ON THE EIGENVALUES OF A ROBIN PROBLEM WITH A LARGE PARAMETER

ALEXEY FILINOVSKIY, Moskva

(Received September 29, 2013)

Abstract. We consider the Robin eigenvalue problem $\Delta u + \lambda u = 0$ in Ω , $\partial u/\partial \nu + \alpha u = 0$ on $\partial \Omega$ where $\Omega \subset \mathbb{R}^n$, $n \geqslant 2$ is a bounded domain and α is a real parameter. We investigate the behavior of the eigenvalues $\lambda_k(\alpha)$ of this problem as functions of the parameter α . We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative $\lambda_1'(\alpha)$. Assuming that the boundary $\partial \Omega$ is of class C^2 we obtain estimates to the difference $\lambda_k^D - \lambda_k(\alpha)$ between the k-th eigenvalue of the Laplace operator with Dirichlet boundary condition in Ω and the corresponding Robin eigenvalue for positive values of α for every $k=1,2,\ldots$

Keywords: Laplace operator; Robin boundary condition; eigenvalue; large parameter $MSC\ 2010$: 35P15, 35J05

1. Introduction

Let us consider the eigenvalue problem

(1)
$$\Delta u + \lambda u = 0 \quad \text{in } \Omega,$$

(2)
$$\frac{\partial u}{\partial \nu} + \alpha u = 0 \quad \text{on } \Gamma,$$

where $\Omega \subset \mathbb{R}^n$, $n \geqslant 2$ is a bounded domain with C^2 class boundary surface $\Gamma = \partial \Omega$. By ν we mean the outward unit normal vector to Γ , α is a real parameter.

The problem (1), (2) is usually referred to as the Robin problem for $\alpha > 0$ (see [6], Chapter 7, Paragraph 7.2) and as the generalized Robin problem for all α ([5]).

We have the sequence of eigenvalues $\lambda_1(\alpha) < \lambda_2(\alpha) \leq \ldots \to \infty$ enumerated according to their multiplicities where $\lambda_1(\alpha)$ is simple with a positive eigenfunction.

The research was in part supported by RFBR Grant (no. 11-01-00989).

By the variational principle ([11], Chapter 4, Paragraph 1, no. 4) we have

(3)
$$\lambda_k(\alpha) = \sup_{\substack{v_1, \dots, v_{k-1} \in L_2(\Omega) \\ (v, v_j)_{L_2(\Omega)} = 0 \\ j = 1, \dots, k-1}} \frac{\int_{\Omega} |\nabla v|^2 dx + \alpha \int_{\Gamma} v^2 ds}{\int_{\Omega} v^2 dx}, \quad k = 1, 2, \dots$$

Let $0<\lambda_1^D<\lambda_2^D\leqslant\ldots\to\infty$ be the sequence of eigenvalues of the Dirichlet eigenvalue problem

$$\Delta u + \lambda u = 0 \quad \text{in } \Omega,$$

(5)
$$u = 0 \text{ on } \Gamma.$$

Also, by the variational principle we have

(6)
$$\lambda_k^D = \sup_{\substack{v_1, \dots, v_{k-1} \in L_2(\Omega) \\ i=1, \dots, k-1}} \inf_{\substack{v \in \mathring{H}^1(\Omega) \\ i=1, \dots, k-1}} \frac{\int_{\Omega} |\nabla v|^2 \, \mathrm{d}x}{\int_{\Omega} v^2 \, \mathrm{d}x}, \quad k = 1, 2, \dots$$

It is easy to show the inequality $\lambda_1(\alpha) \leqslant \lambda_1^D$ which gives an upper bound of $\lambda_1(\alpha)$ for all values of α . It was noticed in ([2], Chapter 6, Paragraph 2, No. 1) that for n=2 and smooth boundary $\lim_{\alpha\to\infty}\lambda_1(\alpha)=\lambda_1^D$. Later in [12] for n=2 the two-side estimates

$$\lambda_1^D \left(1 + \frac{\lambda_1^D}{\alpha q_1} \right)^{-1} \leqslant \lambda_1(\alpha) \leqslant \lambda_1^D \left(1 + \frac{4\pi}{\alpha |\Gamma|} \right)^{-1}, \quad \alpha > 0,$$

were obtained where q_1 is the first eigenvalue of the Steklov problem

$$\Delta^2 u = 0 \quad \text{in } \Omega,$$

$$u = 0, \quad \Delta u - q \frac{\partial u}{\partial \nu} = 0 \quad \text{on } \Gamma.$$

In [4] for any $n \ge 2$ we established the asymptotic expansion

$$\lambda_1(\alpha) = \lambda_1^D - \frac{\int_{\Gamma} \left(\partial u_1^D/\partial \nu\right)^2 ds}{\int_{\Omega} (u_1^D)^2 dx} \alpha^{-1} + o(\alpha^{-1}), \quad \alpha \to \infty,$$

where u_1^D is the first eigenfunction of the Dirichlet problem (4), (5).

The case $\alpha < 0$ has received attention in the last years after [9]. It was shown in [9] that for piecewise- C^1 boundary $\liminf_{\alpha \to -\infty} \lambda_1(\alpha)/-\alpha^2 \geqslant 1$. Later for C^1 -class boundaries it was proved ([10], [5]) that $\lim_{\alpha \to -\infty} \lambda_1(\alpha)/-\alpha^2 = 1$. Here the condition of C^1 -class is optimal, in [9] plane triangle domains were prepared for which $\lim_{\alpha \to -\infty} \lambda_1(\alpha)/-\alpha^2 > 1$. In [3] authors proved that for C^1 boundaries $\lim_{\alpha \to -\infty} \lambda_k(\alpha)/-\alpha^2 = 1$ for all $k = 1, 2, \ldots$

2. Main results

Theorem 1. The eigenvalues $\lambda_k(\alpha)$ have the following properties:

- (i) $\lambda_k(\alpha_1) \leqslant \lambda_k(\alpha_2) \leqslant \lambda_k^D$ for $\alpha_1 < \alpha_2, k = 1, 2, ...;$
- (ii) $\lambda_1(\alpha)$ is differentiable and

(7)
$$\lambda_1'(\alpha) = \frac{\int_{\Gamma} u_{1,\alpha}^2 \, \mathrm{d}s}{\int_{\Omega} u_{1,\alpha}^2 \, \mathrm{d}x} > 0,$$

where $u_{1,\alpha}(x)$ is the corresponding eigenfunction;

(iii) $\lambda_1(\alpha)$ is a concave function of α :

(8)
$$\lambda_1(\beta\alpha_1 + (1-\beta)\alpha_2) \geqslant \beta\lambda_1(\alpha_1) + (1-\beta)\lambda_1(\alpha_2), \quad 0 < \beta < 1.$$

Theorem 1 establishes some known properties of eigenvalues of the problem (1), and (2) (see [2], Chapter 6 for (i) and [9], [1] for (ii) and (iii) (in [1] planar domains with piecewise analytic boundaries were considered)).

Hence the behavior of eigenvalues can be illustrated by Figure 1:

Figure 1.

Theorem 2. The eigenvalues $\lambda_k(\alpha)$, k = 1, 2, ..., satisfy the estimates

(9)
$$0 \leqslant \lambda_k^D - \lambda_k(\alpha) \leqslant C_1 \alpha^{-1/2} (\lambda_k^D)^2, \quad \alpha > 0,$$

where the constant C_1 does not depend on k.

3. Qualitative properties of eigenvalues

Proof of Theorem 1. The increasing of $\lambda_k(\alpha)$ follows from (3). Using (6) and the inclusion $\mathring{H}^1(\Omega) \subset H^1(\Omega)$, we have

$$\lambda_{k}(\alpha) = \sup_{\substack{v_{1}, \dots, v_{k-1} \in L_{2}(\Omega) \\ j=1, \dots, k-1}} \inf_{\substack{v \in H^{1}(\Omega) \\ (v, v_{j})_{L_{2}(\Omega) = 0} \\ j=1, \dots, k-1}} \frac{\int_{\Omega} |\nabla v|^{2} dx + \alpha \int_{\Gamma} v^{2} ds}{\int_{\Omega} v^{2} dx}$$

$$\leq \sup_{\substack{v_{1}, \dots, v_{k-1} \in L_{2}(\Omega) \\ (v, v_{j})_{L_{2}(\Omega)} = 0 \\ j=1, \dots, k-1}} \inf_{\substack{\int_{\Omega} |\nabla v|^{2} dx + \alpha \int_{\Gamma} v^{2} ds}}{\int_{\Omega} v^{2} dx}$$

$$= \sup_{\substack{v_{1}, \dots, v_{k-1} \in L_{2}(\Omega) \\ (v, v_{j})_{L_{2}(\Omega)} = 0 \\ j=1, \dots, k-1}} \inf_{\substack{\int_{\Omega} |\nabla v|^{2} dx \\ \int_{\Omega} v^{2} dx}} = \lambda_{k}^{D}.$$

To obtain (7) we use the inequalities

$$\lambda_{1}(\alpha_{1}) - \lambda_{1}(\alpha) = \lambda_{1}(\alpha_{1}) - \inf_{v \in H^{1}(\Omega)} \frac{\int_{\Omega} |\nabla v|^{2} dx + \alpha \int_{\Gamma} v^{2} ds}{\int_{\Omega} v^{2} dx}$$

$$\geqslant \lambda_{1}(\alpha_{1}) - \frac{\int_{\Omega} |\nabla u_{1,\alpha_{1}}|^{2} dx + \alpha \int_{\Gamma} u_{1,\alpha_{1}}^{2} ds}{\int_{\Omega} u_{1,\alpha_{1}}^{2} dx}$$

$$= (\alpha_{1} - \alpha) \frac{\int_{\Gamma} u_{1,\alpha_{1}}^{2} ds}{\int_{\Omega} u_{1,\alpha_{1}}^{2} dx},$$

$$\lambda_{1}(\alpha_{1}) - \lambda_{1}(\alpha) = \inf_{v \in H^{1}(\Omega)} \frac{\int_{\Omega} |\nabla v|^{2} dx + \alpha_{1} \int_{\Gamma} v^{2} ds}{\int_{\Omega} v^{2} dx} - \lambda_{1}(\alpha)$$

$$\leqslant \frac{\int_{\Omega} |\nabla u_{1,\alpha}|^{2} dx + \alpha_{1} \int_{\Gamma} u_{1,\alpha}^{2} ds}{\int_{\Omega} u_{1,\alpha}^{2} dx} - \lambda_{1}(\alpha)$$

$$= (\alpha_{1} - \alpha) \frac{\int_{\Gamma} u_{1,\alpha}^{2} ds}{\int_{\Omega} u_{1,\alpha}^{2} dx}.$$

Therefore

(10)
$$\frac{\int_{\Gamma} u_{1,\alpha_1}^2 \, \mathrm{d}s}{\int_{\Omega} u_{1,\alpha_1}^2 \, \mathrm{d}x} \leqslant \frac{\lambda_1(\alpha_1) - \lambda_1(\alpha)}{\alpha_1 - \alpha} \leqslant \frac{\int_{\Gamma} u_{1,\alpha}^2 \, \mathrm{d}s}{\int_{\Omega} u_{1,\alpha}^2 \, \mathrm{d}x}.$$

Considering the problem (1), (2) in the space $H^1(\Omega)$ we search the values of λ for which there exists a nonzero function $u \in H^1(\Omega)$ satisfying the integral identity

(11)
$$\int_{\Omega} (\nabla u, \nabla v) \, dx + \alpha \int_{\Gamma} uv \, ds = \lambda \int_{\Omega} uv \, dx$$

for any $v \in H^1(\Omega)$. The relation (11) can be rewritten as

(12)
$$\int_{\Omega} ((\nabla u, \nabla v) + Muv) \, dx + \alpha \int_{\Gamma} uv \, ds = (\lambda + M) \int_{\Omega} uv \, dx$$

with an arbitrary M > 0. Let us define an equivalent scalar product in the space $H^1(\Omega)$ by the formula

$$[u, v]_M = \int_{\Omega} ((\nabla u, \nabla v) + Muv) dx, \quad ||u||_M^2 = [u, u]_M.$$

Now (12) transforms to

$$[u, v]_M + \alpha [Tu, v]_M = (\lambda + M)[Bu, v]_M,$$

where self-adjoint nonnegative operators $T\colon H^1(\Omega)\to H^1(\Omega)$ and $B\colon H^1(\Omega)\to H^1(\Omega)$ were determined by bilinear forms

(13)
$$[Tu, v]_M = \int_{\Gamma} uv \, \mathrm{d}s, \quad [Bu, v]_M = \int_{\Omega} uv \, \mathrm{d}x, \quad u, v \in H^1(\Omega).$$

So we have the following equation in the space $H^1(\Omega)$ with the norm $\|\cdot\|_M$:

(14)
$$(I + \alpha T)u = (\lambda + M)Bu.$$

Now we use the inequality ([11], Chapter 3, Paragraph 5, Formula 19)

(15)
$$||v||_{L_2(\Gamma)}^2 \leqslant \varepsilon ||\nabla v||_{L_2(\Omega)}^2 + C_\varepsilon ||v||_{L_2(\Omega)}^2,$$

valid for $v(x) \in H^1(\Omega)$ with an arbitrary $\varepsilon > 0$. Using (13), (15), we obtain

$$(16) ||Tu||_{M}^{2} = [Tu, Tu]_{M} = \int_{\Gamma} u Tu \, ds \leqslant ||u||_{L_{2}(\Gamma)} ||Tu||_{L_{2}(\Gamma)}$$

$$\leqslant \varepsilon \left(\int_{\Omega} \left(|\nabla Tu|^{2} + \frac{C_{\varepsilon}}{\varepsilon} (Tu)^{2} \right) dx \right)^{1/2} \left(\int_{\Omega} \left(|\nabla u|^{2} + \frac{C_{\varepsilon}}{\varepsilon} u^{2} \right) dx \right)^{1/2}$$

$$\leqslant \varepsilon ||Tu||_{M} ||u||_{M},$$

where $\varepsilon > 0$, $M = M_{\varepsilon} = C_{\varepsilon}/\varepsilon$. It follows from (16) that

$$||Tu||_{M_{\varepsilon}} \leqslant \varepsilon ||u||_{M_{\varepsilon}},$$

so for any $\varepsilon > 0$ we have $\|\alpha T\|_{H^1(\Omega) \to H^1(\Omega)} < 1$ for $|\alpha| < 1/\varepsilon$. Hence, the inverse operator $(I + \alpha T)^{-1}$ is bounded and $\|(I + \alpha T)^{-1}\| \le (1 - |\alpha| \|T\|)^{-1}$. Therefore the equation (14) is equivalent to

$$(I - (\lambda + M)(I + \alpha T)^{-1}B)u = 0.$$

The operator B is compact ([11], Chapter 3, Paragraph 4, Theorem 3) and the operator $(I + \alpha T)^{-1}B \colon H^1(\Omega) \to H^1(\Omega)$ is compact too. So the spectrum of the problem (14) consists of eigenvalues $\lambda_j(\alpha) \in \mathbb{R}, j = 1, 2, \ldots$, of finite multiplicity with the only limit point at infinity. By (13), (14) we obtain the inequality

$$\lambda_{j}(\alpha) \geqslant -M_{\varepsilon} + (1 - |\alpha| \|T\|) \left(\frac{\|u_{j,\alpha}\|_{M_{\varepsilon}}}{\|u_{j,\alpha}\|_{L_{2}(\Omega)}} \right)^{2} \geqslant -M_{\varepsilon}$$

where $u_{j,\alpha}$ is the corresponding eigenfunction. Therefore $\lambda_j(\alpha) \to \infty$, $j \to \infty$.

The eigenvalue λ_1 is simple. So the self-adjoint operator $(I + \alpha T)^{-1}B$ satisfies the conditions of the asymptotic perturbation theory ([7], Chapter 8, Paragraph 2, Theorem 2.6). It means that the eigenfunction $u_{1,\alpha}$ depends continuously on α in the space $H^1(\Omega)$. By ([11], Chapter 3, Paragraph 5, Theorem 4) the trace of $u_{1,\alpha}$ on Γ depends continuously on α in the space $L_2(\Gamma)$. Now it follows from (10) that

$$\lambda_1'(\alpha) = \lim_{\alpha_1 \to \alpha} \frac{\lambda_1(\alpha_1) - \lambda_1(\alpha)}{\alpha_1 - \alpha} = \frac{\int_{\Gamma} u_{1,\alpha}^2 \, \mathrm{d}s}{\int_{\Omega} u_{1,\alpha}^2 \, \mathrm{d}x}.$$

By ([11], Chapter 4, Paragraph 2, Theorem 4) $u_{1,\alpha} \in H^2(\Omega)$ and satisfies equation (1) almost everywhere and the boundary condition in the sense of trace (the so-called strong solution). In the case $\int_{\Gamma} u_{1,\alpha}^2 ds = 0$ we have by (2)

$$u_{1,\alpha} = \frac{\partial u_{1,\alpha}}{\partial \nu} = 0$$
 on Γ .

Applying the uniqueness theorem for the Cauchy problem for second-order elliptic equations ([8], Chapter 1, Paragraph 3), we get $u_{1,\alpha} = 0$ in Ω . So, $\int_{\Gamma} u_{1,\alpha}^2 ds > 0$ and we proved the inequality $\lambda'_1(\alpha) > 0$.

Taking into account (7), for $\alpha_2 > \alpha_1$ we have $\lambda_1(\alpha_2) > \lambda_1(\alpha_1)$ and $\lambda_1(\alpha) < \lambda_1^D$ for all α .

To prove the concavity of $\lambda_1(\alpha)$ consider the inequality

$$\lambda_{1}(\beta\alpha_{1} + (1-\beta)\alpha_{2}) = \inf_{v \in H^{1}(\Omega)} \frac{\int_{\Omega} |\nabla v|^{2} dx + (\beta\alpha_{1} + (1-\beta)\alpha_{2}) \int_{\Gamma} v^{2} ds}{\int_{\Omega} v^{2} dx}$$

$$\geqslant \beta \inf_{v \in H^{1}(\Omega)} \frac{\int_{\Omega} |\nabla v|^{2} dx + \alpha_{1} \int_{\Gamma} v^{2} ds}{\int_{\Omega} v^{2} dx}$$

$$+ (1-\beta) \inf_{v \in H^{1}(\Omega)} \frac{\int_{\Omega} |\nabla v|^{2} dx + \alpha_{2} \int_{\Gamma} v^{2} ds}{\int_{\Omega} v^{2} dx}$$

$$= \beta\lambda_{1}(\alpha_{1}) + (1-\beta)\lambda_{1}(\alpha_{2}), \quad 0 < \beta < 1.$$

This completes the proof of Theorem 1.

4. Operator approach

The proof of Theorem 2 is based on an estimate with respect to the parameter α of the norm of a certain operator acting in the $L_2(\Omega)$ space. This operator is a difference between operators associated with the Robin and Dirichlet problems. Now, using compactness and positivity of these operators we can apply estimates to eigenvalues by the norm of a difference operator (Theorem 3 below).

Let us consider the boundary value problem

$$(17) -\Delta u + u = h in \Omega,$$

(18)
$$\frac{\partial u}{\partial \nu} + \alpha u = 0 \quad \text{on } \Gamma, \ \alpha > 0.$$

For $h(x) \in L_2(\Omega)$ a weak solution $u(x) \in H^1(\Omega)$ of the problem (17), (18) satisfying the integral identity

(19)
$$\int_{\Omega} ((\nabla u, \nabla v) + uv) \, dx + \alpha \int_{\Gamma} uv \, ds = \int_{\Omega} hv \, dx$$

for all $v \in H^1(\Omega)$. By definition, introduce a scalar product in the space $H^1(\Omega)$

(20)
$$(u, v)_{H^1(\Omega), \alpha} = \int_{\Omega} ((\nabla u, \nabla v) + uv) \, \mathrm{d}x + \alpha \int_{\Gamma} uv \, \mathrm{d}s$$

and the corresponding norm

$$||u||_{H^1(\Omega),\alpha}^2 = (u,u)_{H^1(\Omega),\alpha}.$$

Using (19), (20), we obtain the relation

(21)
$$(u, v)_{H^1(\Omega), \alpha} = (h, v)_{L_2(\Omega)}.$$

Hence, consider a linear functional $l_h(v) = (h, v)_{L_2(\Omega)}$ in the $H^1(\Omega)$ space. The functional $l_h(v)$ is bounded: $|l_h(v)| \leq ||h||_{L_2(\Omega)}||v||_{L_2(\Omega)}$. Now, by the Riesz lemma there exists a unique function $u \in H^1(\Omega)$ satisfying the integral identity (19). Applying (21) with v = u, we obtain $||u||^2_{H^1(\Omega),\alpha} \leq ||h||_{L_2(\Omega)}||u||_{H^1(\Omega),\alpha}$. Therefore,

(22)
$$||u||_{L_2(\Omega)} \leqslant ||u||_{H^1(\Omega),\alpha} \leqslant ||h||_{L_2(\Omega)},$$

and we can define a bounded linear operator A_{α} : $L_2(\Omega) \to L_2(\Omega)$ such that $u = A_{\alpha}h$ and $||A_{\alpha}|| \leq 1$. Moreover, the space $H^1(\Omega)$ in a bounded domain Ω with C^2 -class

boundary embeds compactly into the space $L_2(\Omega)$ ([6], Theorem 1.1.1). It means that the operator A_{α} is compact. Note that

(23)
$$(h, A_{\alpha}g)_{L_{2}(\Omega)} = \int_{\Omega} hA_{\alpha}g \, dx = \int_{\Omega} hv \, dx$$

$$= \int_{\Omega} ((\nabla u, \nabla v) + uv) \, dx + \alpha \int_{\Gamma} uv \, ds$$

$$= \int_{\Omega} ug \, dx = (A_{\alpha}h, g)_{L_{2}(\Omega)}, \qquad f, g \in L_{2}(\Omega),$$

with $u = A_{\alpha}h$, $v = A_{\alpha}g$, $u, v \in H^1(\Omega)$. The relation (23) means that A_{α} is a self-adjoint operator. Now, by the relation (23) we have

$$(h, A_{\alpha}h)_{L_2(\Omega)} = \int_{\Omega} uh \, \mathrm{d}x = \int_{\Omega} (|\nabla u|^2 + u^2) \, \mathrm{d}x + \alpha \int_{\Gamma} u^2 \, \mathrm{d}s = ||u||_{H^1(\Omega), \alpha}^2 > 0, \ h \neq 0.$$

Hence, the operator A_{α} is positive. Now, A_{α} is a self-adjoint positive compact operator in the Hilbert space $H=L_2(\Omega)$. By the well-known theorem ([6], Theorem 1.2.1), A_{α} has a sequence of eigenvalues $\{\mu_k(\alpha)\}, k=1,2,\ldots$ with finite multiplicities such that $0<\mu_k(\alpha)\leqslant 1, \ \mu_k(\alpha)\searrow 0, \ k\to\infty$. Let us denote by $u_{k,\alpha}\in L_2(\Omega)$ the corresponding eigenfunction satisfying $A_{\alpha}u_{k,\alpha}=\mu_k(\alpha)u_{k,\alpha}$. Thus, $\mu_k(\alpha)(u_{k,\alpha},v)_{H^1(\Omega),\alpha}=(u_{k,\alpha},v)_{L_2(\Omega)}$ and

$$\mu_k(\alpha) \left(\int_{\Omega} ((\nabla u_{k,\alpha}, \nabla v) + u_{k,\alpha} v) \, \mathrm{d}x + \alpha \int_{\Gamma} u_{k,\alpha} v \, \mathrm{d}s \right) = \int_{\Omega} u_{k,\alpha} v \, \mathrm{d}x.$$

It is readily seen that $\mu_k(\alpha) = (\lambda_k(\alpha) + 1)^{-1}$. Let us note that for $\alpha > 0$ we have $\mu_k(\alpha) \leq (\lambda_1(\alpha) + 1)^{-1} < 1$, so $||A_{\alpha}|| < 1$.

Furthermore, consider the Dirichlet problem

$$(24) -\Delta u + u = h in \Omega,$$

(25)
$$u = 0$$
 on Γ .

For $h \in L_2(\Omega)$ a weak solution $u(x) \in \mathring{H}^1(\Omega)$ of the problem (24), (25) satisfies the integral identity

(26)
$$\int_{\Omega} ((\nabla u, \nabla v) + uv) \, \mathrm{d}x = \int_{\Omega} hv \, \mathrm{d}x$$

for all $v \in \mathring{H}^1(\Omega)$. By definition, introduce a scalar product in the space $\mathring{H}^1(\Omega)$

(27)
$$(u,v)_{\mathring{H}^1(\Omega)} = \int_{\Omega} ((\nabla u, \nabla v) + uv) \, \mathrm{d}x$$

and the corresponding norm

$$||u||_{\mathring{H}^1(\Omega)}^2 = (u, u)_{\mathring{H}^1(\Omega)}.$$

Using (26), (27), we obtain the relation

(28)
$$(u,v)_{\mathring{H}^1(\Omega)} = (h,v)_{L_2(\Omega)}.$$

Hence, consider a linear functional $l_h(v) = (h, v)_{L_2(\Omega)}$ in the $\mathring{H}^1(\Omega)$ space. The functional $l_h(v)$ is bounded: $|l_h(v)| \leq ||h||_{L_2(\Omega)} ||v||_{L_2(\Omega)}$. Now, by the Riesz lemma there exists a unique function $u \in \mathring{H}^1(\Omega)$ satisfying the integral identity (26). Using (26) with v = u, we obtain $||u||^2_{\mathring{H}^1(\Omega)} \leq ||h||_{L_2(\Omega)} ||u||_{\mathring{H}^1(\Omega)}$. Therefore,

$$||u||_{L_2(\Omega)} \leqslant ||u||_{\mathring{H}^1(\Omega)} \leqslant ||h||_{L_2(\Omega)},$$

and we can define the bounded linear operator $A^D \colon L_2(\Omega) \to L_2(\Omega)$ such that $u = A^D h$ and $||A|| \leqslant 1$. Moreover, the space $\mathring{H}^1(\Omega)$ in the bounded domain Ω embeds compactly into the space $L_2(\Omega)$ ([6], Theorem 1.1.1) so the operator A^D is compact. Note that

(30)
$$(h, A^D g)_{L_2(\Omega)} = \int_{\Omega} h A^D g \, \mathrm{d}x = \int_{\Omega} h v \, \mathrm{d}x = \int_{\Omega} ((\nabla u, \nabla v) + uv) \, \mathrm{d}x$$
$$= \int_{\Omega} u g \, \mathrm{d}x = (A^D h, g)_{L_2(\Omega)}, \quad f, g \in L_2(\Omega),$$

with $u = A^D h$, $v = A^D g$, $u, v \in \mathring{H}^1(\Omega)$. The relation (30) means that A^D is a self-adjoint operator. Now, by (30) we have

$$(h, A^D h)_{L_2(\Omega)} = \int_{\Omega} u h \, \mathrm{d}x = \int_{\Omega} (|\nabla u|^2 + u^2) \, \mathrm{d}x = ||u||_{\mathring{H}^1(\Omega)}^2 > 0, \quad h \neq 0.$$

Hence, the operator A^D is positive. Now, A^D is a self-adjoint positive compact operator in the Hilbert space $H=L_2(\Omega)$. By the well-known theorem ([6], Theorem 1.2.1) there exists a sequence of eigenvalues $\{\mu_k^D\}$, $k=1,2,\ldots$, with finite multiplicities such that $0<\mu_k^D\leqslant 1,\ \mu_k^D\searrow 0,\ k\to\infty$ of the operator A^D . Denote by $u_k^D\in L_2(\Omega)$ the corresponding eigenfunctions satisfying $A^Du_k^D=\mu_k^Du_k^D$. Thus, $\mu_k^D(u_k^D,v)_{\mathring{H}^1(\Omega)}=(u_k^D,v)_{L_2(\Omega)}$ and

$$\mu_k^D \int_{\Omega} ((\nabla u_k^D, \nabla v) + u_k^D v) \,\mathrm{d}x = \int_{\Omega} u_k^D v \,\mathrm{d}x.$$

Hence, $\mu_k^D = (\lambda_k^D + 1)^{-1}$. Let us note that $\mu_k^D \leqslant (\lambda_1^D + 1)^{-1} < 1$ so $||A^D|| < 1$.

Now we obtain an estimate of the norm $||A_{\alpha} - A^{D}||_{L_{2}(\Omega) \to L_{2}(\Omega)}$ for large positive values of α .

Let us remark that in domains with C^2 -class boundary surface the functions $u = A_{\alpha}h$ and $v = A^Dh$ are strong solutions and belong to $H^2(\Omega)$ ([11], Chapter 4, Paragraph 2, Theorem 4). Moreover, the estimate

$$||v||_{H^2(\Omega)} \leqslant C_2 ||h||_{L_2(\Omega)}$$

holds. Now we use the estimate (15) with $\varepsilon = 1$:

$$||v||_{L_2(\Gamma)} \leqslant C_3 ||v||_{H^1(\Omega)}.$$

Combining (31) and (32) we have the inequality

(33)
$$\|\nabla v\|_{L_2(\Gamma)} \leqslant C_4 \|v\|_{H^2(\Omega)}.$$

Since $\left|\frac{\partial v}{\partial \nu}\right|_{\Gamma} \leq |\nabla v|$ on Γ , from (33) we obtain the estimate

(34)
$$\|\frac{\partial v}{\partial u}\|_{L_2(\Gamma)} \leqslant C_5 \|h\|_{L_2(\Omega)}.$$

Let $w = (A^D - A_\alpha)h$. By (17), (18), (24), (25) the function w is a solution of the boundary value problem

$$(35) -\Delta w + w = 0 in \Omega,$$

(36)
$$\frac{\partial w}{\partial \nu} + \alpha w = \frac{\partial v}{\partial \nu} \quad \text{on } \Gamma.$$

Multiplying the equation (35) by w and integrating on Ω with respect to the boundary condition (36), for $\alpha > 0$ we get the relation

(37)
$$\int_{\Omega} (|\nabla w|^2 + w^2) \, dx + \frac{1}{\alpha} \int_{\Gamma} \left(\frac{\partial w}{\partial \nu}\right)^2 ds = \frac{1}{\alpha} \int_{\Gamma} \frac{\partial w}{\partial \nu} \frac{\partial v}{\partial \nu} \, ds.$$

From (37) we obtain the inequality

$$\|w\|_{L_2(\Omega)}^2 + \frac{1}{\alpha} \left\| \frac{\partial w}{\partial \nu} \right\|_{L_2(\Gamma)}^2 \leqslant \frac{1}{\alpha} \left\| \frac{\partial w}{\partial \nu} \right\|_{L_2(\Gamma)} \left\| \frac{\partial v}{\partial \nu} \right\|_{L_2(\Gamma)}$$

and, consequently,

$$\|w\|_{L_2(\Omega)}^2 + \frac{1}{\alpha} \left\| \frac{\partial w}{\partial \nu} \right\|_{L_2(\Gamma)}^2 \leqslant \frac{1}{2\alpha} \left\| \frac{\partial w}{\partial \nu} \right\|_{L_2(\Gamma)}^2 + \frac{1}{2\alpha} \left\| \frac{\partial v}{\partial \nu} \right\|_{L_2(\Gamma)}^2.$$

Therefore, we have the estimate

(38)
$$||w||_{L_2(\Omega)} \leqslant \frac{1}{\sqrt{2\alpha}} ||\frac{\partial v}{\partial \nu}||_{L_2(\Gamma)}, \quad \alpha > 0.$$

Combining (38) with (34), we get

$$||w||_{L_2(\Omega)} \le C_6 \alpha^{-1/2} ||h||_{L_2(\Omega)}, \quad \alpha > 0,$$

with the constant C_6 independent of α . Thus, for all $h \in L_2(\Omega)$ we have the estimate

$$\|(A^D - A_\alpha)h\|_{L_2(\Omega)} \le C_6 \alpha^{-1/2} \|h\|_{L_2(\Omega)}$$

and

(39)
$$||A^D - A_\alpha|| \le C_6 \alpha^{-1/2}, \quad \alpha > 0.$$

To prove the inequalities (9) we need the following statement (see [6], Theorem 2.3.1).

Theorem 3. Let T_1 and T_2 be two self-adjoint, compact and positive operators on a separable Hilbert space H. Let $\mu_k(T_1)$ and $\mu_k(T_2)$ be their k-th respective eigenvalues. Then

(40)
$$|\mu_k(T_1) - \mu_k(T_2)| \le ||T_1 - T_2|| = \sup_{h \in H} \frac{||(T_1 - T_2)h||}{||h||}.$$

Now we apply this theorem to the operators $T_1 = A_{\alpha}$, $T_2 = A^D$. Then by the relations

$$\mu_k(\alpha) = \frac{1}{\lambda_k(\alpha) + 1}, \quad \mu_k^D = \frac{1}{\lambda_k^D + 1},$$

and inequalities (39), (40) we get the estimate

$$\left| \frac{1}{\lambda_k(\alpha) + 1} - \frac{1}{\lambda_k^D + 1} \right| \leqslant C_6 \alpha^{-1/2}.$$

Therefore,

(42)
$$|\lambda_k^D - \lambda_k(\alpha)| \leqslant C_6 \alpha^{-1/2} (\lambda_k^D + 1) (\lambda_k(\alpha) + 1)$$

and taking into account the inequalities $\lambda_k(\alpha) \leq \lambda_k^D$, we obtain the estimate

(43)
$$0 \leqslant \lambda_k^D - \lambda_k(\alpha) \leqslant C_6 \alpha^{-1/2} (\lambda_k^D + 1)^2 \leqslant C_1 \alpha^{-1/2} (\lambda_k^D)^2.$$

Proof of Theorem 2 is completed.

References

[1]	C. Bandle, R. P. Sperb: Application of Rellich's perturbation theory to a classical bound-	
	ary and eigenvalue problem. Z. Angew. Math. Phys. 24 (1973), 709–720.	zbl MR
[2]	R. Courant, D. Hilbert: Methoden der mathematischen Physik I. Springer, Berlin, 1968.	
	(In German.)	${ m MR}$
[3]	D. Daners, J. B. Kennedy: On the asymptotic behaviour of the eigenvalues of a Robin	
	problem. Differ. Integral Equ. 23 (2010), 659–669.	zbl MR
[4]	A. V. Filinovskiy: Asymptotic behavior of the first eigenvalue of the Robin problem. On	
	the seminar on qualitative theory of differential equations at Moscow State University,	
	Differ. Equ. 47 (2011), 1680–1696. DOI:10.1134/S0012266111110152.	
[5]	<i>v</i> 1 1 9	
	ized Robin problem. Ill. J. Math. 49 (2005), 1133–1143.	zbl MR
[6]		
	2006.	zbl MR
[7]		zbl MR
[8]	,	
	ential equations. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya	
[0]	32 (1988), 99–215. (In Russian.)	zbl MR
[9]	<i>0</i> / /	1100
101	with nonlinear boundary conditions. SIAM J. Appl. Math. 58 (1998), 1622–1647.	zbl MR
10]		11 10
111	J. Math. 214 (2004), 323–334.	zbl MR
	V. P. Mikhailov: Partial Differential Equations. Nauka, Moskva, 1983. (In Russian.)	MR
12	R. P. Sperb: Untere und obere Schranken für den tiefsten Eigenwert der elastisch	-bl MD
	gestützten Membran. Z. Angew. Math. Phys. 23 (1972), 231–244. (In German.)	zbl MR

Author's address: Filinovskiy Alexey, Department of High Mathematics, Faculty of Fundamental Sciences, Moscow State Technical University, Moskva, 2-nd Baumanskaya ul. 5, 105005, Russian Federation, e-mail: flnv@yandex.ru.