EXACT 2-STEP DOMINATION IN GRAPHS

Gary Chartrand, ${ }^{1}$ Kalamazoo, Frank Harary, ${ }^{2}$ Las Cruces, Moazzem Hossain, San Jose, Kelly Schultz, ${ }^{1}$ Kalamazoo

(Received September 7, 1993)

Summary. For a vertex v in a graph G, the set $N_{2}(v)$ consists of those vertices of G whose distance from v is 2 . If a graph G contains a set S of vertices such that the sets $N_{2}(v), v \in S$, form a partition of $V(G)$, then G is called a 2-step domination graph. We describe 2 -step domination graphs possessing some prescribed property. In addition, all 2 -step domination paths and cycles are determined.

Keywords: 2-step domination graph
MSC 1991: 05C38

1. Introduction

Two vertices u and v in a graph G for which the distance $d(u, v)=2$ are said to 2 -step dominate each other. The set of vertices of G that are 2 -step dominated by v is denoted by $N_{2}(v)$; that is,

$$
N_{2}(v)=\{u \in V(G) \mid d(v, u)=2\}
$$

A set S of vertices of G is called a 2-step domination set if $\bigcup_{v \in S} N_{2}(v)=V(G)$. A 2step domination set S such that the sets $N_{2}(v), v \in S$, are pairwise disjoint is called an exact 2-step domination set. If a graph G has an exact 2-step domination set, then G is called an exact 2-step domination graph or, for brevity, a 2-step domination graph. Each of the graphs G_{1}, G_{2}, and G_{3} of Figure 1 is a 2-step domination graph

[^0]with an exact 2-step domination set $S_{1}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, S_{2}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, and $S_{3}=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$, respectively. We adopt the convention of drawing a vertex with a solid circle if the vertex belongs to the exact 2 -step domination set under discussion. In general we follow the graph theoretic notation and terminology of the books [1], [2].

Figure 1. Three 2-step domination graphs.

2. Construction 2-step domination graphs

Our primary problem is to determine which graphs are 2-step domination graphs. If G is a graph of order p containing a vertex v of degree $p-1$, then no vertex of G 2-step dominates v. This observation yields the next result. We denote the radius and diameter of a graph G by $\operatorname{rad} G$ and $\operatorname{diam} G$, and the maximum degree of G by $\Delta(G)$.

Lemma 1. If G is a 2 -step domination graph, then $\operatorname{rad} G \geqslant 2$.
According to Lemma 1 then, $\Delta(G) \leqslant p-2$ for every 2-step domination graph G of order p. No further reduction in the bound for $\Delta(G)$ is possible. For example, if $p=2 n$, the graph $\overline{n K_{2}}$ is a $(p-2)$-regular 2 -step domination graph in which the only exact 2 -step domination set consists of the entire vertex set. The path P_{4} (the graph G_{3} of Figure 1) also has the property that it is a 2 -step domination graph whose unique exact 2 -step domination set is the vertex set of the graphs. In fact, these are the only connected graphs with this property.

Theorem 2. A connected graph G is a 2-step domination graph with exact 2-step domination set $V(G)$ if and only if $G \simeq P_{4}$ or $G \simeq \overline{n K_{2}}$ for some $n \geqslant 2$.

Proof. First, the graphs $\overline{n K_{2}}, n \geqslant 2$, and P_{4} have the desired property. Conversely, suppose that G is a connected 2 -step domination graph with exact 2 -step
domination set $V(G)$. Necessarily, every vertex v of G has a unique vertex at distance 2 from v. Hence, $\operatorname{diam} G \geqslant 2$. If $\operatorname{diam} G \geqslant 4$, then G contains an induced subgraph isomorphic to P_{5}, the central vertex of which is at distance 2 from two vertices; so this is impossible. There remain two cases.

Case 1. $\operatorname{diam} G=2$. Then, for every vertex v of G there is a unique vertex distinct from v and not adjacent to v. Hence p is even, say $p=2 n \geqslant 4$, and $G \simeq \overline{n K_{2}}$.

Case 2. $\operatorname{diam} G=3$. In this case, G contains an induced path $P_{4}: v_{1}, v_{2}, v_{3}, v_{4}$ and hence $d\left(v_{1}, v_{4}\right)=3$. Thus each of v_{1} and v_{3} is the unique vertex at distance 2 from the other, as is the case for v_{2} and v_{4}. We claim that v_{1} is an end-vertex of G. If this is not the case, then G contains a vertex x distinct from v_{2} adjacent to v_{1}. If $x v_{2} \notin E(G)$, then $d\left(v_{2}, x\right)=2$, which is impossible; so $x v_{2} \in E(G)$. Necessarily, $x v_{3} \in E(G)$ as well; for otherwise, $d\left(v_{3}, x\right)=2$. However, then, $x v_{4} \in E(G)$; for otherwise, $d\left(v_{4}, x\right)=2$. The existence of the path v_{1}, x, v_{4}, then contradicts the fact that $d\left(v_{1}, v_{4}\right)=3$. Thus, as claimed, v_{1} is an end-vertex of G. Similarly, v_{4} is an end-vertex of G.

We now claim that each of v_{2} and v_{3} has degree 2 . If this is not the case, then v_{2}, say, is adjacent to a vertex x different from v_{1} and v_{3}; but then $d\left(v_{1}, x\right)=2$, which is impossible. Consequently, $G \simeq P_{4}$.

The fact that the graphs $\overline{n K_{2}}, n \geqslant 2$, are $(2 n-2)$-regular 2-step domination graphs shows that r-regular 2 -step domination graphs exist for every even integer $r \geqslant 2$. We next show that such is the case for odd values of r as well.

Let S consist of $2 n$ vertices of the graph $n C_{4}, n \geqslant 2$, two adjacent vertices from each component. Then S is an exact 2-step domination set in the complement $\overline{n C_{4}}$. Since $\overline{n C_{4}}$ is $(4 n-3)$-regular, r-regular 2 step domination graphs exist for $r \equiv 1$ (mod 4). It remains to show the existence of r-regular 2-step domination graphs, where $r \equiv 3(\bmod 4)$.

For $n \geqslant 0$, define the vertex set of the graph G_{n}^{\prime} (as shown in Figure 2) by

$$
V\left(G_{n}^{\prime}\right)=\left\{u, u^{\prime}\right\} \cup\left\{v, v^{\prime}\right\} \cup\left\{w, w^{\prime}\right\} \cup V \cup V^{\prime}
$$

where $V=\left\{v_{1}, v_{2}, \ldots, v_{4 n+2}\right\}$ and $V^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{4 n+2}^{\prime}\right\}$ and the edge set of G_{n}^{\prime} by

$$
E\left(G_{n}^{\prime}\right)=\left\{u u^{\prime}, v w, v^{\prime} w^{\prime}\right\} \cup\{u x, w x \mid x \in V\} \cup\left\{u^{\prime} x, w^{\prime} x \mid x \in V^{\prime}\right\}
$$

Next let $F \simeq F^{\prime} \simeq \overline{K_{1} \cup(2 n+1) K_{2}}$, where $V(F)=V \cup\{v\}$ and $V\left(F^{\prime}\right)=V^{\prime} \cup\left\{v^{\prime}\right\}$, such that $\operatorname{deg}_{F} v=\operatorname{deg}_{F^{\prime}} v^{\prime}=4 n+2$. Now define the graph G_{n} by $V\left(G_{n}\right)=V\left(G_{n}^{\prime}\right)$ and

$$
E\left(G_{n}\right)=E\left(G_{n}^{\prime}\right) \cup E(F) \cup E\left(F^{\prime}\right)
$$

Figure 2. The graph G_{n}^{\prime}.
The graph G_{n} is a $(4 n+3)$-regular 2-step domination graph with exact 2-step domination set $\left\{u, u^{\prime}, w, w^{\prime}\right\}$. We now summarize these observations.

Theorem 3. For every integer $r \geqslant 2$, there exists an r-regular 2-step domination graph.

The composition $G[H]$ of graphs G and H is constructed by replacing each vertex of G by a copy of H and each edge $v_{i} v_{j}$ of G by the join $H_{i}+H_{j}\left(H_{i} \simeq H_{j} \simeq H\right)$ of these respective copies of H. This operation has been often extended to the generalized composition $G\left[H_{1}, H_{2}, \ldots, H_{p}\right]$ of the labeled graph G with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ determined by any p graphs H_{i}. Again, each vertex v_{i} of G is replaced by H_{i} and each edge $v_{i} v_{j}$ by the join $H_{i}+H_{j}$. This is illustrated in Figure 3.

With the aid of the generalized composition, we can construct new 2-step domination graphs from given 2 -step domination graphs.

Theorem 4. Let G be a 2-step domination graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. For positive integers $n_{1}, n_{2}, \ldots, n_{p}$, the generalized composition $G\left[K_{n_{1}}, K_{n_{2}}, \ldots\right.$, $\left.K_{n_{p}}\right]$ is a 2-step domination graph.

Proof. Since G is a 2-step domination graph, there exists an exact 2-step domiantion set S, say, without loss of generality, $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. For $i=1,2, \ldots, k$, let H_{i} be a graph such that $H_{i} \simeq K_{n_{i}}$ and let v_{i}^{\prime} be a vertex of H_{i}. Then $S^{\prime}=$

Figure 3. Construction of $G\left[H_{1}, H_{2}, H_{3}, H_{4}\right]$.
$\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{k}^{\prime}\right\}$ is an exact 2-step domination set of the graph $G\left[H_{1}, H_{2}, \ldots, H_{p}\right]$.

Since the path P_{4} is a 2-step domination graph (in which every vertex belongs to a 2 -step domination set), by varying the orders of four complete graphs, we have the following.

Corollary 5. For every integer $n \geqslant 4$, there exists a 2 -step domination graph of order n.

Furthermore, the proof of Theorem 4 shows that the graph $P_{4}\left[K_{n}, K_{n}, K_{n}, K_{n}\right]$ illustrates the fact that for every positive integer n, there exists a 2 -step domination graph whose vertex set can be partitioned into n subsets, each of which is an exact 2 -step domination set.

We now describe some additional examples of 2-step domination graphs. First we present some other terms, whose definitions are expected. A set S of vertices of a graph G is an exact 1-step domination set if the union $\bigcup N(v)$ of the open neighborhoods of the vertices v of S is $V(G)$ and the sets $N(v), v \in S$, are pairwise disjoint. A graph then is a 1 -step domination graph if it contains an exact 1-step domination set. The graphs shown in Figure 4 are 1-step domination graphs. So the complete bipartite graphs $K_{m, n}$, for any pair m, n of positive integers, are 1 -step domination graphs.

Our special interest is in disconnected 1-step domination graphs.
Theorem 6. A disconnected graph G is a 1-step domination graph if and only if its complement \bar{G} is a 2 -step domination graph.

Figure 4. Four 1-step domination graphs.
Proof. Let G be a disconnected graph. Suppose first that G is a 1-step domination graph. Then $\operatorname{diam} \bar{G}=2$ and the vertices adjacent to a vertex v of G are precisely the vertices at distance 2 from v in \bar{G}. Thus if S is an exact 1 -step domination set of G, then S is an exact 2 -step domination set of \bar{G}. Conversely, if \bar{G} is a 2 -step domination graph, then G is a 1 -step domination graph.

If G is a disconnected graph whose four components $G_{i}, 1 \leqslant i \leqslant 4$, are given in Figure 4, then by Theorem $6, \bar{G}$ is a 2 -step domination graph. We already observed in Theorem 2 that $\overline{n K_{2}}, n \geqslant 2$, is a 2 -step domination graph. We have now seen several examples of 2 -step domination graphs. If S is an exact 2 -step domination set of a 2-step domination graph G, then, of course, $S \subseteq V(G)$, but there need not be any relationship between the numbers $|S|$ and $|V(G)|$.

Theorem 7. For any rational number a / b, with $0<a / b \leqslant 1$, there exists a 2-step domination graph G with an exact 2-step domination set S such that $|S| /|V(G)|=$ a / b.

Proof. Since we have already characterized those 2-step domination graphs G with $|S| /|V(G)|=1$, we assume that $0<a / b<1$. We have already noted that the graph $H \simeq \overline{2 a K_{2}}$ is a 2-step domination graph. Let G be the generalized composition obtained by replacing some vertex of H by the graph $K_{4 b-4 a+1}$ (and replacing all other vertices by K_{1}). By Theorem $4, G$ is a 2 -step domination graph with $|S|=4 a$ and $|V(G)|=4 b$. Consequently, $|S| /|V(G)|=a / b$.

We now determine all those paths and cycles that are 2-step domination graphs. We begin by showing that if $m \equiv 1,2$, or $3(\bmod 8)$, then P_{m} is not a 2 -step domination graph.

Theorem 8. For every nonnegative integer n, none of the paths $P_{8 n+1}, P_{8 n+2}$, and $P_{8 n+3}$ are 2-step domination graphs.

Proof. Suppose that the result is false. Since none of P_{1}, P_{2}, and P_{3} are 2-step domination graphs, there is a smallest positive integer m (of the form $8 n+1,8 n+2$, or $8 n+3)$ such that P_{m} is a 2-step domination graph. Suppose that P_{m} is the path $v_{1}, v_{2}, \ldots, v_{m}$. Let S be an exact 2-step domination set of P_{m}. We consider three cases.

Case 1. Suppose that $m=8 n+1$. We now consider two subcases.
Subcase 1.1. Assume that four consecutive vertices among $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ belongs to S. If $v_{1}, v_{2}, v_{3}, v_{4} \in S$, then the vertices $v_{1}, v_{2}, \ldots, v_{6}$ of $P_{8 n+1}$ are 2-step dominated by the vertices $v_{1}, v_{2}, v_{3}, v_{4}$. Consequently, $P_{8 n-5}=P_{8(n-1)+3}$ is a 2 -step domination graph, contrary to assumption.

Suppose next that $v_{2}, v_{3}, v_{4}, v_{5} \in S$. Then the vertices $v_{1}, v_{2}, \ldots, v_{7}$ of $P_{8 n+1}$ are 2-step dominated by the vertices $v_{2}, v_{3}, v_{4}, v_{5}$. This implies that $P_{8 n-6}=P_{8(n-1)+2}$ is a 2-step domination graph, which is impossible. Similarly, we cannot have v_{3}, v_{4}, $v_{5}, v_{6} \in S$.

Subcase 1.2. Assume that $v_{1} \in S$. Since v_{1} and v_{2} must be 2-step dominated by elements of S, it follows that $v_{3}, v_{4} \in S$. We can assume that $v_{2} \notin S$; otherwise, the situation is covered by Subcase 1.1. Since v_{4} is 2 -step dominated by some vertex, $v_{6} \in S$. Because $v_{5} \notin S$ and v_{7} is 2 -step dominated by some vertex, $v_{9} \in S$. If $n=1$, we have a contradiction; if $n \geqslant 2$, we are repeating this Subcase with the path $P_{8(n-1)+1}$. Continuing in this manner, we see that $v_{8 n+1} \in S$ but that $v_{8 n+1}$ is 2 -step dominated by no vertex, producing a contradiction.

If neither $v_{1} \in S$ nor four consecutive vertices among $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ belong to S, then we must still have $v_{3}, v_{4} \in S$ in order to have v_{1} and $v_{2} 2$-step dominated. Now since v_{3} must be 2 -step dominated, $v_{5} \in S$. In order for v_{4} to be 2 -step dominated, either $v_{2} \in S$ or $v_{6} \in S$, producing four consecutive vertices among v_{1}, $v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ in S. That is, Subcases 1.1 and 1.2 are exhaustive.

The proofs of the cases where $m=8 n+2$ and $m=8 n+3$ are similar and are, therefore, omitted.

We next complete the problem for paths by showing that all other paths are 2-step domination graphs.

Theorem 9. For every positive integer $n, P_{8 n}$ is a 2-step domination graph, and for every nonnegative integer $n, P_{8 n+4}, P_{8 n+5}, P_{8 n+6}$, and $P_{8 n+7}$ are 2-step domination graphs.

Proof. Consider the path $P_{m}: v_{1}, v_{2}, \ldots, v_{m}$, where m is of the form described in the statement of the theorem. For $m<8$, Figure 5 shows that each path P_{m} is a 2 -step domination graph. For $j=4,5,6,7$, denote by S_{j} the exact 2 -step domination set of the path P_{j}.

Figure 5.
We now make some observations that will be useful to us later. For the path $P_{8 n}$, $n \geqslant 1$, an exact 2-step domination set $S_{1}=\left\{v_{i} \mid i \equiv 3,4,5,6(\bmod 8)\right\}$ is described in Figure 6. The set $S_{2}=\left\{v_{i} \mid i \equiv 1,2,3,4(\bmod 8)\right\}$ is also shown in Figure 6. It is not an exact 2-step domination set, but in this case, every vertex of $P_{8 n}$ is 2-step dominated except $v_{8 n-1}$ and $v_{8 n}$.

Figure 6.
The set S_{1} shows that $P_{8 n}, n \geqslant 1$, is a 2-step domination graph. Now label the vertices of the paths $P_{j}(j=4,5,6,7)$ in Figure 5 from left to right as $v_{8 n+1}$, $v_{8 n+2}, \ldots, v_{8 n+j}$. The paths $P_{8 n+j}$ can be formed by taking the union of $P_{8 n}$ (see Figure 6) and P_{j} and joining $v_{8 n}$ and $v_{8 n+1}$. The set $S_{2} \cup S_{j}$ is an exact 2-step domiantion set for $P_{8 n+j}$ for $j=4,5,6$; while $S_{1} \cup S_{7}$ is an exact 2-step domination set for $P_{8 n+7}$.

Corollary 10. The path P_{m} is a 2-step domiantion graph if an only if $m=$ $0,4,5,6$, or $7(\bmod 8)$,

In order to characterize the 2-step domination cycles, we begin with a preliminary result.

Lemma 11. If a cycle $C_{n}: v_{1}, v_{2}, \ldots, v_{n}, v_{1}(n \geqslant 4)$ is a 2-step domination graph with exact 2-step domination set S, then there is an integer $i(1 \leqslant i \leqslant n)$ such that
either (1) $v_{i}, v_{i+1}, v_{i+2}, v_{i+3} \in S$ or (2) $v_{i}, v_{i+2}, v_{i+3} \in S$ and $v_{i+1} \notin S$ (where all addition is performed modulo n).

Proof. If $n=4$, then $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is the only exact 2 -step domination set, and the result follows. Thus we may assume that $n \geqslant 5$. Suppose that there are no vertices $v_{1}, v_{i+1}, v_{i+2}, v_{i+3}$ for which (1) or (2) holds.

Every vertex $v_{j} \in S(1 \leqslant j \leqslant n)$ is 2 -step dominated by either v_{j-2} or v_{j+2}. Hence, without loss of generality, we may assume that $v_{1}, v_{3} \in S$. By our assumption, there are now two possibilities for v_{2} and v_{4}.

Case 1. $v_{2}, v_{4} \notin S$. Hence $v_{n} \in S$ and so $v_{n-2} \in S$. (See Figure 7a.) If $v_{n-1} \in S$, then (1) is satisfied; while if $v_{n-1} \notin S,(2)$ is satisfied, producing a contradiction.

Case 2. $v_{2} \in S$ and $v_{4} \notin S$. (See Figure 7b.) Since v_{2} is not 2-step dominated by v_{4}, it follows that $v_{n} \in S$. Thus, $v_{n}, v_{1}, v_{2}, v_{3} \in S$, producing a contradiction.

Figure 7.

We can now describe all 2-step domination cycles.
Theorem 12. A cycle C_{n} is a 2-step domination graph if and only if $n=4$ or $n \equiv 0(\bmod 8)$.

Proof. We have already seen that C_{4} is a 2-step domination graph. It is straightforward to see that for other values of $m<8$, the cycle C_{m} is not a 2 -step domination graph. Now let $C_{8 n}: v_{1}, v_{2}, \ldots, v_{8 n}, v_{1}(n \geqslant 1)$ be a cycle. The set $S=\left\{v_{i} \mid i \equiv 1,2,3,4(\bmod 8)\right\}$ is an exact 2 -step domination set.

For the converse, assume that $C_{m}: v_{1}, v_{2}, \ldots, v_{m}, v_{1}$ is a 2 -step domination graph with $m \geqslant 8$ and with exact 2 -step domiantion set S. By Lemma 11, we can assume, without loss of generality, that either (1) $v_{1}, v_{2}, v_{3}, v_{4} \in S$ or (2) $v_{1}, v_{3}, v_{4} \in S$ and $v_{2} \notin S$. If (1) occurs, then $v_{5}, v_{6}, v_{7}, v_{8} \notin S$. If $m>8$, then the vertices of P_{m} must repeat in this manner in groups of 8 , that is, $v_{i} \in S$ if $i \equiv 1,2,3,4(\bmod 8)$ and
$v_{i} \notin S$ otherwise. Thus $m \equiv 0(\bmod 8)$. If (2) occurs, then $v_{5}, v_{7}, v_{8} \notin S$ and $v_{6} \in S$. If $m>8$, then the vertices of P_{m} must repeat in this manner as well. In any case, $m \equiv 0(\bmod 8)$.

References

[1] G. Chartrand and L. Lesniak: Graphs \& Digraphs (second edition). Wadsworth \& Brooks/Cole, Monterey, 1986.
[2] F. Harary: Graph Theory. Addison-Wesley, Reading, 1969.
Authors' addresses: G. Chartrand, K. Schultz, Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, Michigan 49008-5152; F. Harary, Department of Computer Science, New Mexico State University, Las Cruces, New Mexico 88003; M. Hossain, Compass Design Automation, M/S 410, 1865 Lundi Ave., San Jose, California 95131.

[^0]: ${ }^{1}$ Research supported in part by Office of Naval Research Grant N00014-91-J-1060
 ${ }^{2}$ Research supported in part by Office of Naval Research Grant N00014-90-J-1860

