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I. INTRODUCTION

The following elementary example shows that separately continuous functions are
not connected functions:
Define f: R x R — R such that
Ty
T2 .2 (I’ y) 7& (070)
f((@,v) = { @+
0, (z,y) = (0,0).

Now let E = {(z,y): « > 0,y > 0 and %w < y € 3z}. Then the image of E is not
connected. In this paper, we show that, for separately continuous functions, if the
connected set is also open, then its image is a connected set in the range space. This
condition, which we call “O-connectedness,” is strictly weaker than connectedness,
as shown by the following example:

0, xz <0
sinl, >0

z?
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In Theorem 2 and Corollary 1, we show that, with suitable restrictions on the
domain and range spaces, O-connected functions (including separately continuous
functions) have connected cluster sets. Theorem 4 and Corollary 2 show that the
closed graph property, combined with O-connectedness, yields continuity. Corollary
3 presents a similar result for separately continuous functions.

Throughout this paper a function f from a space X into a space Y will be denoted
by f: X — Y. We say that a function f: X — Y is O-connected if the image of
every connected open set in X is a connected set in Y.

II. SEPARATE CONTINUITY AND O-CONNECTEDNESS
The following lemma is similar to Theorem 3.5 of [2]:

Lemma. Let f: X xY — R be a real-valued separately continuous function,
where X and Y are topological spaces. Let A C X and B C Y be connected sets in
the topologies on X and Y respectively. Then f(A x B) is a connected set in R.

Proof. Let E = {f(z,y): z € Aand y € B}. If the set E consists of a single
point, we are done. Let 2z; and 25 be any two points in E such that z; # z5. There
exist points (x1,y1) and (z2,y2) in Ax B such that f(z1,y1) = z1 and f(z2,y2) = 22.
Since f is continuous in each variable separately, if x1 = x5 or y; = y», then every
value between z; and 25 is in E. If 2y # x5 and y; # ya, consider the point (z2,y1)
in Ax B. Again, since f is separately continuous, every value between f(z1,y1) = z1
and f(z2,y1) = 23 is in E. Similarly, every value between z3 and 25 is in E. That is,
E contains every value between z; and z5. Since z; and 23 were chosen arbitrarily,
the set E must be an interval in R. O

Before presenting the next result, we recall that if O is an open cover of a connected
set S in a space X, then any two points a and b of S can be connected by a simple
chain consisting of elements of O. (See, for example, Theorem 26.15 of [4], the proof
of which is readily adapted to the subspace topology.)

Theorem 1. Let f: X XY — R be a real-valued separately continuous function,
where X and Y are locally connected spaces. Then f is O-connected.

Proof. Let G be a connected open subset of X x Y. Then G is the union
of a collection of basis elements of the form U x V, where each U and each V is
open and connected. Since these basis elements form an open cover of the connected
set G, any two points (z1,y1) and (z2,y2) in G can be joined by a finite collection
[Up x V1,Us X Va,...,Up x V,,] of such basis elements, such that (x1,y1) € (U; x V1)
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and (z2,y2) € (U, X V,,) and any two successive sets (U; x V;) and (Uix1 X Vig1)
have at least one common point. Thus, if f(G) is not a singleton, by mimicking the
argument in the proof of the Lemma above, we can show that, for any two points z;
and 29 in f(QG), every value between z; and 23 is in f(G). Hence, f(G) is connected
in R. O

ITI. CLUSTER SETS, O-CONNECTEDNESS AND SEPARATE CONTINUITY

For a function f: X — Y, where X and Y are first countable spaces, we say that
the cluster set of f at x € X, denoted by C(f;x), is the set of all y in Y such that
there exists a sequence (z,) in X converging to = and (f(z,)) converges to y. It is
easy to show that the set C(f; z) is always closed. Also, C(f;x) is never empty, since
f(z) is always an element of C(f;x). In [2] W. Pervin and N. Levine showed that for
a connected function f: X — Y, where X is first countable and locally connected,
and Y is first countable and compact Hausdorff, the cluster set C(f;x) is connected
for every x in X. Only slight modifications of the proof of Pervin and Levine are
needed to prove the next result. For the convenience of the reader, we set forth the
entire proof.

Theorem 2. Let X be a locally connected and first countable space, and let Y
be compact Hausdorff and first countable. Suppose that f: X — Y is O-connected.
Then for any x in X, C(f;x) is a connected subset of Y.

Proof.  Assume that C(f;z) is disconnected for some z in X. Then let
C(f;x) = A|B be a separation. Since C(f;z) is closed, then A and B are closed
subsets of Y. But Y is compact and Hausdorff and therefore normal. Thus, there
exist disjoint open sets U and V such that A C U and B C V. Then C(f;z) C UUV.
The claim now is there exists an open set G containing x such that f(G) C U UV.
Assume that for every open set G containing x there exists a point 2’ in G such that
f(@) e Y\ (UUV). As we shall see, this will lead to a contradiction. Since X is
first countable, we can construct a sequence (x},) in X such that (z/,) converges to
. Consider the sequence (f(z),)) in Y. Since Y\ (U UV) is a closed subset of the
compact space Y, it is also compact. Thus, (f(x],)) has a convergent subsequence
converging to some y’ in Y \ (U U V). But ¢’ is in C(f;z), and this contradicts the
fact that C(f;x) ¢ U U V. Therefore, there is some open set G containing x such
that f(G) C UU V. Since X is locally connected, there exists a connected open
set H in G containing x such that f(H) C UUV. Since f is O-connected, f(H) is
connected in Y, and thus f(H) lies entirely in U or V. Then either A or B must be
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empty, because the other can have no points of C(f;x) in it; i.e., H contains the tail
of every sequence (z,) converging to z. Hence, C(f;x) is connected. d

Corollary 1. Let f: R x R — I be a separately continuous function from the
real plane into a closed interval I. Then for any point (x,y) in the domain of f, the
cluster set of f at (z,y) is connected.

Proof. Apply Theorem 1 and Theorem 2. O

Remark 1. In Corollary 1 the cluster set is degenerate at points of joint conti-
nuity. We also remark that the converse of Corollary 1 is not true, as illustrated by
the following function of the form f: R x R — [—1,1]:

sin (22 +¢2) '), (z,y) # (0,0)

fl(z,y)) = {07 (z,y) = (0,0)

Now by application of Theorem 1 and Corollary 1 above, we obtain the following:

Theorem 3. Let f: R x R — I be a separately continuous function from the
real plane into a closed interval I. Let (z',y’) be any point in R x R. Then in any
connected open set containing (z',y'), f takes on every value in C(f; («',y’)) [except
possibly the end points ifC(f; (z, y’)) is an interval.

Proof. If C(f;(«/,y')) = {f(«',y')}, we are done. If C(f;(a',y')) is a closed
interval [a, )], then any open set containing (z’,3’) contains the tail of a sequence
(Zn,Yn) such that the sequence f(x,,y,) converges to a. A similar sequence con-
verges to b. Now apply Theorem 1. O

IV. CLOSED GRAPH, O-CONNECTEDNESS AND SEPARATE CONTINUITY

We say that a function f: X — Y is locally w* continuous if there exists an open
basis B for the topology on Y such that f'[Fr(V)] is closed in X for any V € B,
where Fr() denotes the frontier operator [1]. Local w* continuity is a generalization
of the closed graph property for functions of the form f: X — Y, where Y is locally
compact and Hausdorff [1]. The next theorem and its corollary generalize the well-
known result that a connected function with a closed graph, is continuous.

Theorem 4. Let X be a locally connected space and let f: X — Y be locally
w* continuous. If f is O-connected, then f is continuous.

Proof. Letz € X and let W C Y be an open set containing f(z). By local
w* continuity, there exists a basic open set V' C Y such that f(z) € V C W and
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f1Fr(V)] is closed in X. Then the complement of f![Fr(V)], which we shall
call G, is open and contains x. Since X is locally connected, there exists an open
connected set U such that x € U C G. Claim: f(U) C V C W. Assume there exists
z' € U such that f(z') ¢ V. Now Y \ Fr(V) is a disconnected subspace of Y. Since
f(U) is connected, f(U) is contained in V or in Y\ C1(V'). But this is impossible. O

Corollary 2. Let f: X — Y be a function, where X is locally connected and
Y is locally compact and Hausdorff. Suppose that f has the closed graph property.
Then if f is O-connected, f is continuous.

Proof. The function f is locally w* continuous. Now apply Theorem 4. O

Corollary 3. Let f: X XY — R be a separately continuous real-valued function,
where X and Y are locally connected spaces. If f is locally w* continuous, then f is
continuous.

Remark 2. For a more general result, see [1].
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