CUT-VERTICES AND DOMINATION IN GRAPHS

Preben Dahl Vestergaard, Aalborg, Bohdan Zelinka, Liberec

(Received October 12, 1993)

Summary. The paper studies the domatic numbers and the total domatic numbers of graphs having cut-vertices.

Keywords: domatic number, total domatic number, cut-vertex, bridge

MSC 1991: 05035, 05040

We shall study the domatic number $d(G)$ and the total domatic number $d_{t}(G)$ of a graph G. A survey of the related theory is given in [3]. We consider finite, undirected graphs without loops or multiple edges.

A subset D of the vertex set $V(G)$ of a graph G is called dominating (total dominating), if for each $x \in V(G)-D$ (for each $x \in V(G)$, respectively) there exists a vertex $y \in D$ adjacent to x. A partition \mathcal{D} of $V(G)$ is called a domatic (total domatic) partition of G, if each class of \mathcal{D} is a dominating (total dominating, respectively) set.

The maximum number of classes of a domatic (total domatic) partition of $V(G)$ was in [1] ([2]) named the domatic (total domatic, respectively) number of G, and it is denoted by $d(G)\left(d_{t}(G)\right.$, respectively). Note that $d(G)$ is well-defined for every finite, undirected graph, while $d_{t}(G)$ is defined only for graphs without isolated vertices.

Consider in G a vertex v of minimum valency $\delta(G)$. Then a dominating set must contain v or a neighbour of v, thus it is obvious that $d(G) \leqslant \delta(G)+1$. A total dominating set must contain a neighbour of v, thus $d_{t}(G) \leqslant \delta(G)$.

We shall consider the case when a graph G is the union of two graphs G_{1}, G_{2} having exactly one common vertex a; this vertex a is a cut-vertex of G. The graphs obtained from G_{1} and G_{2} by deleting a will be denoted respectively by $G_{1}^{\prime}, G_{2}^{\prime}$.

Theorem 1. With the above notation, for every graph G the domatic numbers satisfy

$$
\begin{equation*}
\min \left\{d\left(G_{1}\right), d\left(G_{2}\right)\right\} \leqslant d(G) \leqslant 1+\min \left\{d\left(G_{1}^{\prime}\right), d\left(G_{2}^{\prime}\right)\right\} \tag{1}
\end{equation*}
$$

The gaps in the inequalities can be arbitrarily large:
(2) For any positive integer q there exists a graph G such that

$$
d(G)=\min \left\{d\left(G_{1}\right), d\left(G_{2}\right)\right\}+q
$$

(3) For any positive integer q there exists a graph G such that

$$
d(G)=\min \left\{d\left(G_{1}^{\prime}\right), d\left(G_{2}^{\prime}\right)\right\}-q
$$

Proof. (1): Let $d_{1}=d\left(G_{1}\right), d_{2}=d\left(G_{2}\right)$. Let $\left\{D_{1}^{1}, \ldots, D_{d_{1}}^{1}\right\}$ be a domatic partition of G_{1} with d_{1} classes, let $\left\{D_{1}^{2}, \ldots, D_{d_{2}}^{2}\right\}$ be a domatic partition of G_{2} with d_{2} classes. Without loss of generality assume $d_{1} \leqslant d_{2}$. For $i=1, \ldots, d_{1}-1$ define $D_{i}=D_{i}^{1} \cup D_{i}^{2}$ and let $D_{d_{1}}=D_{d_{1}}^{1} \cup \bigcup_{i=d_{1}}^{d_{2}} D_{i}^{2}$. The sets $D_{1}, \ldots, D_{d_{1}}$ evidently form a domatic partition of G and thus $d(G) \geqslant d_{1}=\min \left\{d\left(G_{1}\right), d\left(G_{2}\right)\right\}$.

For the right side inequality in (1) let $d=d(G)$ and consider a domatic partition D_{1}, \ldots, D_{d} of G; without loss of generality let $a \in D_{d}$. For $i=1, \ldots, d$ let $D_{i}^{1}=$ $D_{i} \cap V\left(G_{1}\right), D_{i}^{2}=D_{i} \cap V\left(G_{2}\right)$. Consider D_{i}^{1} for $1 \leqslant i \leqslant d-1$. Any vertex $x \in V\left(G_{1}^{\prime}\right)-D_{i}^{1}$ must be adjacent to a vertex of D_{i}; as x cannot be adjacent to any vertex of $V\left(G_{2}^{\prime}\right), x$ necessarily is adjacent to a vertex of D_{i}^{1} and thus D_{i}^{1} is a dominating set in G_{1}^{\prime}. Therefore $\left\{D_{1}^{1}, \ldots, D_{d-2}^{1}, D_{d-1}^{1} \cup D_{d}^{1}\right\}$ is a domatic partition of G_{1}^{\prime} and $d\left(G_{1}^{\prime}\right) \geqslant d(G)-1$. Analogously $d\left(G_{2}^{\prime}\right) \geqslant d(G)-1$. This proves (1).

Next, we shall construct graphs demonstrating (2) and (3).
(2): Let the vertex set of G_{1} be $V\left(G_{1}\right)=\left\{a, u_{1}^{1}, \ldots, u_{q+1}^{1}, v_{1}^{1}, \ldots, v_{q+1}^{1}\right\}$. The set $V\left(G_{1}\right)-\{a\}$ induces the complete subgraph G_{1}^{\prime} with $2 q+2$ vertices. The vertex a is adjacent to the vertices $u_{1}^{1}, \ldots, u_{q+1}^{1}$. The graph G_{2} is isomorphic to G_{1} and has the vertex a in common with it. There exists an isomorphism φ of G_{1} onto G_{2} such that $\varphi(a)=a$. For $i=1, \ldots, q+1$ denote $u_{i}^{2}=\varphi\left(u_{i}^{1}\right), v_{i}^{2}=\varphi\left(v_{i}^{1}\right)$. The vertex a has degree $q+1$ in G_{1}, therefore $d\left(G_{1}\right) \leqslant q+2$. Consider the partition of $V\left(G_{1}\right)$ formed by the sets $\left\{u_{i}^{1}\right\}$ for $i=1, \ldots, q+1$ and by the set $\left\{a, v_{1}^{1}, \ldots, v_{q+1}^{1}\right\}$. This is evidently a domatic partition of G_{1} with $q+2$ classes and thus $d\left(G_{1}\right)=q+2$. As $G_{2} \cong G_{1}$, also $d\left(G_{2}\right)=q+2=\min \left\{d\left(G_{1}\right), d\left(G_{2}\right)\right\}$. The vertex v_{1}^{1} has degree $2 q+1$ in G and therefore $d(G) \leqslant 2 q+2$. Consider the partition of $V(G)$ formed by the set $\left\{a, u_{1}^{1}, v_{1}^{2}\right\}$, the sets $\left\{u_{i}^{1}, v_{i}^{2}\right\}$ for $i=2, \ldots, q+1$ and the sets $\left\{u_{i}^{2}, v_{i}^{1}\right\}$ for $i=1, \ldots, q+1$. This
is a domatic partition of G with $2 q+2$ classes and thus $d(G)=2 q+2$. This implies assertion (2).
(3): Let both $G_{1}^{\prime}, G_{2}^{\prime}$ be complete graphs with $q+2$ vertices. Let G_{1} be obtained from G_{1}^{\prime} by adding the vertex a and joining it by an edge to exactly one vertex of G_{1}^{\prime}; analogously let G_{2} be constructed. Then $d\left(G_{1}^{\prime}\right)=d\left(G_{2}^{\prime}\right)=\min \left\{d\left(G_{1}^{\prime}\right), d\left(G_{2}^{\prime}\right)\right\}=$ $q+2$. For G we have $d(G) \leqslant 3$, because the vertex a has degree 2 . We can easily construct a domatic partition of G with three classes and thus $d(G)=3$. This implies assertion (3) and Theorem 1 is proven.

We shall now express analogous assertions for the total domatic number.

Theorem 2. With the above notation, for every graph G without isolated vertices the total domatic numbers satisfy
(1) $\quad \min \left\{d_{t}\left(G_{1}\right), d_{t}\left(G_{2}\right)\right\} \leqslant d_{t}(G) \leqslant 1+\min \left\{d_{t}\left(G_{1}^{\prime}\right), d_{t}\left(G_{2}^{\prime}\right)\right\}$.
(2) For any positive integer q there exists a graph G such that

$$
d_{t}(G)=\min \left\{d_{t}\left(G_{1}\right), d_{t}\left(G_{2}\right)\right\}+q
$$

(3) For any positive integer q there exists a graph G such that

$$
d_{t}(G)=\min \left\{d_{t}\left(G_{1}^{\prime}\right), d_{t}\left(G_{2}^{\prime}\right)\right\}-q
$$

Proof. (1): The proof is analogous to the proof of Theorem 1.
(2): The vertex set of G_{1} is

$$
V\left(G_{1}\right)=\left\{a, u_{1}^{1}, \ldots, u_{q+2}^{1}, v_{1}^{1}, \ldots, v_{q+1}^{1}, w_{1}^{1}, \ldots, w_{q+1}^{1}, x_{1}^{1}, \ldots, x_{q+1}^{1}\right\}
$$

The set $V\left(G_{1}\right)-\{a\}$ induces a complete bipartite graph G_{1}^{\prime} on the bipartition classes $\left\{u_{1}^{1}, \ldots, u_{q+2}^{1}, w_{1}^{1}, \ldots, w_{q+1}^{1}\right\},\left\{v_{1}^{1}, \ldots, v_{q+1}^{1}, x_{1}^{1}, \ldots, x_{q+1}^{1}\right\}$. The vertex a is adjacent to the vertices $u_{1}^{1}, \ldots, u_{q+2}^{1}$. The graph G_{2} is isomorphic to G_{1} and has the vertex a in common with it. There exists an isomorphism φ of G_{1} onto G_{2} such that $\varphi(a)=a$. For $i=1, \ldots, q+1$ denote $u_{i}^{2}=\varphi\left(u_{i}^{1}\right), v_{i}^{2}=\varphi\left(v_{i}^{1}\right), w_{i}^{2}=\varphi\left(w_{i}^{1}\right), x_{i}^{2}=\varphi\left(x_{i}^{1}\right)$ and $u_{q+2}^{2}=\varphi\left(u_{q+2}^{1}\right)$. The vertex a has degree $q+2$ in G_{1}, therefore $d_{t}\left(G_{1}\right) \leqslant q+2$. Consider the partition of $V\left(G_{1}\right)$ formed by the sets $\left\{u_{i}^{1}, v_{i}^{1}\right\}$ for $i=1, \ldots, q+1$ and by the set $\left\{a, u_{q+2}^{1}, w_{1}^{1}, \ldots, w_{q+1}^{1}, x_{1}^{1}, \ldots, x_{q+1}^{1}\right\}$. It is evident that this is a total domatic partition of G_{1} with $q+2$ classes and thus $d_{t}\left(G_{1}\right)=q+2$. As $G_{2} \cong G_{1}$, also $d_{t}\left(G_{2}\right)=q+2=\min \left\{d_{t}\left(G_{1}\right), d_{t}\left(G_{2}\right)\right\}$. The vertex w_{1}^{1} has degree $2 q+2$ in G, therefore $\left.d_{t}(G)\right) \leqslant 2 q+2$.

Consider the partition of $V(G)$ formed by the set $\left\{a, u_{1}^{1}, v_{1}^{1}, w_{1}^{2}, x_{1}^{2}, u_{q+2}^{1}, u_{q+2}^{2}\right\}$, the sets $\left\{u_{i}^{1}, v_{i}^{1}, w_{1}^{2}, x_{1}^{2}\right\}$ for $i=2, \ldots, q+1$ and the sets $\left\{u_{i}^{2}, v_{i}^{2}, w_{i}^{1}, x_{i}^{1}\right\}$ for $i=1, \ldots, q+1$.

This is a total domatic partition of G with $2 q+2$ classes and thus $d_{t}(G)=2 q+2$. This implies assertion (2).
(3): The proof is analogous to the proof of Theorem $1(3)$; the graphs $G_{1}^{\prime}, G_{2}^{\prime}$ are complete bipartite graphs in which each bipartition class has $q+2$ vertices. This proves Theorem 2.

Now we shall consider the case when a graph H is obtained from two disjoint graphs H_{1}, H_{2} by joining a vertex a_{1} of H_{1} with a vertex a_{2} of H_{2} by a bridge b. By H_{1}^{\prime} we denote the graph obtained from H_{1} by deleting a_{1}, by H_{2}^{\prime} the graph obtained from H_{2} by deleting a_{2}.

Theorem 3. For the domatic numbers of H, H_{1}, H_{2} the following inequalities hold:

$$
\min \left\{d\left(H_{1}\right), d\left(H_{2}\right)\right\} \leqslant d(H) \leqslant 1+\min \left\{d\left(H_{1}\right), d\left(H_{2}\right)\right\} .
$$

Proof. The proof of the first inequality is analogous to the proof of Theorem 1. We shall prove the second inequality. Let $d(H)=d$ and let $\left\{D_{1}, \ldots, D_{d}\right\}$ be a domatic partition of H with d classes. For $i=1, \ldots, d$ let $D_{i}^{1}=D_{i} \cap V\left(H_{1}\right), D_{i}^{2}=$ $D_{i} \cap V\left(H_{2}\right)$. Without loss of generality let $a_{1} \in D_{1}$. Consider the case when $a_{2} \in D_{1}$, too. For $1 \leqslant i \leqslant d$ each vertex x of H_{1} not belonging to D_{i}^{1} is adjacent to some vertex y of D_{i}. If $x \neq a_{1}$, then x is adjacent to no vertex of H_{2} and $y \in D_{i}^{1}$. If $x=a_{1}$ then $i \neq 1$ and x is adjacent to exactly one vertex a_{2} of H_{2} and $a_{2} \in D_{1}^{2}$, i.e. $a_{2} \notin D_{i}^{2}$; the vertex x must be again adjacent to $y \in D_{i}^{1}$. The partition $D_{1}^{1}, \ldots, D_{d}^{1}$ is a domatic partition of H_{1} and $d\left(H_{1}\right) \geqslant d(H)$. Now let $a_{2} \notin D_{1}$; without loss of generality let $a_{2} \in D_{d}$. Analogously to the preceding case we prove that $D_{1}^{1}, \ldots, D_{d-1}^{1}$ are dominating sets in H_{1}; the set D_{d}^{1} need not be, because a_{1} may be adjacent to only one vertex of D_{d}, namely a_{2}, and to no vertex of D_{d}^{1}. The partition $\left\{D_{1}^{1}, \ldots, D_{d-2}^{1}, D_{d-1}^{1} \cup D_{d}^{1}\right\}$ is a domatic partition of H_{1} and $d\left(H_{1}\right) \geqslant d(H)-1$. Analogously $d\left(H_{2}\right) \geqslant d(H)-1$ and thus the assertion is proved.

Theorem 4. For the graphs H, H_{1}, H_{2} in the above notation the equality

$$
d(H)=1+\min \left\{d\left(H_{1}\right), d\left(H_{2}\right)\right\}
$$

holds if and only if the following condition is fulfilled: For each $i \in\{1,2\}$ such that $d\left(H_{i}\right)=\min \left\{d\left(H_{1}\right), d\left(H_{2}\right)\right\}$ there exists a partition $\left\{D_{1}^{i}, \ldots, D_{d+1}^{i}\right\}$ (where $\left.d=d\left(H_{i}\right)\right)$ of the vertex set of H_{i} such that $D_{1}^{i}, \ldots, D_{d}^{i}$ are dominating sets in H_{i} and D_{d+1}^{i} is a dominating set in H_{i}^{\prime} but not in H_{i}.

Proof. Suppose that $d(H)=1+\min \left\{d\left(H_{1}\right), d\left(H_{2}\right)\right\}$. Let i and d have the described meaning. Consider a domatic partition $\left\{D_{1}, \ldots, D_{d+1}\right\}$ of H. For each
$j=1, \ldots, d+1$ let $D_{j}^{i}=D_{j} \cap V\left(H_{i}\right)$. Without loss of generality let the end vertex of b not belonging to H_{i} be in D_{d+1}. Let $1 \leqslant j \leqslant d$. For each vertex $x \in V\left(H_{i}\right) \backslash D_{j}^{i}$ there exists a vertex $y \in D_{j}$ adjacent to it. A vertex of H_{i} can be adjacent to no vertex outside of H_{i} except that end vertex of b which belongs to D_{d+1} and thus not to D_{j}; therefore $y \in D_{j}^{i}$ and all the sets $D_{1}^{i}, \ldots, D_{d}^{i}$ are dominating in H_{i}. For each vertex $x \in V\left(H_{i}\right) \backslash D_{d+1}^{i}$ there also exists a vertex $y \in D_{d+1}$ adjacent to it. No vertex of H_{i}^{\prime} can be adjacent to a vertex outside of H_{i} and thus $y \in D_{d+1}^{i}$; the set D_{d+1}^{i} is dominating in H_{i}^{\prime}. It cannot be dominating in H_{1}, because then the domatic number of H_{i} would be $d+1$.

Now suppose that the condition is fulfilled. Without loss of generality let $d\left(H_{1}\right)=\min \left\{d\left(H_{1}\right), d\left(H_{2}\right)\right\}$. Then in H_{1} there exists a partition $\left\{D_{1}^{1}, \ldots, D_{d+1}^{1}\right\}$ with the described property. Choose the subscripts in such a way that $a_{1} \in D_{1}^{1}$. If $d\left(H_{2}\right)=d\left(H_{1}\right)$, then such a partition $\left\{D_{1}^{2}, \ldots, D_{d+1}^{2}\right\}$ by assumption exists also in H_{2}. If $d\left(H_{2}\right)>d\left(H_{1}\right)$, then there exists a domatic partition $\left\{D_{1}^{2}, \ldots, D_{d+1}^{2}\right\}$ of H_{2}. In both cases choose the subscripts in such a way that $a_{2} \in D_{1}^{2}$. Now define $D_{1}=D_{1}^{1} \cup D_{d+1}^{2}, D_{d+1}=D_{d+1}^{1} \cup D_{1}^{2}, D_{j}=D_{j}^{1} \cup D_{j}^{2}$ for $j=2, \ldots, d$. Then the partition $\left\{D_{1}, \ldots, D_{d+1}\right\}$ is a domatic partition of H and $d(H)=d+1=$ $1+\min \left\{d\left(H_{1}\right), d\left(H_{2}\right)\right\}$.

Theorem 5. Let for the graphs H, H_{1}, H_{2} in the above notation the equality $d(H)=1+d\left(H_{1}\right)$ hold. Then there exists a vertex of H_{1} non-adjacent to a_{1} with the property that by joining it by an edge to a_{1} a graph \hat{H}_{1} with domatic number $d\left(\hat{H}_{1}\right)=d\left(H_{1}\right)+1$ is obtained from H_{1}.

Proof. Consider the partition $\left\{D_{1}^{1}, \ldots, D_{d+1}^{1}\right\}$ introduced above. Let $u \in D_{d+1}^{1}$. As D_{d+1}^{1} is a dominating set in H_{1}^{\prime} but not in H_{1}, the vertex a_{1} is not adjacent to u. If we join a_{1} and u by an edge, then a_{1} is adjacent to a vertex of D_{d+1}^{1} and D_{d+1}^{1} is dominating in the resulting graph H_{1}. Then $\left\{D_{1}^{1}, \ldots, D_{d+1}^{1}\right\}$ is a domatic partition in \hat{H}_{1} and $d\left(\hat{H}_{1}\right)=d\left(H_{1}\right)+1$. (As we have added only one edge, it cannot be greater.)

Note that the inverse assertion is not true. An example is a circuit C_{4} of length 4. Its domatic number is 2 , after adding one chord it is 3 , but no graph having a circuit C_{4} as a terminal block has domatic number greater than 2.

Theorem 6. For the total domatic numbers of H, H_{1}, H_{2} the following inequalities hold:

$$
\min \left\{d_{t}\left(H_{1}\right), d_{t}\left(H_{2}\right)\right\} \leqslant d_{t}(H) \leqslant 1+\min \left\{d_{t}\left(H_{1}\right), d_{t}\left(H_{2}\right)\right\}
$$

The proof is analogous to the proof of Theorem 3.

Before stating the next theorem, we shall express a slight modification of the definition of a total dominating set.

Let G be a graph, and let G_{0} be a subgraph of G. We say that a subset D of $V(G)$ is total dominating for G_{0}, if for each vertex $x \in V\left(G_{0}\right)$ there exists a vertex $y \in D$ adjacent to x.

Note that in this definition we do not suppose that $D \subseteq V\left(G_{0}\right)$ but only $D \subseteq V(G)$.

Theorem 7. If for the graphs H, H_{1}, H_{2} in the above notation the equality

$$
d_{t}(H)=1+\min \left\{d_{t}\left(H_{1}\right), d_{t}\left(H_{2}\right)\right\}
$$

holds, then for each $i \in\{1,2\}$ such that $d_{t}\left(H_{i}\right)=\min \left\{d_{t}\left(H_{1}\right), d_{t}\left(H_{2}\right)\right\}$ there exists a partition $\left\{D_{1}^{i}, \ldots, D_{d+1}^{i}\right\}$ (where $d=d_{t}\left(H_{i}\right)$) of the vertex set of H_{i} such that $D_{1}^{i}, \ldots, D_{d}^{i}$ are total dominating sets in H_{i} and D_{d+1}^{i} is a total dominating set for H_{i}^{\prime} but not for H_{i}.

The proof is analogous to the first part of the proof of Theorem 4.
Note that Theorem 7 differs from Theorem 4 by the fact that it is only an implication, not an equivalence. Before investigating the inverse assertion, we introduce some notation.

If a graph H_{i} with a vertex a_{i} has the property that $d_{t}\left(H_{i}\right)=d$ and there exists a partition as described in Theorem 7, we say that the pair $\left(H_{i}, a_{i}\right)$ is in the class $\kappa(d)$. If $\left(H_{i}, a_{i}\right) \in \kappa(d)$ and the described partition has the property that $a_{i} \in D_{d+1}^{i}$ (or $\left.a_{i} \notin D_{d+1}^{i}\right)$, we write $\left(H_{i}, a_{i}\right) \in \kappa_{1}(d)\left(\right.$ or $\left(H_{i}, a_{i}\right) \in \kappa_{0}(d)$, respectively). Obviously $\kappa_{0}(d) \cup \kappa_{1}(d)=\kappa(d)$, note that $\kappa_{0}(d) \cap \kappa_{1}(d) \neq \emptyset$ may occur.

Theorem 8. Let H, H_{1}, H_{2} be graphs in the above notation. The equality

$$
d_{t}(H)=1+\min \left\{d_{t}\left(H_{1}\right), d_{t}\left(H_{2}\right)\right\}
$$

holds if and only if at least one of the following three cases occurs:
(i) exactly one of the pairs $\left(H_{1}, a_{1}\right),\left(H_{2}, a_{2}\right)$ is in $\kappa(d)$ and the graph from the other pair has total domatic number greater than d;
(ii) both the pairs $\left(H_{1}, a_{1}\right),\left(H_{2}, a_{2}\right)$ are in $\kappa_{0}(d)$;
(iii) both the pairs $\left(H_{1}, a_{1}\right),\left(H_{2}, a_{2}\right)$ are in $\kappa_{1}(d)$.

Proof. Suppose that the above mentioned equality holds, say $d_{t}\left(H_{1}\right) \leqslant d_{t}\left(H_{2}\right)$ and $d_{t}(H)=1+d_{t}\left(H_{1}\right)$. Then by Theorem $7\left(H_{1}, a_{1}\right) \in \kappa(d)$. With the same notation as in Theorem 7 we let $\mathcal{D}=\left\{D_{1}, \ldots, D_{d+1}\right\}$ be a total domatic partition of H and let $D_{j}^{1}=D_{j} \cap V\left(H_{1}\right), D_{j}^{2}=D_{j} \cap V\left(H_{2}\right)$ for $j=1, \ldots, d+1$. The notation is chosen such that D_{d+1}^{1} is a total dominating set for H_{1}^{\prime} but not for H_{1}. Then a_{1} is
adjacent to no vertex of D_{d+1}^{1} and necessarily $a_{2} \in D_{d+1}$. Hence if $a_{1} \in D_{d+1}^{1}$, then a_{1}, a_{2} belong to the same class of \mathcal{D}; otherwise they belong to different classes.

If also $\left(H_{2}, a_{2}\right) \in \kappa(d)$, then one of the classes $D_{1}^{2}, \ldots, D_{d+1}^{2}$ is total dominating for H_{2}^{\prime} but not for H_{2}; let this class be D_{k}^{2} for some $k, 1 \leqslant k \leqslant d+1$. Then a_{1} must be in D_{k}. If $a_{1} \in D_{d+1}^{1}$, then $k=d+1$ and both $\left(H_{1}, a_{1}\right),\left(H_{2}, a_{2}\right)$ are in $\kappa_{1}(d)$. If $a_{1} \notin D_{d+1}^{1}$, then $k \neq d+1$ and both $\left(H_{1}, a_{1}\right),\left(H_{2}, a_{2}\right)$ are in $\kappa_{0}(d)$. If $\left(H_{2}, a_{2}\right) \notin \kappa(d)$ and hence by Theorem $7 d_{t}\left(H_{2}\right)>d$ then (i) is satisfied. We have proved that one of the cases (i), (ii), (iii) occurs.

Conversely, assume that $\left(H_{1}, a_{1}\right) \in \kappa_{0}(d)$. Construct the described partition $\left\{D_{1}^{1}, \ldots, D_{d+1}^{1}\right\}$ such that $a_{1} \notin D_{d+1}^{1}$; choose the notation so that $a_{1} \in D_{1}^{1}$. If $d_{t}\left(H_{2}\right)>d$, choose a total domatic partition $\left\{D_{1}^{2}, \ldots, D_{d+1}^{2}\right\}$ of H_{2}; choose the notation so that $a_{2} \in D_{d+1}^{2}$. If we define $D_{j}=D_{j}^{1} \cup D_{j}^{2}$ for $j=1, \ldots, d+1$, then $\left\{D_{1}, \ldots, D_{d+1}\right\}$ is a total domatic partition of H and $d_{t}(H)=d+1$. If $\left(H_{2}, a_{2}\right) \in \kappa_{0}(d)$, then construct the described partition $\left\{D_{1}^{2}, \ldots, D_{d+1}^{2}\right\}$ for H_{2} such that $a_{2} \in D_{1}^{2}$. If we put $D_{1}=D_{1}^{1} \cup D_{d+1}^{2}, D_{d+1}=D_{d+1}^{1} \cup D_{1}^{2}, D_{j}=D_{j}^{1} \cup D_{j}^{2}$ for $j=2, \ldots, d$, then $\left\{D_{1}, \ldots, D_{d+1}\right\}$ is a total domatic partition of H and $d_{t}(H)=d+1$.

Suppose $\left(H_{1}, a_{1}\right) \in \kappa_{1}(d)$. Construct the described partition $\left\{D_{1}^{1}, \ldots D_{d+1}^{1}\right\}$ such that $a_{1} \in D_{d+1}^{1}$; if $d_{t}\left(H_{2}\right)>d$, choose a total domatic partition $\left\{D_{1}^{2}, \ldots, D_{d+1}^{2}\right\}$ of H_{2}; again choose the notation so that $a_{2} \in D_{d+1}^{2}$. If we define $D_{j}=D_{j}^{1} \cup D_{j}^{2}$ for $j=1, \ldots, d+1$, then $\left\{D_{1}, \ldots, D_{d+1}\right\}$ is a total domatic partition of H and $d_{t}(H)=$ $d+1$. If $\left(H_{2}, a_{2}\right) \in \kappa_{1}(d)$, then construct the described partition $\left\{D_{1}^{2}, \ldots, D_{d+1}^{2}\right\}$ for H_{2} such that $a_{2} \in D_{d+1}^{2}$. Now we define again $D_{j}=D_{j}^{1} \cup D_{j}^{2}$, and $\left\{D_{1}, \ldots, D_{d+1}\right\}$ is a total domatic partition of H and $d_{t}(H)=d+1$. This proves Theorem 8.

A vertex x of the graph G is called saturated, if it is adjacent to all other vertices of G.

Theorem 9. Let for the graphs H, H_{1}, H_{2} in the above notation the equality $d_{t}(H)=1+d_{t}\left(H_{1}\right)$ hold. If a_{1} is not saturated in H_{1}, then there exists a vertex of H_{1} non-adjacent to a_{1} with the property that by joining it by an edge to a_{1} a graph \hat{H}_{1} with total domatic number $d_{t}\left(\hat{H}_{1}\right)=d_{t}\left(H_{1}\right)+1$ is obtained from H_{1}.

The proof is analogous to the proof of Theorem 5. If a_{1} is saturated in H_{1}, then the unique subset of $V\left(H_{1}\right)$ which is total dominating for H_{1}^{\prime} but not for H_{1} can be only the set $\left\{a_{1}\right\}$ and thus $D_{d+1}^{1}=\left\{a_{1}\right\}$ and $D_{d+1}^{1} \cap V\left(H_{1}^{\prime}\right)=\emptyset$.

At the end of the paper we shall prove a theorem on circuits. Let C_{n} be the circuit of length n. Its vertices will be denoted by u_{1}, \ldots, u_{n} so that the edges of C_{n} are $\left(u_{i}, u_{i+1}\right)$ for $i=1, \ldots, n-1$ and $\left(u_{n}, u_{1}\right)$. It is known (cf. [2]) that $d_{t}\left(C_{n}\right)=2$ if and only if $n \equiv 0(\bmod 4)$; otherwise $d_{t}\left(C_{n}\right)=1$.

In the following theorem the circuit C_{n} will be considered as a graph H_{1} or H_{2} in the notation introduced above; in this sense we shall write the pair $\left(C_{n}, a\right)$ and the classes $\kappa(1), \kappa_{0}(1)$ and $\kappa_{1}(1)$.

Theorem 10. Let C_{n} be a circuit of length $n \not \equiv 0(\bmod 4)$, let a be an arbitrary vertex of C_{n}. Then
(1) $\left(C_{n}, a\right) \in \kappa_{1}(1) \backslash \kappa_{0}(1)$ for $n \equiv 3(\bmod 4)$;
(2) $\left(C_{n}, a\right) \in \kappa_{0}(1) \backslash \kappa_{1}(1)$ for $n \equiv 1(\bmod 4)$;
(3) $\left(C_{n}, a\right) \notin \kappa(1)$ for $n \equiv 2(\bmod 4)$.

Proof. Without loss of generality put $a=u_{n}$. Suppose that $\left(C_{n}, a\right) \in \kappa(1)$. Then there exists a partition $\left\{D_{1}, D_{2}\right\}$ of $V\left(C_{n}\right)$ such that D_{1} is a total dominating set in C_{n} and D_{2} is total dominating for the path obtained from C_{n} by deletion of u_{n}, but not for C_{n}. None of the vertices adjacent to u_{n} belongs to D_{2}, therefore $u_{1} \in D_{1}, u_{n-1} \in D_{1}$. Suppose that $\left(C_{n}, a\right) \in \kappa_{0}(1)$, i.e. $u_{n} \in D_{1}$. Each vertex of C_{n} distinct from u_{n} must be adjacent to a vertex of D_{1} and to a vertex of D_{2}. As $u_{n} \in D_{1}, u_{1} \in D_{1}$, we have $u_{i} \in D_{2}$ for $i \equiv 2(\bmod 4)$ or $i \equiv 3(\bmod 4)$ and $u_{i} \in D_{1}$ for $i \equiv 0(\bmod 4)$ or $i \equiv 1(\bmod 4)$; in all cases $i \neq n$. But as was mentioned above, $u_{n-1} \in D_{1}$. This is possible only if $n-1 \equiv 0(\bmod 4)$ or $n-1 \equiv 1(\bmod 4)$, i.e., if $n \equiv 1(\bmod 4)$ or $n \equiv 2(\bmod 4)$. If $n \equiv 2(\bmod 4)$, then also $u_{n-2} \in D_{1}$ and u_{n-1} is adjacent to two vertices u_{n-2} and u_{n} of D_{1}; this is a contradiction. Therefore $\left(C_{n}, a\right) \in \kappa_{0}(1)$ implies $n \equiv 1(\bmod 4)$, and conversely for $n \equiv 1(\bmod 4)$ the described partition exists so that $\left(C_{n}, a\right) \in \kappa_{0}(1)$.

Next, assume that $\left(C_{n}, a\right) \in \kappa_{1}(1)$, i.e. $u_{n} \in D_{2}$. Then $u_{i} \in D_{1}$ for $i \equiv 1(\bmod 4)$ or $i \equiv 2(\bmod 4)$ and $u_{i} \in D_{2}$ for $i \equiv 0(\bmod 4)$ or $i \equiv 3(\bmod 4)$ again for all $i \neq n$. We have $u_{n-1} \in D_{1}$ and thus $n-1 \equiv 1(\bmod 4)$ or $n-1 \equiv 2(\bmod 4)$, i.e. $n \equiv 2(\bmod 4)$ or $n \equiv 3(\bmod 4)$. If $n \equiv 2(\bmod 4)$, then $u_{n-2} \in D_{2}$ and u_{n-1} is adjacent to two vertices u_{n-2} and u_{n} of D_{2}; this is a contradiction. Therefore $\left(c_{n}, a\right) \in \kappa_{1}(1)$ implies that $n \equiv 3(\bmod 4)$, and conversely for $n \equiv 3(\bmod 4)$ the described partition exists and $\left(C_{n}, a\right) \in \kappa_{1}(1)$. We have proved that $\left(C_{n}, a\right) \in \kappa_{0}(1)$ if and only if $n \equiv 1(\bmod 4)$ and $\left(C_{n}, a\right) \in \kappa_{1}(1)$ if and only if $n \equiv 3(\bmod 4)$. This proves Theorem 10.

We are now able to illustrate Theorem 8 by Figures $1-5$ below.
In Fig. 1 we see a graph H with $H_{1} \cong H_{2} \cong C_{5}$, in Fig. 2 with $H_{1} \cong H_{2} \cong C_{7}$. The set D_{1} (or D_{2}) is the set of all vertices labelled by 1 (or 2 , respectively). From Theorems 8 and 10 we see that $d_{t}(H)=2$ in both cases. In Fig. 3 there is a graph H and $H_{1} \cong C_{5}, H_{2} \cong C_{7}$; its total domatic number is 1 . Figures 4 and 5 demonstrate (ii) and (iii) in Theorem 8 for a graph H with $\left(H_{1}, a_{1}\right) \in \kappa_{0}(1) \cap \kappa_{1}(1)$. Here H_{1} is a C_{4}, one vertex of which is joined to a new vertex, a_{1}.

Fig. 1

Fig. 3
Fig. 2

Fig. 4

Fig. 5

References
[1] E. J. Cockayne, S. T. Hedetniemi: Towards a theory of domination on graphs. Networks 7 (1977), 247-261.
[2] E. J. Cockayne, R. M. Dawes, S. T. Hedetniemi: Total domination in graphs. Networks 10 (1980), 211-219.
[3] S. T. Hedetniemi, R. C. Laskar eds.: Topics on domination. A special volume of Discrete Mathematics 86 (1990), no. 5, 1-13.

Authors' addresses: Preben Dahl Vestergaard, Department of Mathematics and Computer Science, Aalborg University, Frederik Bajers Vej 7, DK 9220 Aalborg 0, Denmark; Bohdan Zelinka, Department of Discrete Mathematics and Statistics, Technical University of Liberec, Hálkova 6, 46117 Liberec, Czech Republic.

