EXACT 2-STEP DOMINATION IN GRAPHS

GARY CHARTRAND,¹ Kalamazoo, FRANK HARARY,² Las Cruces, MOAZZEM HOSSAIN, San Jose, KELLY SCHULTZ,¹ Kalamazoo

(Received September 7, 1993)

Summary. For a vertex v in a graph G, the set $N_2(v)$ consists of those vertices of G whose distance from v is 2. If a graph G contains a set S of vertices such that the sets $N_2(v)$, $v \in S$, form a partition of V(G), then G is called a 2-step domination graph. We describe 2-step domination graphs possessing some prescribed property. In addition, all 2-step domination paths and cycles are determined.

Keywords: 2-step domination graph

 $MSC \ 1991 \colon \ 05\mathrm{C38}$

1. INTRODUCTION

Two vertices u and v in a graph G for which the distance d(u, v) = 2 are said to 2-step dominate each other. The set of vertices of G that are 2-step dominated by v is denoted by $N_2(v)$; that is,

$$N_2(v) = \{ u \in V(G) \mid d(v, u) = 2 \}.$$

A set S of vertices of G is called a 2-step domination set if $\bigcup_{v \in S} N_2(v) = V(G)$. A 2step domination set S such that the sets $N_2(v)$, $v \in S$, are pairwise disjoint is called an *exact* 2-step domination set. If a graph G has an exact 2-step domination set, then G is called an *exact* 2-step domination graph or, for brevity, a 2-step domination graph. Each of the graphs G_1 , G_2 , and G_3 of Figure 1 is a 2-step domination graph

 $^{^1\,\}mathrm{Research}$ supported in part by Office of Naval Research Grant N00014–91–J–1060

 $^{^2}$ Research supported in part by Office of Naval Research Grant N00014–90–J–1860

¹²⁵

with an exact 2-step domination set $S_1 = \{u_1, u_2, u_3, u_4\}$, $S_2 = \{v_1, v_2, v_3, v_4\}$, and $S_3 = \{w_1, w_2, w_3, w_4\}$, respectively. We adopt the convention of drawing a vertex with a solid circle if the vertex belongs to the exact 2-step domination set under discussion. In general we follow the graph theoretic notation and terminology of the books [1], [2].

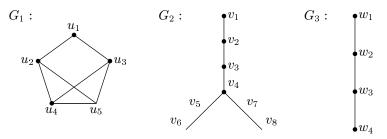


Figure 1. Three 2-step domination graphs.

2. Construction 2-step domination graphs

Our primary problem is to determine which graphs are 2-step domination graphs. If G is a graph of order p containing a vertex v of degree p-1, then no vertex of G 2-step dominates v. This observation yields the next result. We denote the radius and diameter of a graph G by rad G and diam G, and the maximum degree of G by $\Delta(G)$.

Lemma 1. If G is a 2-step domination graph, then $\operatorname{rad} G \ge 2$.

According to Lemma 1 then, $\Delta(G) \leq p-2$ for every 2-step domination graph G of order p. No further reduction in the bound for $\Delta(G)$ is possible. For example, if p = 2n, the graph $\overline{nK_2}$ is a (p-2)-regular 2-step domination graph in which the only exact 2-step domination set consists of the entire vertex set. The path P_4 (the graph G_3 of Figure 1) also has the property that it is a 2-step domination graph whose unique exact 2-step domination set is the vertex set of the graphs. In fact, these are the only connected graphs with this property.

Theorem 2. A connected graph G is a 2-step domination graph with exact 2-step domination set V(G) if and only if $G \simeq P_4$ or $G \simeq \overline{nK_2}$ for some $n \ge 2$.

Proof. First, the graphs $\overline{nK_2}$, $n \ge 2$, and P_4 have the desired property. Conversely, suppose that G is a connected 2-step domination graph with exact 2-step

domination set V(G). Necessarily, every vertex v of G has a unique vertex at distance 2 from v. Hence, diam $G \ge 2$. If diam $G \ge 4$, then G contains an induced subgraph isomorphic to P_5 , the central vertex of which is at distance 2 from two vertices; so this is impossible. There remain two cases.

Case 1. diam G = 2. Then, for every vertex v of G there is a unique vertex distinct from v and not adjacent to v. Hence p is even, say $p = 2n \ge 4$, and $G \simeq \overline{nK_2}$.

Case 2. diam G = 3. In this case, G contains an induced path $P_4: v_1, v_2, v_3, v_4$ and hence $d(v_1, v_4) = 3$. Thus each of v_1 and v_3 is the unique vertex at distance 2 from the other, as is the case for v_2 and v_4 . We claim that v_1 is an end-vertex of G. If this is not the case, then G contains a vertex x distinct from v_2 adjacent to v_1 . If $xv_2 \notin E(G)$, then $d(v_2, x) = 2$, which is impossible; so $xv_2 \in E(G)$. Necessarily, $xv_3 \in E(G)$ as well; for otherwise, $d(v_3, x) = 2$. However, then, $xv_4 \in E(G)$; for otherwise, $d(v_4, x) = 2$. The existence of the path v_1, x, v_4 , then contradicts the fact that $d(v_1, v_4) = 3$. Thus, as claimed, v_1 is an end-vertex of G. Similarly, v_4 is an end-vertex of G.

We now claim that each of v_2 and v_3 has degree 2. If this is not the case, then v_2 , say, is adjacent to a vertex x different from v_1 and v_3 ; but then $d(v_1, x) = 2$, which is impossible. Consequently, $G \simeq P_4$.

The fact that the graphs $\overline{nK_2}$, $n \ge 2$, are (2n-2)-regular 2-step domination graphs shows that *r*-regular 2-step domination graphs exist for every even integer $r \ge 2$. We next show that such is the case for odd values of r as well.

Let S consist of 2n vertices of the graph nC_4 , $n \ge 2$, two adjacent vertices from each component. Then S is an exact 2-step domination set in the complement $\overline{nC_4}$. Since $\overline{nC_4}$ is (4n-3)-regular, r-regular 2 step domination graphs exist for $r \equiv 1$ (mod 4). It remains to show the existence of r-regular 2-step domination graphs, where $r \equiv 3 \pmod{4}$.

For $n \ge 0$, define the vertex set of the graph G'_n (as shown in Figure 2) by

$$V(G'_n) = \{u, u'\} \cup \{v, v'\} \cup \{w, w'\} \cup V \cup V'$$

where $V = \{v_1, v_2, \dots, v_{4n+2}\}$ and $V' = \{v'_1, v'_2, \dots, v'_{4n+2}\}$ and the edge set of G'_n by

$$E(G'_n) = \{uu', vw, v'w'\} \cup \{ux, wx \mid x \in V\} \cup \{u'x, w'x \mid x \in V'\}.$$

Next let $F \simeq F' \simeq \overline{K_1 \cup (2n+1)K_2}$, where $V(F) = V \cup \{v\}$ and $V(F') = V' \cup \{v'\}$, such that $\deg_F v = \deg_{F'} v' = 4n+2$. Now define the graph G_n by $V(G_n) = V(G'_n)$ and

$$E(G_n) = E(G'_n) \cup E(F) \cup E(F').$$

1	0	7
Т	4	1

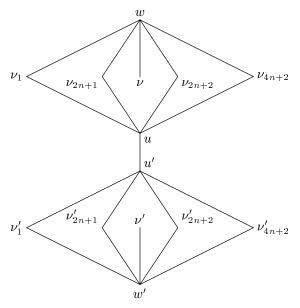


Figure 2. The graph G'_n .

The graph G_n is a (4n+3)-regular 2-step domination graph with exact 2-step domination set $\{u, u', w, w'\}$. We now summarize these observations.

Theorem 3. For every integer $r \ge 2$, there exists an r-regular 2-step domination graph.

The composition G[H] of graphs G and H is constructed by replacing each vertex of G by a copy of H and each edge $v_i v_j$ of G by the join $H_i + H_j$ $(H_i \simeq H_j \simeq H)$ of these respective copies of H. This operation has been often extended to the generalized composition $G[H_1, H_2, \ldots, H_p]$ of the labeled graph G with $V(G) = \{v_1, v_2, \ldots, v_p\}$ determined by any p graphs H_i . Again, each vertex v_i of G is replaced by H_i and each edge $v_i v_j$ by the join $H_i + H_j$. This is illustrated in Figure 3.

With the aid of the generalized composition, we can construct new 2-step domination graphs from given 2-step domination graphs.

Theorem 4. Let G be a 2-step domination graph with $V(G) = \{v_1, v_2, \ldots, v_p\}$. For positive integers n_1, n_2, \ldots, n_p , the generalized composition $G[K_{n_1}, K_{n_2}, \ldots, K_{n_p}]$ is a 2-step domination graph.

Proof. Since G is a 2-step domination graph, there exists an exact 2-step domiantion set S, say, without loss of generality, $S = \{v_1, v_2, \ldots, v_k\}$. For $i = 1, 2, \ldots, k$, let H_i be a graph such that $H_i \simeq K_{n_i}$ and let v'_i be a vertex of H_i . Then S' =

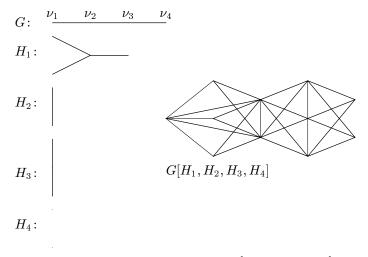


Figure 3. Construction of $G[H_1, H_2, H_3, H_4]$.

 $\{v'_1, v'_2, \dots, v'_k\}$ is an exact 2-step domination set of the graph $G[H_1, H_2, \dots, H_p]$.

Since the path P_4 is a 2-step domination graph (in which every vertex belongs to a 2-step domination set), by varying the orders of four complete graphs, we have the following.

Corollary 5. For every integer $n \ge 4$, there exists a 2-step domination graph of order n.

Furthermore, the proof of Theorem 4 shows that the graph $P_4[K_n, K_n, K_n, K_n]$ illustrates the fact that for every positive integer n, there exists a 2-step domination graph whose vertex set can be partitioned into n subsets, each of which is an exact 2-step domination set.

We now describe some additional examples of 2-step domination graphs. First we present some other terms, whose definitions are expected. A set S of vertices of a graph G is an *exact* 1-step domination set if the union $\bigcup N(v)$ of the open neighborhoods of the vertices v of S is V(G) and the sets N(v), $v \in S$, are pairwise disjoint. A graph then is a 1-step domination graph if it contains an exact 1-step domination set. The graphs shown in Figure 4 are 1-step domination graphs. So the complete bipartite graphs $K_{m,n}$, for any pair m, n of positive integers, are 1-step domination graphs.

Our special interest is in disconnected 1-step domination graphs.

Theorem 6. A disconnected graph G is a 1-step domination graph if and only if its complement \overline{G} is a 2-step domination graph.

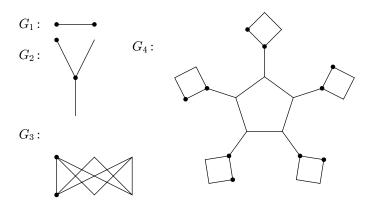


Figure 4. Four 1-step domination graphs.

Proof. Let G be a disconnected graph. Suppose first that G is a 1-step domination graph. Then diam $\overline{G} = 2$ and the vertices adjacent to a vertex v of G are precisely the vertices at distance 2 from v in \overline{G} . Thus if S is an exact 1-step domination set of G, then S is an exact 2-step domination set of \overline{G} . Conversely, if \overline{G} is a 2-step domination graph, then G is a 1-step domination graph. \Box

If G is a disconnected graph whose four components G_i , $1 \leq i \leq 4$, are given in Figure 4, then by Theorem 6, \overline{G} is a 2-step domination graph. We already observed in Theorem 2 that $\overline{nK_2}$, $n \geq 2$, is a 2-step domination graph. We have now seen several examples of 2-step domination graphs. If S is an exact 2-step domination set of a 2-step domination graph G, then, of course, $S \subseteq V(G)$, but there need not be any relationship between the numbers |S| and |V(G)|.

Theorem 7. For any rational number a/b, with $0 < a/b \leq 1$, there exists a 2-step domination graph G with an exact 2-step domination set S such that |S|/|V(G)| = a/b.

Proof. Since we have already characterized those 2-step domination graphs G with |S|/|V(G)| = 1, we assume that 0 < a/b < 1. We have already noted that the graph $H \simeq \overline{2aK_2}$ is a 2-step domination graph. Let G be the generalized composition obtained by replacing some vertex of H by the graph $K_{4b-4a+1}$ (and replacing all other vertices by K_1). By Theorem 4, G is a 2-step domination graph with |S| = 4a and |V(G)| = 4b. Consequently, |S|/|V(G)| = a/b.

We now determine all those paths and cycles that are 2-step domination graphs. We begin by showing that if $m \equiv 1, 2, \text{ or } 3 \pmod{8}$, then P_m is not a 2-step domination graph.

Theorem 8. For every nonnegative integer n, none of the paths P_{8n+1} , P_{8n+2} , and P_{8n+3} are 2-step domination graphs.

Proof. Suppose that the result is false. Since none of P_1 , P_2 , and P_3 are 2-step domination graphs, there is a smallest positive integer m (of the form 8n + 1, 8n + 2, or 8n + 3) such that P_m is a 2-step domination graph. Suppose that P_m is the path v_1, v_2, \ldots, v_m . Let S be an exact 2-step domination set of P_m . We consider three cases.

Case 1. Suppose that m = 8n + 1. We now consider two subcases.

Subcase 1.1. Assume that four consecutive vertices among $v_1, v_2, v_3, v_4, v_5, v_6$ belongs to S. If $v_1, v_2, v_3, v_4 \in S$, then the vertices v_1, v_2, \ldots, v_6 of P_{8n+1} are 2-step dominated by the vertices v_1, v_2, v_3, v_4 . Consequently, $P_{8n-5} = P_{8(n-1)+3}$ is a 2-step domination graph, contrary to assumption.

Suppose next that v_2 , v_3 , v_4 , $v_5 \in S$. Then the vertices v_1 , v_2 , ..., v_7 of P_{8n+1} are 2-step dominated by the vertices v_2 , v_3 , v_4 , v_5 . This implies that $P_{8n-6} = P_{8(n-1)+2}$ is a 2-step domination graph, which is impossible. Similarly, we cannot have v_3 , v_4 , v_5 , $v_6 \in S$.

Subcase 1.2. Assume that $v_1 \in S$. Since v_1 and v_2 must be 2-step dominated by elements of S, it follows that $v_3, v_4 \in S$. We can assume that $v_2 \notin S$; otherwise, the situation is covered by Subcase 1.1. Since v_4 is 2-step dominated by some vertex, $v_6 \in S$. Because $v_5 \notin S$ and v_7 is 2-step dominated by some vertex, $v_9 \in S$. If n = 1, we have a contradiction; if $n \ge 2$, we are repeating this Subcase with the path $P_{8(n-1)+1}$. Continuing in this manner, we see that $v_{8n+1} \in S$ but that v_{8n+1} is 2-step dominated by no vertex, producing a contradiction.

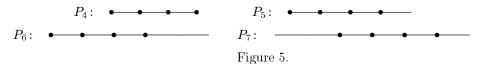
If neither $v_1 \in S$ nor four consecutive vertices among v_1 , v_2 , v_3 , v_4 , v_5 , v_6 belong to S, then we must still have v_3 , $v_4 \in S$ in order to have v_1 and v_2 2-step dominated. Now since v_3 must be 2-step dominated, $v_5 \in S$. In order for v_4 to be 2-step dominated, either $v_2 \in S$ or $v_6 \in S$, producing four consecutive vertices among v_1 , v_2 , v_3 , v_4 , v_5 , v_6 in S. That is, Subcases 1.1 and 1.2 are exhaustive.

The proofs of the cases where m = 8n + 2 and m = 8n + 3 are similar and are, therefore, omitted.

We next complete the problem for paths by showing that all other paths are 2-step domination graphs.

Theorem 9. For every positive integer n, P_{8n} is a 2-step domination graph, and for every nonnegative integer n, P_{8n+4} , P_{8n+5} , P_{8n+6} , and P_{8n+7} are 2-step domination graphs.

Proof. Consider the path $P_m: v_1, v_2, \ldots, v_m$, where *m* is of the form described in the statement of the theorem. For m < 8, Figure 5 shows that each path P_m is a 2-step domination graph. For j = 4, 5, 6, 7, denote by S_j the exact 2-step domination set of the path P_j .



We now make some observations that will be useful to us later. For the path P_{8n} , $n \ge 1$, an exact 2-step domination set $S_1 = \{v_i \mid i \equiv 3, 4, 5, 6 \pmod{8}\}$ is described in Figure 6. The set $S_2 = \{v_i \mid i \equiv 1, 2, 3, 4 \pmod{8}\}$ is also shown in Figure 6. It is not an exact 2-step domination set, but in this case, every vertex of P_{8n} is 2-step dominated except v_{8n-1} and v_{8n} .

The set S_1 shows that P_{8n} , $n \ge 1$, is a 2-step domination graph. Now label the vertices of the paths P_j (j = 4, 5, 6, 7) in Figure 5 from left to right as v_{8n+1} , $v_{8n+2}, \ldots, v_{8n+j}$. The paths P_{8n+j} can be formed by taking the union of P_{8n} (see Figure 6) and P_j and joining v_{8n} and v_{8n+1} . The set $S_2 \cup S_j$ is an exact 2-step domination set for P_{8n+j} for j = 4, 5, 6; while $S_1 \cup S_7$ is an exact 2-step domination set for P_{8n+7} .

Corollary 10. The path P_m is a 2-step domination graph if an only if $m = 0, 4, 5, 6, \text{ or } 7 \pmod{8}$,

In order to characterize the 2-step domination cycles, we begin with a preliminary result.

Lemma 11. If a cycle $C_n: v_1, v_2, ..., v_n, v_1 \ (n \ge 4)$ is a 2-step domination graph with exact 2-step domination set S, then there is an integer $i \ (1 \le i \le n)$ such that

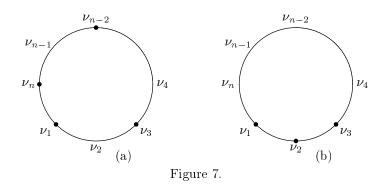
either (1) v_i , v_{i+1} , v_{i+2} , $v_{i+3} \in S$ or (2) v_i , v_{i+2} , $v_{i+3} \in S$ and $v_{i+1} \notin S$ (where all addition is performed modulo n).

Proof. If n = 4, then $S = \{v_1, v_2, v_3, v_4\}$ is the only exact 2-step domination set, and the result follows. Thus we may assume that $n \ge 5$. Suppose that there are no vertices $v_1, v_{i+1}, v_{i+2}, v_{i+3}$ for which (1) or (2) holds.

Every vertex $v_j \in S$ $(1 \leq j \leq n)$ is 2-step dominated by either v_{j-2} or v_{j+2} . Hence, without loss of generality, we may assume that $v_1, v_3 \in S$. By our assumption, there are now two possibilities for v_2 and v_4 .

Case 1. $v_2, v_4 \notin S$. Hence $v_n \in S$ and so $v_{n-2} \in S$. (See Figure 7a.) If $v_{n-1} \in S$, then (1) is satisfied; while if $v_{n-1} \notin S$, (2) is satisfied, producing a contradiction.

Case 2. $v_2 \in S$ and $v_4 \notin S$. (See Figure 7b.) Since v_2 is not 2-step dominated by v_4 , it follows that $v_n \in S$. Thus, $v_n, v_1, v_2, v_3 \in S$, producing a contradiction. \Box



We can now describe all 2-step domination cycles.

Theorem 12. A cycle C_n is a 2-step domination graph if and only if n = 4 or $n \equiv 0 \pmod{8}$.

Proof. We have already seen that C_4 is a 2-step domination graph. It is straightforward to see that for other values of m < 8, the cycle C_m is not a 2-step domination graph. Now let $C_{8n}: v_1, v_2, \ldots, v_{8n}, v_1 \ (n \ge 1)$ be a cycle. The set $S = \{v_i \mid i \equiv 1, 2, 3, 4 \pmod{8}\}$ is an exact 2-step domination set.

For the converse, assume that $C_m: v_1, v_2, \ldots, v_m, v_1$ is a 2-step domination graph with $m \ge 8$ and with exact 2-step domination set S. By Lemma 11, we can assume, without loss of generality, that either (1) $v_1, v_2, v_3, v_4 \in S$ or (2) $v_1, v_3, v_4 \in S$ and $v_2 \notin S$. If (1) occurs, then $v_5, v_6, v_7, v_8 \notin S$. If m > 8, then the vertices of P_m must repeat in this manner in groups of 8, that is, $v_i \in S$ if $i \equiv 1, 2, 3, 4 \pmod{8}$ and

 $v_i \notin S$ otherwise. Thus $m \equiv 0 \pmod{8}$. If (2) occurs, then $v_5, v_7, v_8 \notin S$ and $v_6 \in S$. If m > 8, then the vertices of P_m must repeat in this manner as well. In any case, $m \equiv 0 \pmod{8}$.

References

- G. Chartrand and L. Lesniak: Graphs & Digraphs (second edition). Wadsworth & Brooks/Cole, Monterey, 1986.
- [2] F. Harary: Graph Theory. Addison-Wesley, Reading, 1969.

Authors' addresses: G. Chartrand, K. Schultz, Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, Michigan 49008-5152; F. Harary, Department of Computer Science, New Mexico State University, Las Cruces, New Mexico 88003; M. Hossain, Compass Design Automation, M/S 410, 1865 Lundi Ave., San Jose, California 95131.