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ON THE EIGENVALUES OF A ROBIN PROBLEM
WITH A LARGE PARAMETER

ALEXEY FILINOVSKIY, Moskva

(Received September 29, 2013)

Abstract. We consider the Robin eigenvalue problem Au+ Au = 0in Q, du/0v + au =0
on 99 where Q C R", n > 2 is a bounded domain and « is a real parameter. We investigate
the behavior of the eigenvalues A\; () of this problem as functions of the parameter o. We
analyze the monotonicity and convexity properties of the eigenvalues and give a variational
proof of the formula for the derivative A} (). Assuming that the boundary 9 is of class C
we obtain estimates to the difference )\kD — A (@) between the k-th eigenvalue of the Laplace
operator with Dirichlet boundary condition in 2 and the corresponding Robin eigenvalue
for positive values of « for every k£ =1,2,....
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1. INTRODUCTION

Let us consider the eigenvalue problem

(1) Au+ =0 inQ,
(2) %—l—auzo onT,

where Q C R™, n > 2 is a bounded domain with C? class boundary surface I' = 9f).
By v we mean the outward unit normal vector to I', « is a real parameter.

The problem (1), (2) is usually referred to as the Robin problem for « > 0 (see [6],
Chapter 7, Paragraph 7.2) and as the generalized Robin problem for all « ([5]).

We have the sequence of eigenvalues Aj(a) < A2(a) < ... — oo enumerated
according to their multiplicities where A («) is simple with a positive eigenfunction.
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By the variational principle ([11], Chapter 4, Paragraph 1, no. 4) we have
Jo IVu[?dz + a [ v ds

3) (o) = sup inf , k=1,2,....
V1o vk—1€L2(Q)  vEH' () fQ v2de
(v,v5) Ly (2)=0
Jj=1,...,k—1

Let 0 < AP < AP < ... = oo be the sequence of eigenvalues of the Dirichlet
eigenvalue problem
(4) Au+Adu=0 inQ,
(5) u=0 onl.

Also, by the variational principle we have

V|2 d
(6) AP = sup inf Jo [Vol dz

o 2 b
O1yevp_1€La(Q)  vEH'(Q) Jov?dx
(v,95) Ly (2)=0
G=1,esk—1

k=1,2,....

It is easy to show the inequality A\;(a) < AP which gives an upper bound of \; ()
for all values of a. It was noticed in ([2], Chapter 6, Paragraph 2, No. 1) that for
n = 2 and smooth boundary lim A;(a) = AP. Later in [12] for n = 2 the two-side
estimates o

AP (1+ E)_1 <Ai(@) <AP(1+ ﬂ)_l a>0
1 aq X A1 X M1 a|F| ’ ’
were obtained where ¢ is the first eigenvalue of the Steklov problem
A’u=0 inQ,
u =0, Au—q%:O on I
ov

In [4] for any n > 2 we established the asymptotic expansion

Jr (8u1D/8V)2 ds
JowP)? da

where u? is the first eigenfunction of the Dirichlet problem (4), (5).

(o) =P — al+ola™), a— oo,

The case o < 0 has received attention in the last years after [9]. It was shown in [9]
that for piecewise-C'! boundary liminf \;(a)/—a? > 1. Later for C'-class boundaries
a—r— 00

it was proved ([10], [5]) that Em A1(a)/—a? = 1. Here the condition of C'-class is
« — 00
optimal, in [9] plane triangle domains were prepared for which lim \;(a)/—a? > 1.
a—r—o0
In [3] authors proved that for C' boundaries Em Me(a)/—a? =1 for all k =
« —00
1,2,.. ..
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2. MAIN RESULTS

Theorem 1. The eigenvalues A\;(«) have the following properties:
(1) Ae(a1) < Ak(ag) < /\kD forag < a9, k=1,2,..;
(if) A1(«) is differentiable and

2
d

_ Jruiads u;’a ° >0,
Jo ui , dz

where u1 o () is the corresponding eigenfunction;

(7) At (@)

(iii) A1(«) is a concave function of a:

(8) A(Bar + (1= Blaz) = BAi(ar) + (1 = B)Ai(az), 0<B <1

Theorem 1 establishes some known properties of eigenvalues of the problem (1),
and (2) (see [2], Chapter 6 for (i) and [9], [1] for (ii) and (iii) (in [1] planar domains
with piecewise analytic boundaries were considered)).

Hence the behavior of eigenvalues can be illustrated by Figure 1:

Figure 1.
Theorem 2. The eigenvalues A\ (), k = 1,2, ..., satisfy the estimates
9) 0 <AL = A(@) < Cra 2D, a>0,

where the constant C'y does not depend on k.
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3. QUALITATIVE PROPERTIES OF EIGENVALUES

Proof of Theorem 1. The increasing of A;() follows from (3). Using (6) and
the inclusion H'(€2) ¢ H (), we have

Jo IVu[?dz + a [p v ds

(o) = sup inf
1k 1 €L2(Q)  VEH' () Jov?dz
(v,v5) Ly (2)=0
j=1,..k—1
Vol2dz + o [ v?ds
< sup ipf fQ | | > fF
V1,vi_1€L2(Q)  vEHN(Q) Jo v2da
(v,95) Lo (2)=0
J=1,..k—1
Vo|? dz
= sup inf f9|7| = )\kD.

3 2
'ul,...,'uk_leLz(Q) UEHI(Q) va dx
(v,95) Ly (2)=0
G=1, k=1

To obtain (7) we use the inequalities

. Vu|2de + o [v2ds
A1) — M(a) = M\ (ay) — egllf(ﬂ) Jo| |f Udefr
v Q

Jo Vuia,?de +a [ruf,, ds
Joui ., dz
Jrui,, ds
Joui,, dz’
ot Jo Vo2 de 4+ ay [Lv?ds

veHL(Q) Jov?da
fQ Vur,ol?dz+ o [puf,ds

Joui,de

fF ui , ds
Joui,dz’

> Ai(ar) —

= (a1 — @)

)\1 (al) — )\1 (a)

— )\1 (a)

— )\1(04)
= (o1 — @)

Therefore

fru%,a1d5<>\1( 1) — (e <fpu1ad5

10 <
(10) Joui ., dz a; —« Joui,de

Considering the problem (1), (2) in the space H!(Q) we search the values of \ for
which there exists a nonzero function u € H'(Q) satisfying the integral identity

(11) /(Vu,Vv)dx—i—a/uvds:)\/uvdx
Q r Q
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for any v € H(2). The relation (11) can be rewritten as

(12) /Q((Vu,Vv)—kMuv) dx+a/

uvds = ()\—f—M)/ wvdz
r

Q

with an arbitrary M > 0. Let us define an equivalent scalar product in the space
HY(Q) by the formula

[w,v]pr = / (Vu, Vo) + Muv)dz, ||ull3; = [u,u]p.
Q
Now (12) transforms to
[w, v]pr + a[Tu, v)pr = (A + M)[Bu, v]ar,

where self-adjoint nonnegative operators T: H'(Q) — H'(Q) and B: H'(Q) —
H'(2) were determined by bilinear forms

(13) [Tu,v]m = /uvds, [Bu,v|p = / wdz, u,ve€ HY(Q).

r Q
So we have the following equation in the space H!(Q) with the norm || - ||as:
(14) (I +aT)u= (A+ M)Bu.

Now we use the inequality ([11], Chapter 3, Paragraph 5, Formula 19)
(15) 01|17, ry < ellVollT, ) + Cellvli?, o,

valid for v(x) € H'(2) with an arbitrary ¢ > 0. Using (13), (15), we obtain
(16) || Tull3; = [Tu, Tulp = /FUTU ds < fJul| oy | Tul| Locry

@(/ﬂ (Iv7u? + %(Tu)Q) dx)l/Q(/ﬂ (|Vu|2+%u2) dx)

< el[Tullwllwllar,

1/2

where € > 0, M = M, = C./e. It follows from (16) that
[Tulln. < elfulla.,

so for any € > 0 we have [T || g1 (o)1) < 1 for |a] < 1/e. Hence, the inverse
operator (I +aT)~! is bounded and ||(I +oT)~ Y| < (1 — |a|||T||)~!. Therefore the
equation (14) is equivalent to

(I—\+M)(I+aT)'Bu=0.
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The operator B is compact ([11], Chapter 3, Paragraph 4, Theorem 3) and the
operator (I + oT)"'B: H'(Q) — H'(Q) is compact too. So the spectrum of the
problem (14) consists of eigenvalues \;(«) € R, j = 1,2,..., of finite multiplicity
with the only limit point at infinity. By (13), (14) we obtain the inequality

l|wj,alln.

2
A(@) > =M. + (1= ol Tl ( ) > -M.

4.0l
where u; o is the corresponding eigenfunction. Therefore \;(a) — o0, j — 0.

The eigenvalue \; is simple. So the self-adjoint operator (I + oT)~ !B satisfies
the conditions of the asymptotic perturbation theory ([7], Chapter 8, Paragraph 2,
Theorem 2.6). It means that the eigenfunction u; o, depends continuously on « in
the space H'(2). By ([11], Chapter 3, Paragraph 5, Theorem 4) the trace of u1 o on
I' depends continuously on « in the space Ly(I'). Now it follows from (10) that

_ u?  ds
(o) = Jim 2EI—(0) et
ar—a 11—« Jouinde

By ([11], Chapter 4, Paragraph 2, Theorem 4) u;,, € H?(f2) and satisfies equation
(1) almost everywhere and the boundary condition in the sense of trace (the so-called
strong solution). In the case [ uf ,ds =0 we have by (2)

Applying the uniqueness theorem for the Cauchy problem for second-order elliptic
equations ([8], Chapter 1, Paragraph 3), we get u1,o = 0 in Q. So, [ u%a ds > 0
and we proved the inequality A (a) > 0.

Taking into account (7), for as > a1 we have Aj(a2) > Ai(a1) and A\ (a) < AP
for all .

To prove the concavity of A\ («) consider the inequality

. Jo VU2 dz + (Bay 4+ (1 — B)ag) [ v?ds
1— —  inf
Ar(Bon + (1 = flaz) vegll(ﬂ) Jov?dx
Jo IVu?daz 4+ ay [0 ds
veEHL(Q) Jov?da
. Jo VU2 dz + ag [ v? ds
1-— f

+(1-5) vegll(ﬂ) Jov?dx

2,6/\1(041)4-(1—6))\1(042), 0<p<1.

This completes the proof of Theorem 1. O
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4. OPERATOR APPROACH

The proof of Theorem 2 is based on an estimate with respect to the parameter
a of the norm of a certain operator acting in the Lo(€Q) space. This operator is
a difference between operators associated with the Robin and Dirichlet problems.
Now, using compactness and positivity of these operators we can apply estimates to
eigenvalues by the norm of a difference operator (Theorem 3 below).

Let us consider the boundary value problem

(17) —Au+u=h inQ,
Ou

(18) £y

+au=0 onl, a>0.

For h(z) € L2(Q) a weak solution u(x) € H'(2) of the problem (17), (18) satisfying
the integral identity

(19) /Q((Vu,Vv)+uv)dx+a/ruvds:/ﬂhvdx

for all v € H'(Q). By definition, introduce a scalar product in the space H!(£2)

(20) (U, V) g1(0),0 = /((Vu,Vv) + uv) dx—i—a/ uvds
Q r
and the corresponding norm

”u”?{l(ﬂ),a = (u,u) g1(Q),a-

Using (19), (20), we obtain the relation

(21) (u, V) 51 ()0 = (M V) Ly ()

Hence, consider a linear functional [;(v) = (h,v)r,(q) in the H'(Q) space. The func-
tional 1, (v) is bounded: |Ix(v)| < ||Al| 2, |Vl 2o(0)- Now, by the Riesz lemma there
exists a unique function u € H'(Q) satisfying the integral identity (19). Applying
(21) with v = u, we obtain ||u||§{1(m’a <Al Lyl 51 (), Therefore,

(22) lull o) < ullzr@),a < I10lLy@);

and we can define a bounded linear operator A, : La(Q) — L2(2) such that u = Ayh
and ||A,| < 1. Moreover, the space H'(f2) in a bounded domain Q with C?-class
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boundary embeds compactly into the space Lo(€2) ([6], Theorem 1.1.1). It means
that the operator A, is compact. Note that

(23) (hy Aag)Lo(0) = /hA(ygde/hvdx
Q Q
= /((Vu,Vv)—l—uv)da:—i—a/uvds
Q

r

= ‘/ngdx = (A(yh;g)Lz(Q)7 f7g € LQ(Q)7

with u = Agh, v = Aag, u,v € H(Q). The relation (23) means that A, is a self-
adjoint operator. Now, by the relation (23) we have

(hy Aah) Ly =/Quhdx=/Q<|Vul2+u2)d:c+a/Fu2ds= [l @0 > 0, h #0.

Hence, the operator A, is positive. Now, A, is a self-adjoint positive compact
operator in the Hilbert space H = L3(f2). By the well-known theorem ([6], The-
orem 1.2.1), A, has a sequence of eigenvalues {ur(c)}, & = 1,2,... with finite
multiplicities such that 0 < pp(a) < 1, pp(a) ¢ 0, & — oo. Let us denote by
Ug,o € L2(2) the corresponding eigenfunction satisfying Aqug o = pr(@)ug,o. Thus,

P (@) (U,as V) H ()0 = (Ukya V) () and

uk(a)</((Vuk7a,Vv)—|—uk1av) dx—i—a/uk,avds) :/uk,avdx.
Q r Q

It is readily seen that px(a) = (Ak(a) +1)71. Let us note that for a > 0 we have
pr(a) < (A(a) +1)71 < 1, s0 ||Aa | < 1.
Furthermore, consider the Dirichlet problem

(24) —Au4+u=~h inQ,
(25) u=0 onT.

For h € Ly(Q) a weak solution u(z) € H(Q) of the problem (24), (25) satisfies the
integral identity

(26) /((Vu, Vo) +uv)dz = / hvdz

Q Q
for all v € H'(Q). By definition, introduce a scalar product in the space H'(€2)
(27) (U 0) (o) = /Q((Vu, Vo) + uv) dz
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and the corresponding norm

HU'HHI(Q) (U' u)Hl(Q)

Using (26), (27), we obtain the relation
(28) (W, 0) () = (M) 1,(0)-

Hence, consider a linear functional I,(v) = (h,v)r,(q) in the HY(9) space. The
functional I, (v) is bounded: |lx(v)| < ||h]|z,)l|v]|L,()- Now, by the Riesz lemma
there exists a unique function u € H'(Q) satisfying the integral identity (26). Using
(26) with v = u, we obtain ||u||H1(Q) < Allza@) lull 1) Therefore,

(29) l[ull o) < llull grqy < MhllLa@),

and we can define the bounded linear operator A”: Ly(Q) — Lo(Q) such that
uw = APh and ||A|| < 1. Moreover, the space H!() in the bounded domain Q
embeds compactly into the space L2(€2) ([6], Theorem 1.1.1) so the operator AP is
compact. Note that

(30) (h, AP g) 1, (0) = /hAngx:/hvdx:/((Vu,Vv)—i—uv)dx
Q Q Q

= / qux = (Athg)LQ(Q)a fvg € LQ(Q)v
Q

with u = APh, v = APg, u,v € H'(Q). The relation (30) means that AP is
a self-adjoint operator. Now, by (30) we have

(h, AP )10 :/Quhdxz/QﬂVuF—l—uQ)dx: ||u||§p(m >0, h#0.

Hence, the operator AP is positive. Now, AP is a self-adjoint positive compact
operator in the Hilbert space H = Ly(€2). By the well-known theorem ([6], The-
orem 1.2.1) there exists a sequence of elgenvalues {uPy, k = 1,2,..., with finite
multiplicities such that 0 < u? < 1, uP N\, 0, k — oo of the operator A”. Denote
by uf € L2(f) the corresponding eigenfunctions satisfying APuP = pPup. Thus,

MkD(U’kD’U)Hl(Q) - (uk ) )Lz(Q and

NkD/((VU'kD;V'U)‘FUkDU)dx:/uvadx,
Q Q

Hence, u2 = (AP + 1)1 Let us note that u? < (AP +1)71 < 1s0 ||AP| < 1.
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Now we obtain an estimate of the norm || Ay — AP 1,0)— 1, () for large positive
values of a.

Let us remark that in domains with C?-class boundary surface the functions u =
Agh and v = APh are strong solutions and belong to H%(Q) ([11], Chapter 4,
Paragraph 2, Theorem 4). Moreover, the estimate

(31) [0l z2(0) < Callhl| Lo
holds. Now we use the estimate (15) with e = 1:
(32) [0l Lo(ry < Csllvlla ()-

Combining (31) and (32) we have the inequality

(33) IVUllLory < Callollmzo

Since ‘ ‘F V| on T, from (33) we obtain the estimate
v

(34) I35, 2y < Csllhll -

Let w = (AP — A,)h. By (17), (18), (24), (25) the function w is a solution of the
boundary value problem

(35) —Aw+w=0 1inQ,
ow Ov
(36) ™ +aw = 3 °° T.

Multiplying the equation (35) by w and integrating on 2 with respect to the boundary
condition (36), for o > 0 we get the relation

9 9 l/ Owy\2 Ow Ov
(37) /Q(|W| Fu?)de+ F(au) ds— [ oo ds.

From (37) we obtain the inequality

e L |5
L2 T o 1l gu Ly(T) Ly(T)

and, consequently,

La(D) 2aH ‘LQ(F)'

||wHL2(Q) Ty H v ‘ Lao(T) 204H ov ‘
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Therefore, we have the estimate

(38) a > 0.

wlzae) < 7=|| o
Lo(Q) X 50 v LQ(F)’
Combining (38) with (34), we get
lwllzo@) < Coa™ V2l y), @ >0,
with the constant Cs independent of o. Thus, for all h € Ly (€2) we have the estimate
I(AP = Aa)hl| o0y < Coa™ 2[Rl o
and

(39) |AP — Au|| < Coa™'/2, a > 0.

To prove the inequalities (9) we need the following statement (see [6], Theo-
rem 2.3.1).

Theorem 3. Let T and T» be two self-adjoint, compact and positive operators
on a separable Hilbert space H. Let p(T1) and pr(T2) be their k-th respective
eigenvalues. Then

(T3~ To)h||

(40) Ik (T1) — pie(T2)| < || Ty — T2 = sup
heH [|A]]

Now we apply this theorem to the operators T} = A, To = AP. Then by the

relations g g
pu(or) = (@) + 17 pe = W7
and inequalities (39), (40) we get the estimate
Therefore,
(42) IAE = Ar(@)] < Coa V2L + 1) (Aw(@) +1)

and taking into account the inequalities A\ (o) < AP, we obtain the estimate
(43) 0< AP — M) < Coa 2N +1)2 < Cra~Y2(0\P)2.
Proof of Theorem 2 is completed. O
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