MODULARITY AND DISTRIBUTIVITY OF THE LATTICE OF Σ -CLOSED SUBSETS OF AN ALGEBRAIC STRUCTURE

IVAN CHAJDA, PETR EMANOVSKÝ, Olomouc

(Received April 22, 1994)

Summary. Let $\mathscr{A} = (A, F, R)$ be an algebraic structure of type τ and Σ a set of open formulas of the first order language $L(\tau)$. The set $C_{\Sigma}(\mathscr{A})$ of all subsets of A closed under Σ forms the so called lattice of Σ -closed subsets of \mathscr{A} . We prove various sufficient conditions under which the lattice $C_{\Sigma}(\mathscr{A})$ is modular or distributive.

Keywords: algebraic structure, closure system, $\Sigma\text{-}closed$ subset, modular lattice, distributive lattice, convex subset

MSC 1991: 08A05, 04A05

Modularity and distributivity of subalgebra lattices was investigated by T. Evans and B. Ganter in [4] and by the first author in [1]. However, we can study much more general lattices of closed subsets of an algebra or a relational structure. For convex sublattices of a given lattice this was done by V. I. Marmazajev [6], for convex subsets of monounary algebras or ordered sets see [5] or [3], respectively. A general approach for these considerations was developed by the authors in [2]. By using it, we can state sufficient (and in some cases also necessary) conditions under which a lattice of all Σ -closed subsets of a given algebraic structure is modular or even distributive.

First we recall some concepts. By a *type* we mean a pair of sequences $\tau = \langle \{n_i; i \in I\}, \{m_j; j \in J\} \rangle$ where n_i, m_j are non-negative integers. An algebraic structure or briefly a structure of type τ is a triplet $\mathscr{A} = (A, F, R)$, where $A \neq \emptyset$ is a set and $F = \{f_i; i \in I\}, R = \{\varrho_j; j \in J\}$ such that for each $i \in I$, f_i is an n_i -ary operation on A and for each $j \in J$, ϱ_j is an m_j -ary relation on A. Denote by $L(\tau)$ the first order language containing operational and relational symbols of type τ . If $R = \emptyset$, the structure (A, F, \emptyset) is denoted briefly by (A, F) and is called an algebra. If $F = \emptyset$ then (A, \emptyset, R) is denoted by (A, R) and called a relational system; this system

(A, R) is called *binary* if each $\varrho_j \in R$ is binary. A binary relational system (A, R) is said to be *antisymmetrical* if each $\varrho_j \in R$ is an antisymmetrical relation. A binary relational system (A, R) is called an *ordered* (or *quasiordered*) set if $R = \{\varrho_1\}$ where ϱ_1 is an *order* on A (or a reflexive and transitive relation, the so called *quasiorder*, respectively).

Let Γ be an index set and for each $\gamma \in \Gamma$ let $G_{\gamma}(x_1, \ldots, x_{k_{\gamma}}, y_1, \ldots, y_{s_{\gamma}}, z, f_i)$ be an open formula of a language $L(\tau)$ containing individual variables $x_1, \ldots, x_{k_{\gamma}}, y_1, \ldots, y_{s_{\gamma}}, z$ and a symbol f_i of n_i -ary term operation. Analogously, let Λ be an index set and for each $\lambda \in \Lambda$ let $G_{\lambda}(x_1, \ldots, x_{k_{\lambda}}, y_1, \ldots, y_{s_{\lambda}}, z, \varrho_j)$ be an open formula of the language $L(\tau)$ containing individual variables $x_1, \ldots, x_{k_{\lambda}}, y_1, \ldots, y_{s_{\lambda}}, z$ and a symbol ϱ_j of m_j -ary relation of type τ . Put $\Sigma = \{G_{\gamma}; \gamma \in \Gamma\} \cup \{G_{\lambda}; \lambda \in \Lambda\}$.

Definition 1. A subset *B* of an algebraic structure $\mathscr{A} = (A, F, R)$ is called Σ closed if for every $\gamma \in \Gamma$, $\lambda \in \Lambda$ and $a_1, \ldots, a_{k_{\gamma}}, a'_1, \ldots, a'_{k_{\lambda}} \in B$ and $b_1, \ldots, b_{s_{\gamma}}, b'_1, \ldots, b'_{s_{\lambda}}, c, c' \in A$, we have $c \in B$ or $c' \in B$ provided $G_{\gamma}(a_1, \ldots, a_{k_{\gamma}}, b_1, \ldots, b_{s_{\gamma}}, c, f_i)$ or $G_{\lambda}(a'_1, \ldots, a'_{k_{\lambda}}, b'_1, \ldots, b'_{s_{\lambda}}, c', \varrho_j)$ are satisfied in \mathscr{A} . Denote by $C_{\Sigma}(\mathscr{A})$ the set of all Σ -closed subsets of \mathscr{A} .

As was proved in [2], the set $C_{\Sigma}(\mathscr{A})$ of all Σ -closed subsets of a structure $\mathscr{A} = (A, F, R)$ is a complete lattice with respect to set inclusion with the greatest element A. In what follows we will study modularity and distributivity of $C_{\Sigma}(\mathscr{A})$ depending on the properties of \mathscr{A} . For any given structure \mathscr{A} we will suppose that the set of formulas Σ is determined. For a given subset $M \subseteq A$ we denote by $C_{\mathscr{A}}(M)$ the least Σ -closed subset of \mathscr{A} containing M; we say that $C_{\mathscr{A}}(M)$ is generated by M. If M is a finite subset, say $M = \{a_1, \ldots, a_k\}$, we will write $C_{\mathscr{A}}(a_1, \ldots, a_k)$ for $C_{\mathscr{A}}(M)$.

If the set Σ is implicitly known, we will use on the lattice $C_{\Sigma}(\mathscr{A})$ to specify the closure system. In some more familiar examples of $C_{\Sigma}(\mathscr{A})$ we will use the common name and notation:

(1) If $\mathscr{A} = (A, F)$ is an algebra, $F = \{f_i : i \in I\}$ and $\Sigma = \{G_i : i \in I\}$ where $G_i(x_1, \ldots, x_{n_i}, z, f_i)$ is the formula $(f_i(x_i, \ldots, x_{n_i}) = z)$, then Σ -closed subsets of \mathscr{A} are subalgebras of \mathscr{A} and \emptyset , and $C_{\Sigma}(\mathscr{A}) = \operatorname{Sub} \mathscr{A}$.

(2) If $\mathscr{L} = (L, \{\lor, \land\})$ is a lattice, $\Sigma = \{G_1, G_2\}$ where G_1 is the formula $(x_1 \lor x_2 = z)$ and G_2 is the formula $(x_1 \land y_1, z)$, then the Σ -closed subsets of \mathscr{L} are lattice ideals, i.e. $C_{\Sigma}(\mathscr{L}) = \operatorname{Id} \mathscr{L}$.

(3) If $\mathscr{R} = (A, R)$ is a binary relational system with $R = \{\varrho_j; j \in J\}$ and $\Sigma = \{G_j: j \in J\}$ where for each $j \in J$ we have

 G_j is the formula $(x_1 \varrho_j z \text{ and } z \varrho_j x_2)$,

then the Σ -closed subsets of \mathscr{R} are the so called *convex subsets* and $C_{\Sigma}(\mathscr{R})$ will be denoted by Conv \mathscr{R} .

In particular, if $\mathscr{S} = (S, \leqslant)$ is an ordered set then $\Sigma = \{G\}$ where G is the formula $(x_1 \leqslant z \leqslant x_2)$. Thus Σ -closed subsets of \mathscr{S} are exactly the convex subsets of \mathscr{S} in the usual sense.

(4) If $\mathscr{G} = (G, ., ^{-1}, e)$ is a group and $\Sigma = \{G_1, G_2, G_3, G_4\}$, where $G_1(x_1, x_2, z, .)$ is the formula $(x_1 \cdot x_2 = z)$, $G_2(x_1, z, ^{-1})$ is the formula $(x_1^{-1} = z)$, $G_3(z, e)$ is the formula (e = z) and $G_4(x_1, y_1, z, p)$ is the formula $(p(x_1, y_1) = z)$ where $p(x_1, y_1)$ is the term operation $y_1x_1y_1^{-1}$, then $C_{\Sigma}(\mathscr{G})$ is the lattice of all normal subgroups of \mathscr{G} . It will be denoted simply by $N(\mathscr{G})$.

In what follows we denote join in $C_{\Sigma}(\mathscr{A})$ by \lor , meet evidently coincides with set intersection.

Theorem 1. Let $\mathscr{A} = (A, F, R)$ be an algebraic structure with the system $C_{\Sigma}(\mathscr{A})$ of Σ -closed subsets satisfying

(i) for each X, $Y \in C_{\Sigma}(\mathscr{A}), \ \emptyset \neq X \neq Y \neq \emptyset$ we have $a \in X \lor Y$ if and only if there exist $x \in X, y \in Y$ with $a \in C_{\mathscr{A}}(x, y)$;

(ii) for each $x, y \in A$, if $a \in C_{\mathscr{A}}(x, y)$ and $C_{\mathscr{A}}(a) \neq C_{\mathscr{A}}(x)$ then $y \in C_{\mathscr{A}}(x, a)$. Then the lattice $(C_{\Sigma}(\mathscr{A}), \subseteq)$ is modular.

Proof. Suppose $X, Y, Z \in C_{\Sigma}(\mathscr{A})$ and $X \subseteq Z$. If either $X = \emptyset$ or $Y = \emptyset$ the proof is trivial. Also for X = Y we easily obtain the modularity law. Hence, consider $\emptyset \neq X \neq Y \neq \emptyset$. Suppose $a \in (X \vee Y) \cap Z$. Then $a \in Z$ and $a \in X \vee Y$. By (i), there exist $x \in X, y \in Y$ such that $a \in C_{\mathscr{A}}(x, y)$.

If
$$C_{\mathscr{A}}(a) = C_{\mathscr{A}}(x)$$
 then $a \in C_{\mathscr{A}}(a) = C_{\mathscr{A}}(x) \subseteq X \lor (Y \cap Z)$.
If $C_{\mathscr{A}}(a) \neq C_{\mathscr{A}}(x)$, then we have $y \in C_{\mathscr{A}}(x, a)$ by (ii).

However, $x \in X \subseteq Z$, $a \in Z$ thus also $y \in C_{\mathscr{A}}(x, a) \subseteq Z$. Hence $y \in Y \cap Z$ and $a \in C_{\mathscr{A}}(x, y) \subseteq X \lor (Y \cap Z)$, which proves modularity of $C_{\Sigma}(\mathscr{A})$.

Lemma 1. Let $\mathscr{A} = (A, \{\varrho\})$ be a binary relational system with only one transitive binary relation and $C_{\Sigma}(\mathscr{A}) = \text{Conv } \mathscr{A}$. Then $C_{\Sigma}(\mathscr{A})$ satisfies (i) of Theorem 1.

Proof. The condition (i) of Theorem 1 is equivalent to the following one:

$$C_{\mathscr{A}}(X) = \bigcup \{ C_{\mathscr{A}}(x_1, x_2); x_1, x_2 \in X \} \quad \text{ for each } X \subseteq A.$$

For $X, Y \subseteq A$ put $C^0(X,Y) = X \cup Y$, $C(X,Y) = C^1(X,Y) = \{a \in A; u \varrho a \varrho v$ for some $u, v \in X \cup Y\}$ and $C^{n+1}(X,Y) = C(C^n(X,Y))$, where $n \in N_0$ (nonnegative integer). Evidently, $C_{\mathscr{A}}(X,Y) = \bigcup (C^n(X,Y); n \in N_0)$. Now, we can prove the following statement by induction on n: "If $a \in C^n(X,Y)$, then there exist $u, v \in X \cup Y$ such that $u \rho a \rho v$."

1) For n = 1 it is a trivial.

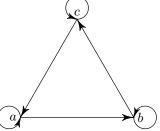
2) Suppose that it is valid for all $k \leq n$ and we prove it for n + 1. Let $a \in C^{n+1}(X,Y)$, i.e. $\alpha \varrho a \varrho \beta$ for some $\alpha, \beta \in C^n(X,Y)$. Clearly, we have the following possibilities:

- a) $\alpha \in [x_1, y_1], \beta \in [x_1, y_2];$
- b) $\alpha \in [x_1, y_1], \beta \in [y_2, x_2];$
- c) $\alpha \in [y_1, x_1], \beta \in [x_2, y_2];$
- d) $\alpha \in [y_1, x_1], \beta \in [y_2, x_2], \text{ etc., where } x_1, x_2 \in X \text{ and } y_1, y_2 \in Y.$

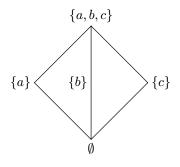
ad a) If $\alpha \in [x_1, y_1]$, $\beta \in [x_1, y_2]$, then $x_1 \rho \alpha a \rho \beta \rho y_2$ and $a \in [x_1, y_2]$ by transitivity, i.e. the statement is valid.

ad b) $\alpha \in [x_1, y_1], \beta \in [y_2, x_2]$ imply $x_1 \rho \alpha a \rho \beta \rho x_2$, i.e. $a \in [x_1, x_2]$ and $a \in X$. Similarly we can easily check the other possibilities.

Example 1. Let $\mathscr{A} = (\{a, b, c\}, \{\varrho\})$ be a binary relational system with the following diagram of ϱ :

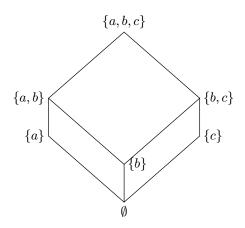


and $C_{\Sigma}(\mathscr{A}) = \operatorname{Conv} \mathscr{A}$. We can easily check (i) and (ii) of Theorem 1, thus $C_{\Sigma}(\mathscr{A})$ is modular. We can vizualize the diagram of $C_{\Sigma}(\mathscr{A})$ in Fig. 2 below:



We can see that it is isomorphic to M_3 , hence $C_{\Sigma}(\mathscr{A})$ is not distributive.

Example 2. Let $\mathscr{A} = (\{a, b, c\}, \leqslant)$ be an ordered set which is a chain: a < b < c, and let $C_{\Sigma}(\mathscr{A}) = \operatorname{Conv} \mathscr{A}$. Then it does not satisfy (ii) of Theorem 1 since $b \in C_{\mathscr{A}}(a, c), C_{\mathscr{A}}(b) \neq C_{\mathscr{A}}(a)$ but $c \notin C_{\mathscr{A}}(a, b) = \{a, b\}$. The diagram of $C_{\Sigma}(\mathscr{A})$ is



We can see that $C_{\Sigma}(\mathscr{A})$ is not modular. We are going to show that for some algebraic structures the condition (ii) is really equivalent to modularity of $C_{\Sigma}(\mathscr{A})$.

Recall from [2] that an algebraic system $\mathscr{A} = (A, F, R)$ is Σ -separable if we have $C_{\mathscr{A}}(x) = \{x\}$ for any $x \in A$.

Theorem 2. Let $\mathscr{A} = (A, F, R)$ be a Σ -separable algebraic structure satisfying (i) of Theorem 1. The following conditions are equivalent:

- (a) the lattice $C_{\Sigma}(\mathscr{A})$ is modular;
- (b) for each $x, y \in A$, if $a \in C_{\mathscr{A}}(x, y)$ for $a \neq x$ then $y \in C_{\mathscr{A}}(x, a)$.

Proof. Since \mathscr{A} is Σ -separable and \mathscr{A} satisfies (i), we obtain (b) \Rightarrow (a) directly by Theorem 1. Prove (a) \Rightarrow (b). Let $C_{\Sigma}(\mathscr{A})$ be modular and $a, x, y \in A, a \neq x$. Since $\{x, y\} \subseteq C_{\mathscr{A}}(x) \lor C_{\mathscr{A}}(y)$, we have

$$(*) C_{\mathscr{A}}(x,y) \subseteq C_{\mathscr{A}}(x) \vee C_{\mathscr{A}}(y).$$

Suppose $a \in C_{\mathscr{A}}(x,y)$. Then $a \in C_{\mathscr{A}}(x,y) \cap C_{\mathscr{A}}(a,x)$ and, by (*), also

$$a \in ig(C_{\mathscr{A}}(x) \lor C_{\mathscr{A}}(y)ig) \cap C_{\mathscr{A}}(a,x)$$

Clearly $C_{\mathscr{A}}(x) \subseteq C_{\mathscr{A}}(a, x)$ and, by modularity of $C_{\Sigma}(\mathscr{A})$, we conclude

$$a \in C_{\mathscr{A}}(x) \lor (C_{\mathscr{A}}(y) \cap C_{\mathscr{A}}(a,x)).$$

However, \mathscr{A} is Σ -separable, thus also $a \in \{x\} \lor (\{y\} \cap C_{\mathscr{A}}(a, x))$. Since $a \neq x$, this yields $\{y\} \cap C_{\mathscr{A}}(a, x) \neq \emptyset$, thus $y \in C_{\mathscr{A}}(a, x)$ which proves (b). \Box

Definition 2. Let ρ be a binary relation on A. We say that ρ is weakly transitive if for each pairwise different elements $a, b, c \in A, \langle a, b \rangle \in \rho$ and $\langle b, c \rangle \in \rho$ imply $\langle c, a \rangle \notin \rho$.

Corollary 1. Let $\mathscr{A} = (A, \{\varrho\})$ be an antisymmetrical binary relational system with one weakly transitive relation ϱ and $C_{\Sigma}(\mathscr{A}) = \operatorname{Conv} \mathscr{A}$. The following conditions are equivalent:

- (1) Conv α is modular;
- (2) Conv \mathscr{A} is distributive;
- (3) for any pairwise different elements $a, b, c \in A$ we have $\langle a, b \rangle \notin \varrho$ or $\langle b, c \rangle \notin \varrho$.

Proof. (3) \Rightarrow (2): If \mathscr{A} satisfies (3) then every subset of A is a convex subset, thus Conv $\mathscr{A} = \operatorname{Exp} A$, i.e. Conv \mathscr{A} is distributive. (2) \Rightarrow (1) is trivial.

(1) \Rightarrow (3). Let Conv \mathscr{A} be modular and let a, x, y be pairwise different elements of A. Suppose $x\varrho a$ and $a\varrho y$. Then $a \in C_{\mathscr{A}}(x,y)$, $a \notin x$ and $y \notin C_{\mathscr{A}}(x,a)$ with respect to antisymmetry and weak transitivity of ϱ . Hence (b) of Theorem 2 is not valid. Moreover, \mathscr{A} is Σ -separable by Theorem 3 in [2] and, by Lemma 1, $C_{\Sigma}(\mathscr{A})$ satisfies (i) of Theorem 1, thus we have a contradiction. Hence also (3) is satisfied.

Corollary 2. Let $\mathscr{S} = (S, \leqslant)$ be an ordered set and $C_{\Sigma}(\mathscr{S}) = \operatorname{Conv} \mathscr{S}$. The following conditions are equivalent:

- (1) Conv \mathscr{S} is modular;
- (2) Conv \mathscr{S} is distributive;
- (3) \mathscr{S} does not contain a chain of length greater than two.

Proof. Clearly, any order is weakly transitive, and it is almost trivial to show that (3) of Corollary 1 is equivalent to (3) of Corollary 2 for $\rho = \leq .$

For any group \mathscr{G} , the lattice $N(\mathscr{G})$ of all its normal subgroups is modular and it clearly satisfies (i) of Theorem 1 since $\mathscr{G}_1 \vee \mathscr{G}_2 = \mathscr{G}_1 \cdot \mathscr{G}_2$ for each $\mathscr{G}_1, \mathscr{G}_2 \in N(\mathscr{G})$. However, it does not satisfy (ii) of Theorem 1: e.g. for the group (Z, +) of all integers we have $4 \in C_{\mathscr{G}}(2,3) = Z$, $C_{\mathscr{G}}(4) \neq C_{\mathscr{G}}(2)$ but $3 \notin C_{\mathscr{G}}(2,4)$. This motivates our effort to give another sufficient condition for modularity of $C_{\Sigma}(\mathscr{A})$. (Remark that a group \mathscr{G} is not Σ -separable with respect to $C_{\Sigma}(\mathscr{G}) = N(\mathscr{G})$.)

Definition 3. Let $\mathscr{A} = (A, F, R)$ be an algebraic structure of type τ . By a binary formula we mean any formula $G(x_1, x_2, z, f)$ or $G(x_1, x_2, z, \varrho)$ of the language $L(\tau)$ provided f is a binary term operation of \mathscr{A} or ϱ is a binary relation of R.

Theorem 3. Let $\mathscr{A} = (A, F, R)$ be an algebraic structure and let Σ contain a binary formula $G(x_1, x_2, z, f)$ or $G(x_1, x_2, z, \varrho)$ such that the following conditions are

satisfied:

(i) if $X, Y \in C_{\Sigma}(\mathscr{A}), \ \emptyset \neq X \neq Y \neq \emptyset$, then $a \in X \vee Y$ if and only if there exist $b \in X, c \in Y$ such that G(b, c, a, f) or $G(b, c, a, \varrho)$ is satisfied in \mathscr{A} ;

(ii) for each $a, b, c \in A, a \neq b$, if the formula G(b, c, a, f) or $G(b, c, a, \varrho)$ is satisfied in \mathscr{A} and $C_{\mathscr{A}}(a) \neq C_{\mathscr{A}}(b)$ then $c \in C_{\mathscr{A}}(a, b)$. Then the lattice $(C_{\Sigma}(\mathscr{A}), \subseteq)$ is modular.

Proof. Let $X, Y, Z \in C_{\Sigma}(\mathscr{A})$ and $X \subseteq Z$. To check modularity of $C_{\Sigma}(\mathscr{A})$ it is enough to consider $\emptyset \neq X \neq Y \neq \emptyset$. Suppose $a \in (X \vee Y) \cap Z$. By (i) there exist $b \in X, c \in Y$ such that some binary formula G(b, c, a, f) or $G(b, c, a, \varrho)$ is satisfied in \mathscr{A} . If $C_{\Sigma}(a) = C_{\mathscr{A}}(b)$ then

$$a \in C_{\mathscr{A}}(b) \subseteq X \subseteq X \lor (Y \cap Z).$$

If $C_{\mathscr{A}}(a) \neq C_{\mathscr{A}}(b)$ then, by (ii), $c \in C_{\mathscr{A}}(a, b)$. However, $a \in Z$ and $b \in X \subseteq Z$, thus also $c \in C_{\mathscr{A}}(a, b) \subseteq Z$. Hence, we conclude by (i)

$$a \in X \vee (Y \cap Z),$$

proving modularity of $C_{\Sigma}(\mathscr{A})$.

Example 3. If $\mathscr{G} = (A, ., ^{-1}, e)$ is a group and $C_{\Sigma}(\mathscr{G}) = N(\mathscr{G})$, take a binary formula $(x_1 \cdot x_2 = z)$. Evidently, for $\mathscr{A}_1, \mathscr{A}_2 \in N(\mathscr{G}), a \in \mathscr{A}_1 \vee \mathscr{A}_2 = \mathscr{A}_1 \cdot \mathscr{A}_2$ if and only if there exist $a_1 \in A_1, a_2 \in A_2$ with $a = a_1 \cdot a_2$ and, if $a = b \cdot c$ (i.e. G(b, c, a, .) is satisfied in \mathscr{G}) then $c = b^{-1} \cdot a$, thus $c \in C_{\mathscr{A}}(a, b)$. Hence, both (i), (ii) of Theorem 3 are satisfied.

Example 4. It is an easy exercise to verify that the quasiordered set of Example 1 also satisfies the assumptions of Theorem 3 for the binary formula $G(x_1, x_2, z, \varrho) = (x_1 \varrho z \text{ and } z \varrho x_2).$

Now, we turn our attention to distributivity of $C_{\Sigma}(\mathscr{A})$.

Theorem 4. Let $\mathscr{A} = (A, F, R)$ be an algebraic structure with the lattice $C_{\Sigma}(\mathscr{A})$ of Σ -closed subsets. If there exists a binary term operation p(x, y) of \mathscr{A} such that

(i) for $B, C \in C_{\Sigma}(\mathscr{A})$ we have $a \in B \lor C$ if and only if a = p(b, c) for some $b \in B$, $c \in C$;

(ii) if $D \in C_{\Sigma}(\mathscr{A})$ and $p(b,c) \in D$ for some $b, c \in A$, then $b, c \in D$, then the lattice $(C_{\Sigma}(\mathscr{A}), \subseteq)$ is distributive.

Proof. Suppose $B, C, D \in C_{\Sigma}(\mathscr{A})$ and $a \in D \cap (B \vee C)$. Then $a \in D$ and, by (i), there exist $b \in B, c \in C$ with a = p(b, c). Hence also $p(b, c) \in D$ and, by (ii), we have $b \in D, c \in D$. Thus $b \in D \cap B, c \in D \cap C$ and by (i) again, we conclude $a = p(b, c) \in (D \cap B) \vee (D \cap C)$.

215

Example 5. If \mathscr{L} is a distributive lattice and $C_{\Sigma}(\mathscr{L}) = \operatorname{Id} \mathscr{L}$, we can put $p(x,y) = x \lor y$. It is well-known that for $I_1, I_2 \in \operatorname{Id} \mathscr{L}, y \in I_1 \lor I_2$ if and only if $y = i_1 \lor i_2$ for some $i_1 \in I_1, i_2 \in I_2$. Moreover, if $J \in \operatorname{Id} \mathscr{L}$ and $j_1 \lor j_2 \in J$ for $j_1, j_2 \in \mathscr{L}$ then $j_1 \leqslant j_1 \lor j_2, j_2 \leqslant j_1 \lor j_2$ imply also $j_1, j_2 \in J$.

Thus both assumptions of Theorem 4 are satisfied.

Now, let $\mathscr{A} = (A, F, R)$ be an algebraic structure and let $B \in C_{\Sigma}(\mathscr{A})$ for some given set Σ of open formulas. If there exists an element $b \in A$ such that $B = C_{\mathscr{A}}(b)$, we say that b is a generator of B.

In the remaining part of the paper, denote by Z the set of all integers and suppose $F \neq \emptyset$ for any algebraic structure $\mathscr{A} = (A, F, R)$ under consideration.

Definition 4. An algebraic structure $\mathscr{A} = (A, F, R)$ is called Σ -cyclic if there exist an element $d \in A$, a subset $K \subseteq Z$ and binary integral operations φ, ψ : $K \times K \to K$ and unary terms $w_k(x)$ for $k \in K$ of \mathscr{A} such that

(a) for each $B \in C_{\Sigma}(\mathscr{A})$ there exists $k \in K$ such that $w_k(d)$ is a generator of B;

(b) if $w_m(d)$ or $w_n(d)$ are generators of B or D, respectively, for $B, D \in C_{\Sigma}(\mathscr{A})$, then $w_{\varphi(m,n)}(d)$ or $w_{\psi(m,n)}(d)$ are generators of $B \vee D$ or $B \cap D$, respectively; (c) $\psi(k,\varphi(m,n)) = \varphi(\psi(k,m),\psi(k,n))$ for every $k, m, n \in K$.

The terms $w_k(x)$ are called *characteristic terms* of $C_{\Sigma}(\mathscr{A})$.

Theorem 5. If $\mathscr{A} = (A, F, R)$ is a Σ -cyclic algebraic structure then the lattice $(C_{\Sigma}(\mathscr{A}), \subseteq)$ is distributive.

Proof. Let \mathscr{A} be a Σ -cyclic algebraic structure and let $w_k(x)$ be its characteristic terms for $k \in K \subseteq Z$. Suppose that φ and ψ satisfy (b) and (c) of Definition 4. Let $B, C, D \in C_{\Sigma}(\mathscr{A})$. Suppose that $d \in A$ and $w_m(d)$ or $w_n(d)$ or $w_k(d)$ are generators of B or C or D, respectively. By (a), (b), (c) of Definition 4, we can easily derive

$$D \cap (B \lor C) = C_{\mathscr{A}}(w_k(d)) \cap (C_{\mathscr{A}}(w_n(d)) \lor C_{\mathscr{A}}(w_m(d)))$$

= $C_{\mathscr{A}}(w_{\psi(k,\varphi(m,n))}(d)) = C_{\mathscr{A}}(w_{\varphi(\psi(k,m),\psi(k,n))}(d))$
= $(C_{\mathscr{A}}(w_k(d)) \cap C_{\mathscr{A}}(w_m(d))) \lor (C_{\mathscr{A}}(w_k(d)) \cap C_{\mathscr{A}}(w_n(d)))$
= $(D \cap B) \lor (D \cap C),$

i.e. the lattice $(C_{\Sigma}(\mathscr{A}), \subseteq)$ is distributive.

Example 6. If $\mathscr{G} = (G, .)$ is a cyclic group and $C_{\Sigma}(\mathscr{G}) = \operatorname{Sub}\mathscr{G}$, put K = Z, $w_k = x^k$ and $\varphi(m, n) = GCD(m, n)$, $\psi(m, n) = LCM(m, n)$. As an element $d \in G$ we pick up the generator of \mathscr{G} . Evidently, \mathscr{G} is Σ -cyclic.

Example 7. If $\mathscr{A} = (A, f)$ is a monounary algebra and $C_{\Sigma}(\mathscr{A}) = \operatorname{Sub} \mathscr{A}$, we can put $K = N \cup \{0\}$ (non-negative integers), $w_k(x) = f^k(x)$ where $f^0(x) = x$ and $f^{k+1}(x) = f(f^k(x))$ for each $k \in K$. Moreover, put $\varphi(m, n) = \min(m, n)$, $\psi(m, n) = \max(m, n)$. If \mathscr{A} has a unique generator d then \mathscr{A} is Σ -cyclic.

Example 8. Suppose $\mathscr{A} = (A, F, R)$ is an algebraic structure with at least two elements such that F contains a nullary operation c and $f(c, \ldots, c) = c$ for each $f \in F$. Further, suppose $C_{\Sigma}(\mathscr{A}) = \{\{c\}, A\}$ (trivially, $C_{\Sigma}(\mathscr{A})$ is distributive). Put $K = \{0, 1\}$. If $A \neq \{c\}$, choose $d \neq c$, $d \in A$ and put $w_0(x) = c$, $w_1(x) = d$. Further, let φ and ψ be defined in the same manner as in the foregoing Example 7. Evidently, \mathscr{A} is Σ -cyclic.

References

- Chajda I.: A note on varieties with distributive subalgebra lattices. Acta Univ. Palack. Olomouc, Fac. Rer. Natur., Matematica 31 (1992), 25-28.
- [2] Chajda I., Emanovský, P.: Σ-isomorphic algebraic structures. Mathem. Bohemica 120 (1995), 71-81.
- [3] Emanovský, P.: Convex isomorphic ordered sets. Mathem. Bohemica 118 (1993), 29-35.
- [4] Evans T., Ganter B.: Varieties with modular subalgebra lattices. Bull. Austral. Math. Soc. 28 (1993), 247-254.
- [5] Jakubíková-Studenovská D.: Convex subsets of partial monounary algebras. Czech. Math. J. 38 (1988), no. 113, 655-672.
- [6] Marmazajev V.I.: The lattice of convex sublattices of a lattice. Mezvužovskij naučnyj sbornik 6. Saratov, 1986, pp. 50-58. (In Russian.)

Authors' addresses: Ivan Chajda, katedra algebry a geometrie, přír. fak. UP Olomouc, Tomkova 38, 77900 Olomouc; Petr Emanovský, katedra matematiky, ped. fak. UP Olomouc, Žižkovo nám. 5, 77140 Olomouc.