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Abstract. The paper is concerned with the graph formulation of forced anisotropic mean
curvature flow in the context of the heteroepitaxial growth of quantum dots. The problem is
generalized by including anisotropy by means of Finsler metrics. A semi-discrete numerical
scheme based on the method of lines is presented. Computational results with various
anisotropy settings are shown and discussed.
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1. Introduction

Heteroepitaxy is an important technology for today’s electronic and photonic de-

vices. Understanding the physics underlying epitaxial growth is crucial for the de-

velopment of new and better devices. Here, we shall focus on the strain effect on the

instability of island formation, known as the Asaro-Tiller-Grinfeld (ATG) instability

[10]. The physical mechanism of this instability can be explained as follows. While

a flat surface has the lowest surface free energy, a corrugated surface has lower elastic

energy than the flat one. The elastic energy is lowered by elastic deformation so that

the film breaks into isolated islands (called quantum dots). Therefore, the quantum

dots are caused by the competition between surface and elastic energies. Elastic

energy is reduced as the surface area increases. The surface morphology may also be

affected by anisotropy in surface energy as it may reveal a faceted structure.
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We consider the evolution of a 2-dimensional surface Γ(t) embedded in R
3 repre-

senting the interface between the vapour and the thin film. Then, the equation of

motion reads [9]

vΓ,ϕ = D∆sw,(1.1)

w = κΓ,ϕ +
1

M
v +Ψ.(1.2)

Here, vΓ,ϕ denotes the normal velocity, D a positive diffusion coefficient, ∆s the

Laplace-Beltrami operator, w the chemical potential, κΓ,ϕ the anisotropic mean cur-

vature, M a positive kinetic coefficient, and Ψ the elastic energy density.

Let us focus on the attachment-detachment dominated case. For D → ∞, M = 1

the system (1.1)–(1.2) turns into the area preserving mean curvature flow [9]

(1.3) vΓ,ϕ = −κΓ,ϕ + f on Γ(t),

where

(1.4) f =

∫
Γ
κΓ,ϕ ds∫

Γ
ϕ0(nΓ) ds

−Ψ+

∫
Γ
κΓ,ϕ ds∫

Γ
ϕ0(nΓ) ds

, ϕ0 is a Finsler metric.

The law (1.3) with f = 0 has been extensively studied. Deckelnick and Dziuk

proved the convergence and gave the optimal error estimates using the finite element

method for graph [3], [4] and parametric [5] case. Haußer and Voigt [6] presented

a parametric finite element approximation for a regularized version. Pozzi studied

the anisotropic mean curvature flow in higher codimension in [8].

In this paper, we study the graph formulation of the law (1.3). For this purpose,

we assume that the interface is written as the graph of a scalar function p such that

Γ(t) = {[x, y] ∈ R
3 ; y = p(t, x), x ∈ Ω ⊂ R

2}.

The main improvement of this work is the incorporation of the anisotropic mean

curvature based on the Finsler geometry into the forced mean curvature flow (1.3).

The numerical studies demonstrate the effect of the surface energy anisotropy on the

self-assembled growth of quantum dots.
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2. Anisotropy in relative geometry

In order to incorporate the anisotropy into the model we shall utilize the framework

developed in [1] and used in e.g. [2], [7]. We say that a continuous function ϕ : R
3 →

R
+

0 is a Finsler metric if it satisfies the conditions

(1) ϕ ∈ C3+α(R3 \ {0}),

(2) ϕ2 is strictly convex,

(3) ϕ(tη) = |t|ϕ(η), t ∈ R, η ∈ R
3,

(4) λ|η| 6 ϕ(η) 6 Λ|η|, η ∈ R
3, for two suitable positive constants 0 < λ 6 Λ < ∞.

Associated with ϕ we define the unit ball (also called the Wulff shape)

Bϕ = {η ∈ R
3 ; ϕ(η) 6 1}.

One can prove that the dual function ϕ0 : R
3 → R

+

0 , given by

ϕ0(η∗) = sup{η∗ · η ; η ∈ Bϕ},

is also a Finsler metric.

For simplicity we use η instead of η∗. Then the following relations hold:

ϕ0
η(tη) =

t

|t|
ϕ0
η(η), ϕ0

ηη(tη) =
1

|t|
ϕ0
ηη(η), t ∈ R− {0},

ζ · ϕ0(η)ϕ0
ηη(η)ζ > γ0|ζ −

ζ · η

|η|2
η|2, η 6= 0, ζ ∈ R

n, γ0 > 0,

where the index η means the derivative with respect to η.

We define the map T 0 : R
3 → R

3 as

T 0(η) = (T̃ 0(η), T 0
3 (η)) = ϕ0(η)ϕ0

η(η) for η 6= 0,

T 0(0) = 0.

Then, the ϕ-normal vector, ϕ-mean curvature, and ϕ-normal velocity of Γ are defined

as

nΓ,ϕ =
T 0(∇p,−1)

ϕ0(∇p,−1)
= ϕ0

η(∇p,−1),(2.1)

κΓ,ϕ = ∇ · nΓ,ϕ,(2.2)

vΓ,ϕ = −
∂tp

ϕ0(∇p,−1)
.(2.3)
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3. Equation of motion

By substituting the quantities (2.1)–(2.3) into Equation (1.3), we obtain the non-

linear parabolic partial differential equation

(3.1) ∂tp = ϕ0(∇p,−1)

(
∇ ·

T̃ 0(∇p,−1)

ϕ0(∇p,−1)
− f

)
on Ω× (0, T ).

The initial and boundary conditions are given by

p|t=0 = p0 on Ω,(3.2)

∂p

∂n
= 0 on ∂Ω× (0, T ).(3.3)

4. Numerical solution

For numerical solution, the method of lines is used. After approximating the

spatial derivatives by finite differences we obtain the semi-discrete scheme

(4.1) pht = ϕ0(∇hp
h,−1)

(
∇h ·

T̃ 0(∇hp
h,−1)

ϕ0(∇hph,−1)
− f

)
,

where ∇h, ∇h are, respectively, the forward and backward difference operators.

The initial condition is written as

ph|t=0 = Php0.

The discretization of the Neumann boundary condition is defined as

phx̄1,1j
= 0 for j = 0, . . . , N2,

phx̄1,N1j
= 0 for j = 0, . . . , N2,

phx̄2,i1
= 0 for i = 0, . . . , N1,

phx̄2,iN2
= 0 for i = 0, . . . , N1.

The scheme can be rewritten in the general form

dP h

dt
= F (t, P h).

Then, the Runge-Kutta-Merson method is used for solving this system of ODEs.
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5. Numerical results

We use the scheme (4.1) to perform a range of computations for the following

anisotropies with n = η/|η|:

⊲ the 4-fold symmetry

ϕ0(η) = (1 − 0.245(1− (n4
1 + n4

2 + n4
3)))|η|,

⊲ the 6-fold anisotropy

ϕ0(η) =
(
1− 0.037

(
n4
1 + n4

2 + n4
3 −

3

5

)

+ 0.037
(
3(n4

1 + n4
2 + n4

3) + 66n2
1n

2
2n

2
3 −

17

7

))
|η|,

⊲ and the 8-fold symmetry

ϕ0(η) = (1 + 0.0155(n8
1 + n8

2 + n8
3 − 28(n6

1n
2
2 + n2

1n
6
2 + n6

2n
2
3 + n2

2n
6
3 + n6

3n
2
1 + n2

3n
6
1)

+ 70(n4
1n

4
2 + n4

2n
4
3 + n4

3n
4
1)))|η|.

In all computations, the initial condition p0 = 1+0.01 cos(πx) cos(πx) and the domain

Ω = (0, 2)× (0, 2) are used. The forcing term (1.4) is set with the prescribed elastic

energy density Ψ = 50/p.

First, we show the quantitative solution analysis. We evaluate the experimental

order of convergence (EOC) as

EOC :=
log(Error1/Error2)

log(h1/h2)
,

where Errori = ‖p − phi‖, p is the numerical solution computed on the grid 800 ×

800 substituting the analytical solution, phi is the numerical solution computed on

courser grid with mesh size hi. The results are shown in Table 1.

N h Error L∞ Eoc L∞ Error L2 Eoc L2

50 1/25 0.02755 — 0.00642 —

100 1/50 0.01270 1.11722 0.00320 1.00252

150 1/75 0.00784 1.18235 0.00203 1.12392

200 1/100 0.00542 1.29443 0.00143 1.23257

Table 1. Experimental order of convergence of the scheme (4.1).

Figures 1–3 show the solutions at different times. Starting with almost flat inter-

face we observe the surface instability which results in faceted quantum dots. The

shape of quantum dots is determined by the corresponding anisotropy symmetry.
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Figure 1. Surface evolution for the 4-fold symmetry anisotropy, space step h = 0.01.

6. Conclusion

In the paper, we have used the forced anisotropic mean curvature flow of graphs to

model the ATG instability in the case where the attachment-detachment process is

dominated. We have demonstrated numerical convergence of the numerical scheme

based on the method of lines and presented numerical experiments showing the

influence of various anisotropy symmetries on the surface evolution.
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