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Abstract. We consider a reaction-diffusion system of activator-inhibitor type which is
subject to Turing’s diffusion-driven instability. It is shown that unilateral obstacles of var-
ious type for the inhibitor, modeled by variational inequalities, lead to instability of the
trivial solution in a parameter domain where it would be stable otherwise. The result is
based on a previous joint work with I.-S.Kim, but a refinement of the underlying theoretical
tool is developed. Moreover, a different regime of parameters is considered for which insta-
bility is shown also when there are simultaneously obstacles for the activator and inhibitor,
obstacles of opposite direction for the inhibitor, or in the presence of Dirichlet conditions.
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a Lipschitz boundary, and ΓD ⊆ ∂Ω.

Given f1, f2 : R
2 → R, we consider the reaction-diffusion system

(1.1) ut = d1∆u+ f1(u, v)

vt = d2∆v + f2(u, v)

with diffusion coefficients d1, d2 > 0 and Neumann-Dirichlet boundary conditions

(1.2)





u = v = 0 on ΓD,

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω \ ΓD.

The results were obtained in the Framework of the SFB647 of the DFG. Financial support
by the DFG is gratefully acknowledged.
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We will supplement (1.1), (1.2) with unilateral obstacle conditions and show that

these obstacles will change the stability for certain diffusion coefficients (d1, d2).

The result is based on a refinement of a theoretical tool developed in [4]. In a sense,

the result presented in this paper complements the application from [4], since we

consider a different range of values (d1, d2) than in [4], which leads to a result under

somewhat different assumptions on the obstacle/boundary conditions (and allows us

also to treat ΓD 6= ∅).

2. Auxiliary and main results

We assume that fi(0, 0) = 0 with fi being differentiable at (0, 0), and we are

interested in the stability of the trivial solution u = v = 0 of (1.1), (1.2). We

suppose that system (1.1) is subject to Turing’s diffusion-driven instability [7], that

is, we assume that without diffusion (d1 = d2 = 0) the solution u = v = 0 is linearly

stable. In other words, we assume that the Jacobi-matrix (bij) of (f1, f2) at (0, 0) has

its spectrum in the left half-plane. For definiteness, and to avoid a certain Hopf-type

instability later on, we assume b11 > 0. It follows from Vieta’s theorem that these

assumptions are equivalent to the sign conditions

(2.1) b11 > 0 > b22, b12b21 < 0, b11 + b22 < 0, b11b22 − b12b21 > 0.

We rewrite (1.1) in the form

(2.2) ut = d1∆u+ b11u+ b12v + g1(u, v),

vt = d2∆v + b21u+ b22v + g2(u, v),

where

(2.3) lim
(u,v)→(0,0)

gi(u, v)

|u|+ |v| = 0 for i = 1, 2.

We assume that fi (and thus gi) satisfy the Lipschitz type condition

(2.4) |fi(u1, v1)− fi(u2, v2)| 6 C(1+ |u1|+ |u2|+ |v1|+ |v2|)αN (|u1−u2|+ |v1− v2|)

for all uj, vj ∈ R, where C ∈ [0,∞) and αN := 2/(N − 2) if N > 2 or 0 < αN < ∞
if N = 2. In case of space dimension N = 1, we assume instead of (2.4) only that fi
satisfy a local Lipschitz condition in some neighborhood of (u, v) = (0, 0).

It is well-known (see [6] for N = 1 or [1] for the general case) that (0, 0) is linearly

stable if and only if (d1, d2) ∈ R
2
+ lies in the open set DS to the right/under each of
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the countably many hyperbolas

(2.5) Cn = {(d1, d2) ∈ R
2
+ : (κnd1 − b11)(κnd2 − b22) = b12b21}

=
{
(d1, d2) ∈ R

2
+ : d2 =

b12b21/κ
2
n

d1 − b11/κn
+
b22
κn

}
,

see Figure 1. Here, 0 < κ1 < κ2 < . . . → ∞ denote the strictly positive eigenvalues
of −∆ with Dirichlet-Neumann boundary condition (1.2) (in case ΓD = ∅ the trivial
eigenvalue κ0 = 0 is omitted from the sequence).

d1

d2 C4 C3 C2 C1

DS

Figure 1. Hyperbolas (2.5) determining DS .

Although the above mentioned result is mathematical folklore, we will give a new

simple proof of this observation based on spectral calculus in Section 5. In order

to compare this observation with our subsequent main result concerning obstacles,

we formulate now precisely what the linear stability implies in the terminology of

dynamical systems.

To this end, we consider the weak form of (1.1), (1.2), that is, we consider the

Hilbert space

V := {u ∈W 1,2(Ω): u|ΓD
= 0}

(here and in the following, restrictions u|ΓD
are understood in the sense of traces,

of course), and then understand the solutions of (1.1), (1.2) as absolutely continu-

ous functions u, v : I → L2(Ω) (I denoting some interval) satisfying the variational

equations

(2.6) u ∈ V,

∫

Ω

(u′ − f1(u, v))ϕdx+ d1

∫

Ω

∇u∇ϕdx = 0 for all ϕ ∈ V,

v ∈ V,

∫

Ω

(v′ − f2(u, v))ψ dx+ d2

∫

Ω

∇v∇ψ dx = 0 for all ψ ∈ V.
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Note that, since u and v are absolutely continuous and L2(Ω) is separable and re-

flexive, the derivatives u′ and v′ exist almost everywhere, and the corresponding fun-

damental theorem of calculus holds with the Lebebesgue-Bochner integral, and so it

follows from e.g. [8], Theorem 4.4.4, that the partial derivatives of u(t, s) = u(t)(s)

with respect to t exist for almost all (t, s) and satisfy ut(t, s) = u′(t)(s) for almost

all (t, s).

We call the trivial solution u = v = 0 of system (2.6) asymptotically stable in

the V
2 topology if each neighborhood U ⊆ V

2 of (0, 0) contains a neighborhood

V ⊆ V
2 of (0, 0) such that all solutions (u, v) of (2.11) with (u(0), v(0)) ∈ V satisfy

(u(t), v(t)) ∈ U for all t > 0 and u(t) → 0 and v(t) → 0 as t → ∞ in the topology of V.

Proposition 1. Assume (2.1), (2.3), and (2.4). Then for (d1, d2) ∈ DS the trivial

solution u = v = 0 of system (2.6) is asymptotically stable in the V2 topology, the

convergence u(t), v(t) → 0 as t→ ∞ being exponentially fast.
The associated linearization has its spectrum in the left half-plane, the real part

of the spectral values being even uniformly bounded by a negative number.

P r o o f. See Section 5. �

Our aim in this paper is to show that the (asymptotic) stability of (0, 0)

in (1.1), (1.2) is lost even for certain (d1, d2) ∈ DS if on some (nontrivial) parts of

Ω \ ΓD appropriate unilateral conditions are prescribed.

More precisely, we fix measurable (with respect to Lebesgue measure) subsets

Ω±
i ⊆ Ω and measurable (with respect to Hausdorff measure of dimension N − 1)

sets Γ±
i ⊆ Γ := ∂Ω \ ΓD such that

(2.7) (Ω+
i ∪ Γ+

i ) ∩ (Ω−
i ∪ Γ−

i ) = ∅ (i = 1, 2).

In physical terms, these eight sets are the locations in the interior or on the boundary

of Ω where we will describe a certain regulating system or unilateral membrane which

provides some unilateral flow in or out for u or v, respectively. Condition (2.7) means

that the locations for opposite flux should not touch each other. In applications,

most of these eight sets are empty, that is, not all possible sorts of obstacles are

described simultaneously in the same problem (and we need not have flux in- and

outside simultaneously). However, we will not exclude the possibility that they are

all nonempty and thus write a complete system which can contain all possible cases

simulteanously.

In order to simplify notation, we set

Ωi := Ω+
i ∪ Ω−

i , Γi := Γ+
i ∪ Γ−

i (i = 1, 2).
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We will require that there is at least some obstacle for the inhibitor v, that is:

(2.8) mesN Ω2 > 0 or mesN−1 Γ2 > 0 (or both).

Actually, we will allow that Ωi and Γi consist of subregions where we will describe “in-

tegral” obstacles (in the remaining regions, “pointwise” obstacles will be described).

To fix the locations of these “integral” obstacles, we assume that finitely many mea-

surable subsets Ω±
i,j ⊆ Ω±

i (j ∈ J±
1,i) and Γ±

i,j ⊆ Γ±
i (j ∈ J±

2,i) are given such that

Ω
±

i,j ∩Ω
±

i,k = ∅ for all j, k ∈ J±
1,i, j 6= k,

and

Γ
±

i,j ∩ Γ
±

i,k = ∅ for all j, k ∈ J±
2,i, j 6= k,

and we define the remainder regions (where we will describe “pointwise” obstacles)

as

Ω̂±
i := Ω±

i \
⋃

j∈J±

1,i

Ω±
i,j and Γ̂±

i := Γ±
i \

⋃

j∈J±

2,i

Γ±
i,j .

It is explicitly admissible that some (or all) of the finite index sets J±
1,i, J

±
2,i (i = 1, 2)

are empty, that is, we do not require integral obstacles but we do not exclude their

presence. Similarly, also the remainder regions Ω̂±
i or Γ̂

±
i are allowed to be empty.

Now our general unilateral problem can be formulated as follows:

(2.9) ut = d1∆u+ f1(u, v) on Ω \ Ω1,

± ut ∓ (d1∆u+ f1(u, v)) > 0, ±u > 0 on Ω̂±
1 ,

(−ut + d1∆u+ f1(u, v))u = 0 on Ω̂±
1 ,

± ut ∓ (d1∆u+ f1(u, v)) = const > 0, ±
∫

Ω±

1,j

u dx > 0 on Ω±
1,j ,

(−ut + d1∆u+ f1(u, v))

∫

Ω±

1,j

u dx = 0 on Ω±
1,j,

vt = d2∆v + f2(u, v) on Ω \ Ω2,

± vt ∓ (d2∆v + f2(u, v)) > 0, ±v > 0 on Ω̂±
2 ,

(−vt + d2∆v + f2(u, v))v = 0 on Ω̂±
2 ,

± vt ∓ (d2∆v + f2(u, v)) = const > 0, ±
∫

Ω±

1,j

v dx > 0 on Ω±
1,j,

(−vt + d2∆v + f2(u, v))

∫

Ω±

1,j

v dx = 0 on Ω±
1,j,
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with Dirichlet/Neumann/Signorini/integral-Signorini type boundary conditions:

(2.10) u = v = 0 on ΓD,

∂u

∂n
= 0 on Γ \ Γ1,

± ∂u

∂n
> 0, ±u > 0,

∂u

∂n
u = 0 on Γ̂±

1 ,

± ∂u

∂n
= const > 0, ±

∫

Γ±

1,j

u dx > 0,
∂u

∂n

∫

Γ±

1,j

u dx = 0 on Γ±
1,j ,

∂v

∂n
= 0 on Γ \ Γ2,

± ∂v

∂n
> 0, ±v > 0,

∂v

∂n
v = 0 on Γ̂±

2 ,

± ∂v

∂n
= const > 0, ±

∫

Γ±

2,j

v dx > 0,
∂v

∂n

∫

Γ±

2,j

v dx = 0 on Γ±
2,j .

Here, the shortcuts ± and ∓ are understood such that in each line either the upper
or lower sign is chosen simultaneously. Roughly speaking, the unilateral conditions

mean the following: At each obstacle point (or integral region) “normally” the origi-

nal system (1.1)/(1.2) is satisfied unless u or v lies under/over the threshold 0. In the

latter case, the obstacle (e.g. a unilateral membrane) becomes active, forcing u or v

to be 0 by activating a corresponding source/sink. On each integral part, the “mea-

surement” of the membrane is only “in the mean”, and the activated source/sink is

uniform (that is, constant on the whole integral part).

Actually, we will consider only the weak form of (2.9), (2.10) which is much easier

to formulate: We consider the following two cones of obstacles for u (i = 1) or v

(i = 2), respectively:

Ki :=

{
u ∈ V : ±u|Ω̂±

i

> 0 and ±
∫

Ω±

i,j

u dx > 0 for all j ∈ J±
1,i

and ±u|Γ̂±

i

> 0 and ±
∫

Γ±

i,j

u dx > 0 for all j ∈ J±
2,i

}
.

Then the weak form of (2.9), (2.10) becomes

u ∈ K1,

∫

Ω

(u′ − f1(u, v))(ϕ− u) dx+ d1

∫

Ω

∇u(∇ϕ−∇u) dx > 0(2.11)

for all ϕ ∈ K1,

v ∈ K2,

∫

Ω

(v′ − f2(u, v))(ψ − v) dx+ d2

∫

Ω

∇v(∇ψ −∇v) dx > 0

for all ψ ∈ K2.
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In order to formulate our main result, we have to consider the eigenspaces En of −∆

(with (1.2)) to the eigenvalues κn, that is,

En :=

{
u ∈ V :

∫

Ω

∇u∇ϕdx = κn

∫

Ω

uϕdx for all ϕ ∈ V

}
.

Moreover, we define the sets

K◦
i :=

{
u ∈ V : ess inf

Ω̂±

i

(±u) > 0 and ±
∫

Ω±

i,j

u dx > 0 for all j ∈ J±
1,i

and ess inf
Γ̂±

i

(±u) > 0 and ±
∫

Γ±

i,j

u dx > 0 for all j ∈ J±
2,i

}
,

which in a certain sense might be considered as an “interior” of Ki. (However, K
◦
i

is not the interior of Ki in the topological sense for N > 1, since the latter is empty

in case N > 1.)

R em a r k 1. For the case when ∂Ω, ΓD, and Γ̂±
i are smooth manifolds with

a smooth boundary, we can relax the definition of K◦
i by replacing the requirement

ess inf
Γ̂±

i

(±u) > 0 by the weaker requirement that ±u|Γ̂±

i

> 0 almost everywhere.

Let d0 = (d1,0, d2,0) ∈ R
2
+ ∩ ∂DS, that is, d0 lies either on a single hyperbola

Cn \ ⋃
m 6=n

Cm, or d0 is the intersection point of exactly two hyperbolas Cn ∩ Cm

(n 6= m). In the former case, we put σ := sgn b12 and require

(2.12) En ∩K◦
2 ∩ σK◦

1 6= ∅ and En ∩K2 ∩ (−σK1) ⊆ σK1,

and in the latter case, we put for i = n,m

αi(d0) :=
−b12

b11 − d1,0κi
=
d2,0κi − b22

b21
,

α∗
i (d0) :=

d−1
2,0(−b21)

d−1
1,0b11 − κi

=
κi − d−1

2,0b22

d−1
1,0b12

,

and require the following:

(2.13) There are ei ∈ Ei (i = n,m)

with en + em ∈ K◦
2 , α

∗
n(d0)en + α∗

m(d0) ∈ K◦
1 .

For every ei ∈ Ei (i = n,m) there holds

(en + em ∈ K2 and αn(d)en + αm(d)em ∈ K1)

=⇒ α∗
n(d)en + α∗

m(d)em ∈ K1.
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Noting that sgnαi(d0) = σ = − sgnα∗
i (d0), we have actually a consistency of the

requirements for the two cases: The first hypothesis of (2.13) is weaker than the first

hypothesis from (2.12) while the second hypothesis is stricter.

Since these hypotheses are rather technical, let us first discuss them: First of all,

the requirements K◦
i 6= ∅ imply that the regions of “pointwise” obstacles should be

strictly separated from ΓD. Hence, the following condition is necessary for (2.12)

or (2.13):

(2.14) Γ̂±
i ∩ ΓD = ∅ and Ω̂±

i ∩ ΓD = ∅ for i = 1, 2.

R em a r k 2. In the setting of Remark 1, we can relax the first condition in (2.14)

slightly by allowing the boundary manifolds of Γ̂±
i and ΓD to intersect.

The second hypothesis in (2.12) and (2.13) restricts the possible obstacles for

u: If we have no obstacles for u (K1 = V), then the second hypothesis in (2.12)

and (2.13) is automatically satisfied. However, the less obstacles we have for v, the

more restrictions are imposed by this hypothesis on our choice of obstacles for u. In

the extreme case, if there were no obstacle for v (K2 = V), then the second condition

would imply that K1 is a linear subspace and thus would not allow any reasonable

obstacle for u: This is the reason why our whole discussion only makes sense under

hypothesis (2.8).

In some important situations, the necessary requirements (2.14) are already suffi-

cient for (2.12)/(2.13): Recall that if we have a Dirichlet condition, that is, if

(2.15) ΓD has positive (N − 1)-dimensional Hausdorff measure,

then the first eigenspace E1 is one-dimensional and generated by a strictly posi-

tive function. Thus, under hypothesis (2.14) and (2.15) one can usually apply the

following result at least with n = 1:

Proposition 2. Suppose (2.1). Assume that the obstacles for u and v act only

into the same (if b12 > 0) or opposite (if b12 < 0) direction, that is, we assume that

one of the following four cases holds:

(2.16) b12 > 0 and Γ+
1 = Ω+

1 = Γ+
2 = Ω+

2 = ∅,
b12 > 0 and Γ−

1 = Ω−
1 = Γ−

2 = Ω−
2 = ∅,

b12 < 0 and Γ+
1 = Ω+

1 = Γ−
2 = Ω−

2 = ∅,
b12 < 0 and Γ−

1 = Ω−
1 = Γ+

2 = Ω+
2 = ∅.
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Then d0 ∈ Cn ∩ ∂DS satisfies (2.12) or (2.13), respectively, under the following

assumptions: En contains a function which is uniformly positive (bounded away

from 0) on Ω1 ∪Ω2 ∪ Γ1 ∪ Γ2, and at least one of the following holds:

(1) Ω1 = Γ1 = ∅.
(2) d0 /∈ ⋃

m 6=n

Cm and there is no nonzero function in En which is nonnegative on

Ω1 ∪ Γ1 and nonpositive on Ω2 ∪ Γ2.

P r o o f. The positive function from the hypothesis (or its negative) proves that

the first assumption of (2.12) or (2.13) holds, respectively. In case Ω1 = Γ1 = ∅
we have K1 = V, and otherwise the hypothesis implies En ∩ K1 ∩ (−σK2) = {0}.
In both cases, the second assumption in (2.13) or (2.12), respectively, is trivially

satisfied. �

In order to formulate a slightly more powerful version of our main result, we need

yet another notion.

We call a point (d̂1, d̂2) ∈ R
2
+ a non-bifurcation point of stationary solutions

of (2.11) if there is a neighborhood of (d̂1, d̂2, 0, 0) in R
2 × V

2 such that every

(d1, d2, u, v) in this neighborhood satisfying (2.11) (with u′ = v′ := 0) satisfies

u = v = 0.

Now our main result can be formulated as follows:

Theorem 1. Suppose (2.1), (2.3), (2.4), (2.8), and (2.15). Let d0 ∈ R
2
+ ∩ ∂DS

be as above, satisfying (2.12) or (2.13). Then the set D of non-bifurcation points of

stationary solutions of (2.11) in DS is open and contains DS ∩Br(d0) for some open

ball Br(d0) ⊆ R
2
+ around d0; r > 0 can even be chosen independent of gi. Let D0

denote the connected component of D which contains DS ∩ Br(d0). Then for each

(d1, d2) ∈ D0 the trivial solution of system (2.11) fails to be asymptotically stable in

the V2 topology.

We require the condition (2.15) only to simplify the proof and to use a techni-

cal result from [2] where this condition was imposed. Actually, Theorem 1 can be

shown also without the hypothesis (2.15) if one uses a corresponding variant of the

mentioned technical result which will be given in a forthcoming paper.

Our proof of Theorem 1 does not show that the trivial solution is unstable; only

the failure of asymptotic stability is claimed. However, our proof will show that the

trivial solution fails to be “spherically stable” (which will be defined in Remark 3).

The main difference of Theorem 1 to the corresponding result in [4] is that in the

latter, points (d1, d2) with large values d1, d2 > 0 play a crucial role instead of points

(d1, d2) close to a certain hyperbola Cn (or to Cn ∩Cm). This makes a fundamental

difference in the hypotheses of the two results: While in [4] there is apparently no
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hypothesis similar to (2.12)/(2.13), this hypothesis is implicitly in an requirement

about E0 (corresponding to the eigenvalue κ0 = 0). In fact, the corresponding result

in [4] applies only to the non-Dirichlet case ΓD = ∅ and only if there is no obstacle
for u (Ω1 = Γ1 = ∅) and the obstacle for v acts in a uniform direction (Γ−

2 = Ω−
2 = ∅

or Γ−
1 = Ω−

1 = ∅). It seems likely that none of these additional requirements can be
dropped for the result from [4] (since they are crucial for a major tool provided by [5]).

In contrast, Theorem 1 needs none of these requirements, but instead (2.12)/(2.13)

is needed.

3. The Krasnosel’skii-Quittner formula and instability

In this section, we show a variant of the main result from [4], which in contrast

to [4] does not require us to consider artificial scalar products in the spaces for the

application.

Let (V, 〈·, ·〉, ‖·‖) and (H, (·, ·), |·|) be Hilbert spaces such that there is a compact
dense embedding V ⊆ H which we treat notationally as the identity. As is common

practice in this setting, we identify notationally also the dual spaceH ′ ∼= H and work

with the adjoint embedding H ′ ⊆ V ′ (which just restricts functionals), assuming

that the corresponding duality map (·, ·) : V ′ ×V → R is compatible with the scalar

product of H and thus using the same symbol. We denote the functional norm in

V ′ induced by this duality map by ‖·‖V ′ .

Let A : V → V ′ be a linear isomorphism onto V ′. Putting D(A) := A−1(H) ⊆
V ⊆ H , we let A := A|D(A) : D(A) → H denote the H-realization of A. Suppose

that there exist c0, c1 ∈ [0,∞) with

|〈A−1u, v〉| 6 c0|u||v| for all u ∈ H , v ∈ V ⊆ H ,(3.1)

|u|2 6 c1〈A−1u, u〉 for all u ∈ V ⊆ H ,(3.2)

〈A−1u, v〉 = 〈u,A−1v〉 for all u, v ∈ V ⊆ H .(3.3)

We consider a closed convex set K ⊆ V with the following property:

(3.4) ((u, ϕ− v) > 0 for all ϕ ∈ K) ⇐⇒ (〈A−1u, ϕ− v〉 > 0 for all ϕ ∈ K)

for all v ∈ K, u ∈ V .

Given an open setU ⊆ V and a map F : U → H , we are interested in the variational

inequality

(3.5) u(t) ∈ K,
(du(t)

dt
+ A(u(t))− F (u(t)), ϕ− u(t)

)
> 0 for all ϕ ∈ K.
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More precisely, we assume that U is a neighborhood of a given stationary solution

u0 of (3.5), that is,

(3.6) u0 ∈ K, (Au0 − F (u0), ϕ− u0) > 0 for all ϕ ∈ K,

and we require that F satisfies the Lipschitz/Hölder type conditions

(3.7) |F (u)−F (v)| 6 c2‖u− v‖, ‖F (u)−F (v)‖V ′ 6 c3|u− v|α for all u, v ∈ U ,

where α > 0 and c2, c3 ∈ [0,∞).

For every compact and continuous map G : U → V which has u0 as an isolated

fixed point, we denote by ind(G, u0) the local fixed point index of G at u0, that

is, ind(G, u0) is defined as the Leray-Schauder degree deg(id−G,U0, 0) on an open

bounded set U0 ⊆ U containing u0 as the only fixed point. The excision property

of the Leray-Schauder degree implies that this index is independent of the particular

choice of U0.

Similarly, if G : U ∩K → K is compact and continuous and has u0 as an isolated

fixed point, we define indK(G, u0) as the local fixed point index of G at u0 relative

to K, that is, as the local fixed point index of the map G◦̺ where ̺ is a retraction of
an open neighborhood U0 ⊆ U onto K∩U1 where U1 ⊆ V is an open neighborhood

of u0. The commutativity and excision property of the fixed point index imply that

this value is independent of the choice of ̺ and Ui. In particular, one can choose

̺ = PK as the metric projection, that is, PK(u) is the unique element of K of the

closest distance (with respect to ‖·‖) to u.

Theorem 2. Under the above hypotheses, we find for each initial value u1 ∈ U

a unique weak solution Φ(t)u1 = u(t) of (3.5) satisfying u(0) = u1 which exists until

u(t) meets the boundary of U (or tends to∞). This solution satisfies (3.5) for every
such t > 0 if we interpret du(t)/dt as the right-sided derivative. For every time t > 0

the translation-in-time operator Φ(t) is compact and continuous on its domain of

definition; it is at least defined for small t > 0. Moreover, if ind(PK ◦ A−1 ◦ F, u0)
is defined then so is indK(Φ(t), u0) for small t > 0 and has the same value. If this

value is defined and differs from 1 then at least one of following two assertions holds:

(1) For sequences 0 < rn → 0 and tn > 0 there is some n such that there are

u ∈ K and t > tn such that ‖u− u0‖ = rn and Φ(t)(u) is undefined or satisfies

‖Φ(t)(u)− u0‖ > rn.

(2) There is a sequence un ∈ K with 0 < ‖un − u0‖ → 0 such that un is the initial

value of a periodic (non-stationary) solution. In both of these cases, u0 fails to

be asymptotically stable in the topology of V .
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R em a r k 3. We do not claim in Theorem 2 that u0 fails to be (Ljapunov) stable.

However, Theorem 2 implies that u0 lacks the following stability property.

We call u0 spherically stable if u0 has a neighborhood (in V ) which is free of (initial

values of) non-stationary periodic solutions, and if for every ε > 0 there is tε > 0

such that every u ∈ K with ‖u− u0‖ = ε satisfies ‖Φ(t)(u)− u0‖ 6 ε for all t > tε.

The latter is neither stronger nor weaker than the classical notion of (Ljapunov)

stability: It is stronger in the sense that the same ε > 0 occurs twice, but it is

weaker in the sense that there is no requirement for t 6 tε, i.e., the trajectories may

go arbitrarily far away from u0 if they only return close enough to u0 in time.

P r o o f. We replace first (·, ·)|V ′×V by

(u, v)∗ := 〈A−1u, v〉 for all u ∈ V ′ and v ∈ V .

The associated functional norm ‖·‖∗ in V ′ satisfies

‖u‖∗ := sup
‖v‖61

|(u, v)∗| = ‖A−1u‖

and thus is equivalent to ‖·‖V ′ since A : V → V ′ is an isomorphism. For u ∈ H , we

have by (3.1) that

(3.8) (u, v)∗ 6 c0|u||v| for all v ∈ V ,

and so (u, ·)∗ is Lipschitz on V ⊆ H with respect to |·| with Lipschitz constant c0|u|
and thus has a unique continuous extension to H with the same Lipschitz constant,

which we denote again by (u, ·)∗. It follows that such extended bilinear form (·, ·)∗
is continuous on H × H . From (3.3) we obtain that (·, ·)∗ is symmetric on V × V

and thus by continuity and density also on H ×H . By (3.2), we have

c1(u, u)
∗ = c1〈A−1u, u〉 > (u, u)

for all u ∈ V , and from density and continuity, we obtain that (·, ·)∗ is positive definite
and thus an inner product on H inducing a norm |·|∗ satisfying √

c1|u|∗ > |u|. In
view of (3.8), we conclude that the two scalar products on H are actually equivalent.

Note now that none of the assertions or hypotheses of the theorem changes when we

replace (·, ·) by (·, ·)∗: Indeed, (3.4) implies

((u, ϕ− v) > 0 for all ϕ ∈ K) ⇐⇒ ((u, ϕ− v)∗ > 0 for all ϕ ∈ K)

also for all u ∈ H by the density of V and by continuity of the scalar product. Hence,

even (3.5) does not change when we replace (·, ·) by (·, ·)∗. Thus, we can assume
without loss of generality that (·, ·) = (·, ·)∗. In this case, (Au, v) = (Au, v)∗ = 〈u, v〉,
that is, the operator A has the particular form required in [4], and so the assertion

follows from the main theorem of [4] and the remarks given there. �
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Theorem 2 becomes in case (u, v) = 〈A−1u, v〉 exactly a reformulation of [4]. How-
ever, the above formulation is more handy since it allows us to put parameters into

the operator A instead of the scalar products which caused technical inconveniences

in [4]. The apparently restrictive hypothesis (3.4) is actually trivially satisfied for

convex sets of the form K = K1 ×K2 in the setting which we describe now.

4. Proof of Theorem 1

The first step consists of rewriting (2.11) equivalently in the form (3.5) by defining

H , V , A, and F appropriately.

It will simplify our considerations to equip V with the scalar product

〈u, ϕ〉 :=
∫

Ω

∇u · ∇ϕdx for all u, ϕ ∈ V

which in view of (2.15) generates the topology inherited from W 1,2(Ω), see e.g. [10].

We denote the usual scalar product in L2(Ω) by (·, ·). Our aim is to apply Theorem 2
in the Hilbert spaces V = V×V and U = L2(Ω)×L2(Ω) with the sum scalar products,

that is (using in a slight misuse of notation the symbols for the scalar product in

a duplicate meaning), we put

〈(
u

v

)
,

(
ϕ

ψ

)〉
:= 〈u, ϕ〉+ 〈v, ψ〉 =

∫

Ω

(∇u · ∇ϕ+∇v · ∇ψ) dx,
((

u

v

)
,

(
ϕ

ψ

))
:= (u, ϕ) + (v, ψ) =

∫

Ω

(uϕ+ vψ) dx.

We define a linear A0 : L2(Ω) → V by the duality

〈A0u, ϕ〉 = (u, ϕ) =

∫

Ω

uϕdx for all u ∈ L2(Ω), ϕ ∈ V.

For fixed d1, d2 > 0, we define A : V → V ′ by

(
A

(
u

v

)
,

(
ϕ

ψ

))
=

∫

Ω

(d1∇u · ∇ϕ+ d2∇v · ∇ψ) dx.

Since the right-hand side is (up to an equivalence) the scalar product in V , it is clear

that A : V → V ′ is an isomorphism. Letting A := A|A−1(H) we have A
−1 = A−1|H ,

(4.1) A−1

(
u

v

)
=

(
d−1
1 A0u

d−1
2 A0v

)
for all

(
u

v

)
∈ H ,
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or in other words
〈
A−1

(
u

v

)
,

(
ϕ

ψ

)〉
= d−1

1 (u, ϕ) + d−1
2 (v, ψ) for all

(
u

v

)
∈ H ,

(
ϕ

ψ

)
∈ V .

From this representation it follows immediately that (3.1), (3.2), and (3.3) are satis-

fied for every d1, d2 > 0.

Moreover, putting K := K1 × K2, we have (3.4). Indeed, with the notation

u = (u1, u2), v = (v1, v2) the particular choices ϕ ∈ K1 × {v2} and ϕ ∈ {v1} ×K2

show that actually both statements in (3.4) are equivalent to

(ui, ϕi − vi) > 0 for all ϕi ∈ Ki and i = 1, 2.

For i = 1, 2, we define Fi, Gi : V → L2(Ω) as the superposition operators

Fi(u, v)(x) = fi(u(x), v(x)), Gi(u, v)(x) = gi(u(x), v(x)).

In view of Sobolev’s embedding theorems it follows straightforwardly from our hy-

pothesis (2.4) that these operators are indeed well-defined and satisfy a Lipschitz

condition on some neighborhood U ⊆ V of u0 := 0; see e.g. [4] for an analogous

calculation. Hence, putting F := (F1, F2) : U → H , we obtain that the Lipschitz

condition in (3.7) is satisfied, and a calculation analogous to that given in [4] shows

that also the Hölder condition in (3.7) is satisfied if U ⊆ V is bounded (and small

enough in case N = 1).

Now we prove the assertions of Theorem 1: The fact that the set D of non-

bifurcation points is open, follows immediately from the definition. In [2], Lemma 3.4,

it has been proved that for every d0 ∈ R
2
+ ∩ ∂DS satisfying (2.12) or (2.13), there is

r > 0 such that the open ball Br(d0) ⊆ R
2
+ has the property that Br(d0)∩DS is free

of so-called critical points, in particular, it consists only of non-bifurcation points

(independent of the particular higher-order term gi). Observe that (4.1) implies

(A−1 ◦ F )
(
u

v

)
=

(
d−1
1 b11A0u+ d−1

1 b12A0v

d−1
2 b21A0u+ d−1

2 b22A0v

)
+

(
d−1
1 A0G1(u, v)

d−1
2 A0G2(u, v)

)
.

This is exactly the operator which occurs in [2] (the second summand is called F

in [2]), and [2], Theorem 3.1, thus implies that

(4.2) ind(PK ◦A−1 ◦ F, 0) = 0

for (d1, d2) ∈ DS ∩Br(d0). Note that the homotopy invariance of the degree implies

that the local fixed point index ind(PK ◦A−1 ◦F, 0) is a locally constant function of
(d1, d2) ∈ D. Hence, this index is constant on the connected components of D, and

so (4.2) holds for all (d1, d2) ∈ DS . Now the assertion about the instability follows

from Theorem 2. �
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5. Proof of Proposition 1

We consider almost the same setting as in Section 4, but in order to include

ΓD = ∅, we have to equip V with the usual scalar product

〈u, v〉 := (u, v) + (∇u,∇v).

We use the same formulas as in Section 4 to define A0, A, A, F , and G, observing

that the definitions of A, A, F , and G do not involve the scalar product of V at

all. In particular, F : V → H is locally Lipschitz near 0 by the same arguments as

before. Note that (2.4) implies for N > 2 that

(5.1) |fi(u, v)| 6 C(1 + |u|+ |v|)αN+1.

By the Sobolev embedding theorems (see e.g. [10]), the spaceW 1,2(Ω) is continuously

embedded into C(Ω) (in caseN = 1) or into Lq(Ω) with q/2 = αN+1 (in caseN > 2).

(Indeed, in caseN > 3 the critical Sobolev exponent is q := 2N/(N−2) = 2(αN+1).)

Thus, we obtain from (2.3) and (5.1) (using e.g. [9], Theorem 4.16, in case N > 2)

that

lim
‖(u,v)‖→0

|G(u, v)|
‖(u, v)‖ = 0.

Hence, everything is prepared to apply [3], Theorem 5.1.1, in the space X := H with

our operator A : D(A) → X , the corresponding fractional power space X1/2 = V ,

and with our nonlinearity F whose linearization is

B0(u, v) := F (u, v)−G(u, v) =

(
b11u b12v

b21u b22v

)

(in [3], Theorem 5.1.1, this map is calledB). It remains to show that for (d1, d2) ∈ DS

the real parts of the spectrum of A − B0 are bounded by some γ < 0, that is, that

for all λ ∈ C with Reλ > γ the operator Cλ := A−B0 − λ id has a bounded inverse

in H . Putting A1 := A−1
0 − id : V → L2(Ω), we can rewrite Cλ(u, v) = (f, g) as the

system

(5.2) d1A1u− (b11 − λ)u+ b12v = f,

d2A1v − b21u− (b22 − λ)v = g.

Note that A1 is a self-adjoint operator in L2(Ω) with spectrum σ(A1) consisting

exactly of the values κn > 0 (n = 1, 2, . . .) and in case mes ΓD = 0 also of κ0 := 0.

For λ /∈ (−∞, b22], we can thus calculate C
−1
λ “explicitly” by first solving the second
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equation in (5.2) for v and then inserting into the first equation. We do this in terms

of spectral calculus: Defining h : σ(A1) → C by

h(κ) := d1κ− (b11 − λ)− b12
−b21

d2κ− (b22 − λ)
,

we have to show that h(A1) has a bounded inverse (for Reλ > γ), that is, by the

spectral mapping theorem, that 0 /∈ h(σ(A)) = h(σ(A)) (the closure can be omitted

since |h(κn)| → ∞ as n→ ∞.)
Let Λ denote the set of all λ ∈ C \ (−∞, b22] with 0 ∈ h(σ(A)). Multiplying by

the nominator (for which we already verified that it is nonzero), we find that λ ∈ Λ

implies that there is some n = 0, 1, . . . with

(5.3) (d1κn − b11 + λ)(d2κn − b22 + λ) = b12b21.

For each n, we thus have at most two values λn,1, λn,2 in Λ which are exactly the

eigenvalues of the matrix

B + κn

(−d1 0

0 −d2

)
.

Dividing this matrix by κn → ∞, we can assume that (after an appropriate ordering)
κ−1
n λn,j → −dj < 0 so that the set of all real parts of elements of Λ has a maximum γ.

We fix some n with max
j=1,2

Reλn,j = γ. Using the shortcuts αn := d1κn − b11 and

βn := d2κn − b22, we find by Vieta’s theorem from (5.3) that

(5.4) λn,1 + λn,2 = −(αn + βn) 6 b11 + b22 < 0,

λn,1λn,2 = αnβn − b12b21 > 0,

where the last inequality follows in case n = 0 from (2.1) and in case n > 1 from

the assumption (d1, d2) ∈ DS . Note that λn,1, λn,2 are either both real or conjugate

complex. In both cases, we obtain from (5.4) that Reλn,j < 0, and so γ < 0.

Hence, the real parts of the elements of Λ are all bounded from above by γ < 0. By

construction, Λ∪(−∞, b22] contains the spectrum of A−B0, and so we are done. �
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