,1,2,3,4,
1

Og—/ﬁg]wf(o)?éo
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