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Summary� Let S denote the class of functions f �z� � z�a�z
��a�z

�� � � � univalent and
holomorphic in the unit disc � � {z � |z| � �}� In the paper we obtain a sharp estimate of
the functional |a� − �a��|� �|a�|

� in the class S for an arbitrary � ∈ R�
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�� Introduction

Let S stand for the well�known class of functions

����� f(z) = z + a�z
� + a�z

� + . . .

holomorphic and univalent in the unit disc ∆ = {z : |z| < 1}� It is well known that�

for each function f ∈ S ������

����� |a�| � 2

with equality occurring only for the Koebe function

���	� f�(z) =
z

(1− εz)�
, z ∈ ∆, |ε| = 1.

In many papers� the functional |a� − αa��| was studied for di
erent classes of

univalent functions of the form ������ As is known� the maximum of this functional

in the class S for α ∈ (0, 1) is not attained for function ���	� ������ Hence and from

some applications an idea arises to consider the functional

����� F(f) = |a� − αa
�
�|+ α|a�|

n, α ∈ R, n ∈ {1, 2, 3, . . .},

��	



in the class S� From ����� and the well�known result of Jenkins ��� we immediately

get that the maximum of functional ����� for α � 1� n = 1, 2 . . .� is attained for

function ���	��

In paper �	�� the Valiron�Landau lemma was applied to determinate the maximum

of functional ������ The �nal estimate of this functional for some values of α� n is

not sharp�

And so� in the case n = 2� the method applied did not give a sharp estimate for

α ∈ (�� , 1)� In the present paper� using the variational method� we have succeeded

in getting a complete result namely� we have obtained the maximum of functional

����� in the case n = 2 for all α ∈ R� So� we shall consider the functional

����� H(f) = |a� − αa
�
�|+ α|a�|

�, f ∈ S, α ∈ R.

In the cases α � �
� and α � 1� the estimate of the maximum of functional �����

given in paper �	� is sharp and is attained for function ���	�� Thus it will be su�cient

to limit our further considerations to the case α ∈ (�� , 1)� It will be seen that this

restriction is not essential for the fundamental procedure�

The case n �= 2 needs additional considerations and will be a subject matter of

separate investigations�

�� Discussion of the form of the equation for extremal functions

Let us consider the functional

����� G(f) = Re(a� − αa
�
�) + α|a�|

�

de�ned in the class S� where α ∈ (�� , 1)� The family S is compact� whereas functional

����� is continuous� thus� for each α ∈ R� there exists a function f� ∈ S for which

G(f�) = max
f�S
G(f)� In the sequel� the function f = f� will be called extremal�

Functional ����� satis�es the assumptions of the Schae
er�Spencer theorem �����

pp� 	��	��� hence each extremal function satis�es the following equation�

�����

�
zf �(z)

f(z)

��
1 + uf(z)

f�(z)
=
z� + uz� + 2B�z

� + uz + 1

z�
, z ∈ ∆,

where

B� = a� − αa
�
� + α|a�|

�,���	�

u = 2[Rea� + i(1− 2α) Im a�].�����

���



Besides� it is known ����� that B� > 0� and that the right�hand side of ����� is

nonnegative on the circle |z| = 1 and possesses on it at least one double root�

Since ����� is a di
erential�functional equation� the determination of the upper

bound of functional ����� for any �xed α ∈ (�� , 1) is reduced to the �nding of suitable

functions which satisfy this equation� It is worth recalling that the ful�lment of

equation ����� by a function is only a necessary condition for this function to be

extremal for the functional being examined�

For z ∈ ∆� z �= 0� let us put

����� N(z) =
z� + uz� + 2B�z

� + uz + 1

z�
.

It follows from the general properties of equation ����� that function ����� is fac�

torized in the following way ������

N(z) =
(z − ei�)�(z� − te�i�z + e��i�)

z�

where ψ,ϕ ∈ (−p, p〉� t � 2�

Note that if the function f(z) is extremal with respect to the functional considered�

then also the functions −f(−z) and f(z) are extremal� Hence it appears that� in our

further considerations� it is enough to assume that ψ ∈ 〈0, p� 〉�

Taking into account all the factorizations of function ����� and the above remarks�

it is easy to prove that equation ����� can only be of the form

�a�

�
zf �(z)

f(z)

��
1 + uf(z)

f�(z)
=
(z − z�)�(z − z�)(z − z�)

z�
, u �= 0,

or

�b�

�
zf �(z)

f(z)

��
1 + uf(z)

f�(z)
=
(z − z�)�(z − z�)�

z�
, u �= 0,

or

�c�

�
zf �(z)

f(z)

��
1 + uf(z)

f�(z)
=
(z − z�)�

z�
, u �= 0,

or

�d�

�
zf �(z)

f(z)

��
1

f�(z)
=
(z − z�)�(z − z�)�

z�
, u = 0,

where z� = e
i�� z� = �e

i�� z� =
�
z�
� � ∈ (0, 1)� ψ ∈ 〈0, p� 〉� ϕ ∈ (−p, p〉� |z�| = |z�| = 1�

z� �= z��

���



The next sections of the paper will be devoted to the investigation of solutions

of equations �a�� �b�� �c�� �d�� respectively� A part of detailed computations will be

omitted because they are similar to the reasonings in many other papers�

�� Equation of the form �a�

Let us �rst consider the case when equation ����� is of the form �a�� Comparing

the right�sides of ����� and �a�� we get

z� = �z�, z� =
1

�
z�,�	���

u = −2e�i� −
�
�+
1

�

�
ei�,�	���

B� = �+
1

�
+ cos 2ψ,�	�	�

z� = e
i�� ψ ∈ 〈0, p� 〉� � ∈ (0, 1)�

From formulae ���	� and �	�	� it can be seen that the value of the expression

a� − αa�� + α|a�|
� for an extremal function satisfying an equation of form �a� is

determined by two real parameters ψ and �� Hence it appears that� in order to

determine the upper bound of functional ������ one has to �nd some relationships

between ψ� � and α�

In virtue of �	���� equation �a� is equivalent to

�	���

�
zf �(z)

f(z)

��
1 + uf(z)

f�(z)
=
(1− z�z)�(1− �z�z)�

�� �
�
z�z

���z�z
z�

, z ∈ ∆.

Integrating �	��� and� next� expanding both sides of the equation obtained in a

Laurent series with centre z = 0 and comparing the coe�cients at the corresponding

powers of z� we get

�	��� log
2 + (�+ �

�
)z��

( �
�
− �)z��

+
�+ �

�
+ 2z��

2 + (�+ �
�
)z��
log
1− �

1 + �
=
2(a�z� + 2)

2 + (�+ �
�
)z��
.

From ����� and �	��� we have

�	��� a� = −
1

2

�
�+
1

�
+ 2

�
cosψ + i

1

2(2α− 1)

�
�+
1

�
− 2

�
sinψ.

���



By isolating the real and the imaginary part in �	���� in view of �	��� we obtain

the following system of equations�

�	����
�+
1

�
+ 2

�
cosψ log

q
(�+ �

�
)� + 4(�+ �

�
) cos 2ψ + 4

�+ �
�
+ 2

+
�
�+
1

�
− 2

�
sinψ arctan

2 sin 2ψ

�+ �
�
+ 2cos 2ψ

+
�
�+
1

�
− 2

�
cosψ = 0,

�	���

�
�+
1

�
− 2

�
sinψ log

q
(�+ �

�
)� + 4(�+ �

�
) cos 2ψ + 4

�+ �
�
− 2

−
�
�+
1

�
+ 2

�
cosψ arctan

2 sin 2ψ

�+ �
�
+ 2cos 2ψ

+ 4 sinψ

=
1

2α− 1

�
�+
1

�
− 2

�
sinψ,

where ψ ∈ 〈0, p� 〉� � ∈ (0, 1)�

Let us �rst observe that if ψ = 0� then case �a� does not hold this follows from

estimate ����� and equality �	��� for ψ = 0 and � ∈ (0, 1)�

Next� putting ψ = p

� in system �	�����	���� we obtain �+ �
�
= 8α− 2� Then from

�	�	� we get

Lemma 1. If, for ψ = p

� , α ∈ (
�
� , 1), the extremal function satisfies the equation

of the form �a� with ψ = p

� , then

�	��� B� = 8α− 3.

Equality (3.9) holds only for Koebe function (1.3) with ε = i. For ψ = 0, the

extremal function does not satisfy the equation of form �a�.

Consequently� we shall consider the system of equations �	�����	��� for ψ ∈ (0, p� )�

� ∈ (0, 1)� Of course� the following questions arise� for what α�s does the system of

equations �	�����	��� possess a solution� and is this solution the only one�

Let us consider the �rst equation of this system� For ψ ∈ (0, p� )� equation �	���

will take the form

�3.7�� Φ�(ψ, �) = 0

���



where

�	����
Φ�(ψ, �) =

�
�+
1

�
+ 2

�
log

q
(�+ �

�
)� + 4(�+ �

�
) cos 2ψ + 4

�+ �
�
+ 2

+
�
�+
1

�
− 2

�
tanψ · arctan

2 sin 2ψ

�+ �
�
+ 2cos 2ψ

+ �+
1

�
− 2.

From the investigation of the function Φ� as a function of �� � ∈ (0, 1)� we conclude

that equation �3.7�� has the only solution � for any �xed ψ ∈ (0, p� )� Hence equation

�3.7�� de�nes a function � = �(ψ)� ψ ∈ (0, p� )� Moreover� from �3.7�� and �	���� we

have

�	���� lim
����

�(ψ) = 1

and

�	���� lim
�� p

�
�

�(ψ) =

√
e− 1
√
e + 1

.

Since Φ��� �= 0� therefore from (3.7
�) we have

��(ψ) = −
Φ���(ψ, �)

Φ���(ψ, �)
, � = �(ψ), ψ ∈

�
0,

p

2

�
.

Hence and from �	����� after some transformations� we obtain

�	��	� ��(ψ) =
1

4

(�+ �
�
− 2)�

(1− �
��
) cos� ψ

·
arctan � sin ��

�� �
�
�� cos ��

− � sin ��
�� �

�
��

log

q
��� �

�
������� �

�
� cos ����

�� �
�
��

where � = �(ψ)� ψ ∈ (0, p� )� In view of �	��	�� it can be demonstrated that

�	���� ��(ψ) < 0 for
�
0,

p

2

�
.

It follows from the above that equation �3.7�� de�nes one function � = �(ψ)�

ψ ∈ (0, p� )� and� moreover� this function is decreasing from the value 1 to the valuep
e��p
e��

�

Let next

�	���� D =
n
(ψ, �) :

�
0,

p

2

�
∧ � = �(ψ)

o

���



where �(ψ) is de�ned by equation �	����� Let us consider the second equation of

system �	�����	���� From �	��� we have

�3.8��
1

2α− 1
= Φ�(ψ, �)

where

Φ�(ψ, �) = log

q
(�+ �

�
)� + 4(�+ �

�
) cos 2ψ + 4

�+ �
�
− 2

�	����

−
�+ �

�
+ 2

�+ �
�
− 2
cotanψ · arctan

2 sin 2ψ

�+ �
�
+ 2 cos 2ψ

+
4

�+ �
�
− 2
.

From the investigation of equation (3.7�) and the form of equation (3.8�) it follows

that if (ψ, �) ∈ D where D is de�ned by �	����� then there exists exactly one α as

the function of variable ψ ∈ (0, p� ) so� from (3.8
�) we have

�	����
1

2α(ψ)− 1
= Φ�(ψ, �(ψ)),

�
0,

p

2

�
.

Di
erentiating both sides of equation �	���� and taking account of �	���� and

�	��	� in it� after suitable transformations we get

�	����
2

[2α(ψ)− 1]�
α�(ψ)

=
(�+ �

�
− 2 cos 2ψ)(�+ �

�
+ 2 cos 2ψ)

log

q
��� �

�
������� �

�
� cos ����

�� �
�
��

arctan � sin ��
�� �

�
�� cos ��

− � sin ��
�� �

�
�� cos ��

(�+ �
�
− 2)(�+ �

�
+ 2) sin� ψ cos� ψ

where (ψ, �) ∈ D� Hence it is easy to check that α�(ψ) > 0 for ψ ∈ (0, p� )�

From �	����� �	���� and �	����� �	���� it can be veri�ed that

lim
����

α(ψ) =
1

2
, lim

�� p

�
�

α(ψ) = α�

where

�	���� α� =
e

2(e− 1)
, α� < 1.

In view of the above� we infer that α(ψ) is an increasing function of the variable

ψ ∈ (0, p� ) besides� it increases from
�
� to α�� Hence� for the function α(ψ)� we have

the inverse function ψ = ψ(α) de�ned for α ∈ (�� , α�) where α� is given by �	�����

���



To sum up� we have proved that� for α ∈ (�� , α�)� we have a single solution to the

system of equations �	�����	���� Consequently� from �	�	� we obtain

Lemma 2. If, for α ∈ (�� , α�), α� =
e

��e��� , the extremal function satisfies the

equation of form (a), then

B� = B�(α) = �+
1

�
+ cos 2ψ

where ψ, � are the only solutions to the system of equations (3.7)–(3.8), (ψ, �) ∈ D,

and D is defined by (3.15). Moreover,

lim
�� �

�

�

B�(α) = 3, lim
���

�

�

B�(α) =
e + 3

e− 1
.

For α ∈ 〈α�, 1), the extremal function does not satisfy equation (a) with ψ ∈ (0,
p

� ),

� ∈ (0, 1).

�� Equation of the form �b�

Let us next consider the case when equation ����� is of form �b�� that is�

�����

�
zf �(z)

f(z)

��
1 + uf(z)

f�(z)
=
(z − z�)�(z − z�)�

z�
, z ∈ ∆,

where z� = e
i�� ψ ∈ 〈0, p� 〉� |z�| = 1� z� �= z�� u �= 0�

From the comparison of the right�hand sides of equations ����� and ����� and from

the fact that B� > 0 it follows that z� = z� = e
�i� and� in consequence�

u = −4 cosψ,�����

B� = 2 + cos 2ψ.���	�

After integrating ����� and making use of the fact that there exists x ∈ R such

that f(eix) = − �
u
� we obtain ψ = 0 or ψ = p

� � Since u �= 0� therefore from ����� we

have ψ = 0� Comparing ����� and ������ we get Rea� = −2� Im a� = 0� Rea� = 3�

Im a� = 0�

Consequently� from ���	� we obtain

Lemma 3. If, for α ∈ ( �� , 1), the extremal function satisfies the equation of form

�b�, then

����� B� = 3.

���



Equality (4.4) holds for Koebe function (1.3) with ε = −1.

�� Equation of the form �c�

In this case� equation ����� is equivalent to

�����

�
zf �(z)

f(z)

��
1 + uf(z)

f�(z)
=
(z − z�)�

z�
, z ∈ ∆,

where z� = e
i�� ψ ∈ 〈0, p� 〉� u �= 0�

From the comparison of the right�hand sides of equations ����� and ����� and from

the fact that B� > 0 it follows that z� = 1� In consequence� u = −4 and B� = 3�

thus Rea� = −2� Im a� = 0� Re a� = 3� Im a� = 0� So� we have

Lemma 4. If, for α ∈ ( �� , 1), the extremal function satisfies the equation of the

form �c�, then

B� = 3

and this equality holds for function (1.3) with ε = −1.

�� Equation of the form �d�

Let us consider the last case when equation ����� is of form �d�� that is�

�����

�
zf �(z)

f(z)

��
1

f�(z)
=
(z − z�)�(z − z�)�

z�
, z ∈ ∆,

where z� = e
i�� ψ ∈ 〈0, p� 〉� z� �= z�� |z�| = 1�

Putting u = 0 in equation ����� and comparing the right�hand side of this equation

with that of ������ we get z� = z�� ψ =
p

� and B� = 1� So� we have

Lemma 5. If, for α ∈ ( �� , 1), the extremal function satisfies the equation of the

form �d�, then

B� = 1

and this equality holds for the function f(z) = z
��z� , z ∈ ∆.

���



�� The main theorem

Note �rst that if f ∈ S� then� for all Θ ∈ 〈0, 2p)� the function ei�f(e�i�z)� z ∈ ∆�

belongs to S� too� In consequence� the determination of the maximum of functional

����� is equivalent to the determination of the maximum of functional ����� in the

class S� For this purpose� we make use of the lemmas just proved� From Lemmas

��� and ������ ���	� it follows that

����� G(f) �

�
max{8α− 3, �+ �

�
+ cos 2ψ, 3, 1} when α ∈ ( �� , α�),

max{8α− 3, 3, 1} when α ∈ 〈α�, 1),

where ψ� � are de�ned in Lemma �� and α� =
e

��e��� �

Since α� >
�
� � therefore max{8α− 3, 3, 1} = 8α− 3 when α ∈ 〈α�, 1)�

It follows from the results of Section 	 that if α ∈ (�� , α�)� then

����� B� = B�(α) = �+
1

�
+ cos 2ψ

where ψ = ψ(α)� � = �(ψ(α)) �cf� Lemma ���

It is easily noticed that B�(α) > 3 for α ∈ (
�
� , α�)� So� it remains to compare the

values 8α− 3 and B�(α) given by ����� for α ∈ (�� , α�)�

Let us put

���	� B̃(α) = B�(α)− (8α− 3), α ∈
�1
2
, α�

�

where B� is de�ned by ������

Making use of the results obtained in Section 	� it can be veri�ed that

lim
�� �

�

�
B̃(α) = 2 and lim

�����
B̃(α) = 0.

Moreover� from ����� and ���	� we have

����� B̃�(α) =

��
1−

1

��(ψ(α))

�
��(ψ(α))− 2 sin(2ψ(α))

�
ψ�(α)− 8

where ψ(α) is the inverse function of the function α(ψ) de�ned by formula �	�����

Taking account of formulae �	��	�� �	���� in ������ after suitable transformations we

obtain B̃�(α) < 0 for α ∈ (�� , α�)� Hence and from ���	� it follows that

B�(α) > 8α− 3 for
�1
2
, α�

�
.

���



Consequently� for α ∈ (�� , α�) we have

max
n
8α− 3, �+

1

�
+ cos 2ψ, 3, 1

o
= �+

1

�
+ cos 2ψ

where (ψ, �) ∈ D and D is de�ned by �	��	��

To sum up� we have proved

Theorem. For any function f ∈ S we have

����� |a� − αa
�
�|+ α|a�|

�
� �+

1

�
+ cos 2ψ for

1

2
< α <

e

2(e− 1)
,

����� |a� − αa
�
�|+ α|a�|

�
� 8α− 3 for

e

2(e− 1)
� α < 1,

where ψ is the inverse function to the function α(ψ) of form (3.17) and � = �(ψ)

is defined by equation (3.7�). Estimates (7.5)–(7.6) are sharp. In case (7.6), the

equality holds for Koebe function (1.3).

Remark �� As was mentioned before� by modifying the procedure presented�

it can be proved that

����� |a� − αa
�
�|+ α|a�|

�
� 3 for α �

1

2
,

and that estimate ����� holds also for α � 1� In paper �	�� these results are also

presented�

Remark �� The result we have obtained also proves that� in the case of

functional ������ the variational method turned out to be more e
ective though

tiresome in calculations�

Remark 	� Similarly as in paper �	� �Section �� one can use some applications

of inequalities ����������� to obtain estimates of suitable functionals considered in

other classes of univalent functions�

In addition� one can �nd some considerations of functionals of type ����� in other

classes of functions� for instance� in paper ����

��	
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