MODULARITY AND DISTRIBUTIVITY OF THE LATTICE OF Σ-CLOSED SUBSETS OF AN ALGEBRAIC STRUCTURE

Ivan Chajda, Petr Emanovský, Olomouc

(Received April 22, 1994)

Abstract

Summary. Let $\mathscr{A}=(A, F, R)$ be an algebraic structure of type τ and Σ a set of open formulas of the first order language $L(\tau)$. The set $C_{\Sigma}(\mathscr{A})$ of all subsets of A closed under Σ forms the so called lattice of Σ-closed subsets of \mathscr{A}. We prove various sufficient conditions under which the lattice $C_{\Sigma}(\mathscr{A})$ is modular or distributive.

Keywords: algebraic structure, closure system, Σ-closed subset, modular lattice, distributive lattice, convex subset

MSC 1991: 08A05, 04A05

Modularity and distributivity of subalgebra lattices was investigated by T. Evans and B. Ganter in [4] and by the first author in [1]. However, we can study much more general lattices of closed subsets of an algebra or a relational structure. For convex sublattices of a given lattice this was done by V.I. Marmazajev [6], for convex subsets of monounary algebras or ordered sets see [5] or [3], respectively. A general approach for these considerations was developed by the authors in [2]. By using it, we can state sufficient (and in some cases also necessary) conditions under which a lattice of all Σ-closed subsets of a given algebraic structure is modular or even distributive.

First we recall some concepts. By a type we mean a pair of sequences $\tau=$ $\left\langle\left\{n_{i} ; i \in I\right\},\left\{m_{j} ; j \in J\right\}\right\rangle$ where n_{i}, m_{j} are non-negative integers. An algebraic structure or briefly a structure of type τ is a triplet $\mathscr{A}=(A, F, R)$, where $A \neq \emptyset$ is a set and $F=\left\{f_{i} ; i \in I\right\}, R=\left\{\varrho_{j} ; j \in J\right\}$ such that for each $i \in I, f_{i}$ is an n_{i}-ary operation on A and for each $j \in J, \varrho_{j}$ is an m_{j}-ary relation on A. Denote by $L(\tau)$ the first order language containing operational and relational symbols of type τ. If $R=\emptyset$, the structure (A, F, \emptyset) is denoted briefly by (A, F) and is called an algebra. If $F=\emptyset$ then (A, \emptyset, R) is denoted by (A, R) and called a relational system; this system
(A, R) is called binary if each $\varrho_{j} \in R$ is binary. A binary relational system (A, R) is said to be antisymmetrical if each $\varrho_{j} \in R$ is an antisymmetrical relation. A binary relational system (A, R) is called an ordered (or quasiordered) set if $R=\left\{\varrho_{1}\right\}$ where ϱ_{1} is an order on A (or a reflexive and transitive relation, the so called quasiorder, respectively).

Let Γ be an index set and for each $\gamma \in \Gamma$ let $G_{\gamma}\left(x_{1}, \ldots, x_{k_{\gamma}}, y_{1}, \ldots, y_{s_{\gamma}}, z, f_{i}\right)$ be an open formula of a language $L(\tau)$ containing individual variables $x_{1}, \ldots, x_{k_{\gamma}}$, $y_{1}, \ldots, y_{s_{\gamma}}, z$ and a symbol f_{i} of n_{i}-ary term operation. Analogously, let Λ be an index set and for each $\lambda \in \Lambda$ let $G_{\lambda}\left(x_{1}, \ldots, x_{k_{\lambda}}, y_{1}, \ldots, y_{s_{\lambda}}, z, \varrho_{j}\right)$ be an open formula of the language $L(\tau)$ containing individual variables $x_{1}, \ldots, x_{k_{\lambda}}, y_{1}, \ldots, y_{s_{\lambda}}, z$ and a symbol ϱ_{j} of m_{j}-ary relation of type τ. Put $\Sigma=\left\{G_{\gamma} ; \gamma \in \Gamma\right\} \cup\left\{G_{\lambda} ; \lambda \in \Lambda\right\}$.

Definition 1. A subset B of an algebraic structure $\mathscr{A}=(A, F, R)$ is called Σ closed if for every $\gamma \in \Gamma, \lambda \in \Lambda$ and $a_{1}, \ldots, a_{k_{\gamma}}, a_{1}^{\prime}, \ldots, a_{k_{\lambda}}^{\prime} \in B$ and $b_{1}, \ldots, b_{s_{\gamma}}$, $b_{1}^{\prime}, \ldots, b_{s_{\lambda}}^{\prime}, c, c^{\prime} \in A$, we have $c \in B$ or $c^{\prime} \in B$ provided $G_{\gamma}\left(a_{1}, \ldots, a_{k_{\gamma}}, b_{1}, \ldots\right.$, $\left.b_{s_{\gamma}}, c, f_{i}\right)$ or $G_{\lambda}\left(a_{1}^{\prime}, \ldots, a_{k_{\lambda}}^{\prime}, b_{1}^{\prime}, \ldots, b_{s_{\lambda}}^{\prime}, c^{\prime}, \varrho_{j}\right)$ are satisfied in \mathscr{A}. Denote by $C_{\Sigma}(\mathscr{A})$ the set of all Σ-closed subsets of \mathscr{A}.

As was proved in [2], the set $C_{\Sigma}(\mathscr{A})$ of all Σ-closed subsets of a structure $\mathscr{A}=$ (A, F, R) is a complete lattice with respect to set inclusion with the greatest element A. In what follows we will study modularity and distributivity of $C_{\Sigma}(\mathscr{A})$ depending on the properties of \mathscr{A}. For any given structure \mathscr{A} we will suppose that the set of formulas Σ is determined. For a given subset $M \subseteq A$ we denote by $C_{\mathscr{A}}(M)$ the least Σ-closed subset of \mathscr{A} containing M; we say that $C_{\mathscr{A}}(M)$ is generated by M. If M is a finite subset, say $M=\left\{a_{1}, \ldots, a_{k}\right\}$, we will write $C_{\mathscr{A}}\left(a_{1}, \ldots, a_{k}\right)$ for $C_{\mathscr{A}}(M)$.

If the set Σ is implicitly known, we will use on the lattice $C_{\Sigma}(\mathscr{A})$ to specify the closure system. In some more familiar examples of $C_{\Sigma}(\mathscr{A})$ we will use the common name and notation:
(1) If $\mathscr{A}=(A, F)$ is an algebra, $F=\left\{f_{i}: i \in I\right\}$ and $\Sigma=\left\{G_{i}: i \in I\right\}$ where $G_{i}\left(x_{1}, \ldots, x_{n_{i}}, z, f_{i}\right)$ is the formula $\left(f_{i}\left(x_{i}, \ldots, x_{n_{i}}\right)=z\right)$, then Σ-closed subsets of \mathscr{A} are subalgebras of \mathscr{A} and \emptyset, and $C_{\Sigma}(\mathscr{A})=\operatorname{Sub} \mathscr{A}$.
(2) If $\mathscr{L}=(L,\{\vee, \wedge\})$ is a lattice, $\Sigma=\left\{G_{1}, G_{2}\right\}$ where G_{1} is the formula $\left(x_{1} \vee x_{2}=\right.$ $z)$ and G_{2} is the formula $\left(x_{1} \wedge y_{1}, z\right)$, then the Σ-closed subsets of \mathscr{L} are lattice ideals, i.e. $C_{\Sigma}(\mathscr{L})=\operatorname{Id} \mathscr{L}$.
(3) If $\mathscr{R}=(A, R)$ is a binary relational system with $R=\left\{\varrho_{j} ; j \in J\right\}$ and $\Sigma=\left\{G_{j}\right.$: $j \in J\}$ where for each $j \in J$ we have

$$
G_{j} \text { is the formula }\left(x_{1} \varrho_{j} z \text { and } z \varrho_{j} x_{2}\right),
$$

then the Σ-closed subsets of \mathscr{R} are the so called convex subsets and $C_{\Sigma}(\mathscr{R})$ will be denoted by Conv \mathscr{R}.

In particular, if $\mathscr{S}=(S, \leqslant)$ is an ordered set then $\Sigma=\{G\}$ where G is the formula $\left(x_{1} \leqslant z \leqslant x_{2}\right)$. Thus Σ-closed subsets of \mathscr{S} are exactly the convex subsets of \mathscr{S} in the usual sense.
(4) If $\mathscr{G}=\left(G, .,^{-1}, e\right)$ is a group and $\Sigma=\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$, where $G_{1}\left(x_{1}, x_{2}, z,.\right)$ is the formula $\left(x_{1} \cdot x_{2}=z\right), G_{2}\left(x_{1}, z,^{-1}\right)$ is the formula $\left(x_{1}^{-1}=z\right), G_{3}(z, e)$ is the formula $(e=z)$ and $G_{4}\left(x_{1}, y_{1}, z, p\right)$ is the formula $\left(p\left(x_{1}, y_{1}\right)=z\right)$ where $p\left(x_{1}, y_{1}\right)$ is the term operation $y_{1} x_{1} y_{1}^{-1}$, then $C_{\Sigma}(\mathscr{G})$ is the lattice of all normal subgroups of \mathscr{G}. It will be denoted simply by $N(\mathscr{G})$.

In what follows we denote join in $C_{\Sigma}(\mathscr{A})$ by \vee, meet evidently coincides with set intersection.

Theorem 1. Let $\mathscr{A}=(A, F, R)$ be an algebraic structure with the system $C_{\Sigma}(\mathscr{A})$ of Σ-closed subsets satisfying
(i) for each $X, Y \in C_{\Sigma}(\mathscr{A}), \emptyset \neq X \neq Y \neq \emptyset$ we have $a \in X \vee Y$ if and only if there exist $x \in X, y \in Y$ with $a \in C_{\mathscr{A}}(x, y)$;
(ii) for each $x, y \in A$, if $a \in C_{\mathscr{A}}(x, y)$ and $C_{\mathscr{A}}(a) \neq C_{\mathscr{A}}(x)$ then $y \in C_{\mathscr{A}}(x, a)$. Then the lattice $\left(C_{\Sigma}(\mathscr{A}), \subseteq\right)$ is modular.

Proof. Suppose $X, Y, Z \in C_{\Sigma}(\mathscr{A})$ and $X \subseteq Z$. If either $X=\emptyset$ or $Y=\emptyset$ the proof is trivial. Also for $X=Y$ we easily obtain the modularity law. Hence, consider $\emptyset \neq X \neq Y \neq \emptyset$. Suppose $a \in(X \vee Y) \cap Z$. Then $a \in Z$ and $a \in X \vee Y$. By (i), there exist $x \in X, y \in Y$ such that $a \in C_{\mathscr{A}}(x, y)$.

$$
\begin{aligned}
& \text { If } C_{\mathscr{A}}(a)=C_{\mathscr{A}}(x) \text { then } a \in C_{\mathscr{A}}(a)=C_{\mathscr{A}}(x) \subseteq X \vee(Y \cap Z) . \\
& \text { If } C_{\mathscr{A}}(a) \neq C_{\mathscr{A}}(x) \text {, then we have } y \in C_{\mathscr{A}}(x, a) \text { by (ii). }
\end{aligned}
$$

However, $x \in X \subseteq Z, a \in Z$ thus also $y \in C_{\mathscr{A}}(x, a) \subseteq Z$. Hence $y \in Y \cap Z$ and $a \in C_{\mathscr{A}}(x, y) \subseteq X \vee(Y \cap Z)$, which proves modularity of $C_{\Sigma}(\mathscr{A})$.

Lemma 1. Let $\mathscr{A}=(A,\{\varrho\})$ be a binary relational system with only one transitive binary relation and $C_{\Sigma}(\mathscr{A})=$ Conv \mathscr{A}. Then $C_{\Sigma}(\mathscr{A})$ satisfies (i) of Theorem 1.

Proof. The condition (i) of Theorem 1 is equivalent to the following one:

$$
C_{\mathscr{A}}(X)=\bigcup\left\{C_{\mathscr{A}}\left(x_{1}, x_{2}\right) ; x_{1}, x_{2} \in X\right\} \quad \text { for each } X \subseteq A .
$$

For $X, Y \subseteq A$ put $C^{0}(X, Y)=X \cup Y, C(X, Y)=C^{1}(X, Y)=\{a \in A ; u \varrho a \varrho v$ for some $u, v \in X \cup Y\}$ and $C^{n+1}(X, Y)=C\left(C^{n}(X, Y)\right.$), where $n \in N_{0}$ (nonnegative integer). Evidently, $C_{\mathscr{A}}(X, Y)=\bigcup\left(C^{n}(X, Y) ; n \in N_{0}\right)$. Now, we can prove the following statement by induction on n : "If $a \in C^{n}(X, Y)$, then there exist $u, v \in X \cup Y$ such that u@a@v."

1) For $n=1$ it is a trivial.
2) Suppose that it is valid for all $k \leqslant n$ and we prove it for $n+1$. Let $a \in$ $C^{n+1}(X, Y)$, i.e. $\alpha \varrho a \varrho \beta$ for some $\alpha, \beta \in C^{n}(X, Y)$. Clearly, we have the following possibilities:
a) $\alpha \in\left[x_{1}, y_{1}\right], \beta \in\left[x_{1}, y_{2}\right]$;
b) $\alpha \in\left[x_{1}, y_{1}\right], \beta \in\left[y_{2}, x_{2}\right]$;
c) $\alpha \in\left[y_{1}, x_{1}\right], \beta \in\left[x_{2}, y_{2}\right]$;
d) $\alpha \in\left[y_{1}, x_{1}\right], \beta \in\left[y_{2}, x_{2}\right]$, etc., where $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in Y$.
ad a) If $\alpha \in\left[x_{1}, y_{1}\right], \beta \in\left[x_{1}, y_{2}\right]$, then $x_{1} \varrho \alpha a \varrho \beta \varrho y_{2}$ and $a \in\left[x_{1}, y_{2}\right]$ by transitivity, i.e. the statement is valid.
ad b) $\alpha \in\left[x_{1}, y_{1}\right], \beta \in\left[y_{2}, x_{2}\right]$ imply $x_{1} \varrho \alpha a \varrho \beta \varrho x_{2}$, i.e. $a \in\left[x_{1}, x_{2}\right]$ and $a \in X$.
Similarly we can easily check the other possibilities.
Example 1. Let $\mathscr{A}=(\{a, b, c\},\{\varrho\})$ be a binary relational system with the following diagram of ϱ :

and $C_{\Sigma}(\mathscr{A})=$ Conv \mathscr{A}. We can easily check (i) and (ii) of Theorem 1 , thus $C_{\Sigma}(\mathscr{A})$ is modular. We can vizualize the diagram of $C_{\Sigma}(\mathscr{A})$ in Fig. 2 below:

We can see that it is isomorphic to M_{3}, hence $C_{\Sigma}(\mathscr{A})$ is not distributive.
Example 2. Let $\mathscr{A}=(\{a, b, c\}, \leqslant)$ be an ordered set which is a chain: $a<$ $b<c$, and let $C_{\Sigma}(\mathscr{A})=\operatorname{Conv} \mathscr{A}$. Then it does not satisfy (ii) of Theorem 1 since $b \in C_{\mathscr{A}}(a, c), C_{\mathscr{A}}(b) \neq C_{\mathscr{A}}(a)$ but $c \notin C_{\mathscr{A}}(a, b)=\{a, b\}$. The diagram of $C_{\Sigma}(\mathscr{A})$ is
shown in Fig. 3:

We can see that $C_{\Sigma}(\mathscr{A})$ is not modular. We are going to show that for some algebraic structures the condition (ii) is really equivalent to modularity of $C_{\Sigma}(\mathscr{A})$.

Recall from [2] that an algebraic system $\mathscr{A}=(A, F, R)$ is Σ-separable if we have $C_{\mathscr{A}}(x)=\{x\}$ for any $x \in A$.

Theorem 2. Let $\mathscr{A}=(A, F, R)$ be a Σ-separable algebraic structure satisfying (i) of Theorem 1. The following conditions are equivalent:
(a) the lattice $C_{\Sigma}(\mathscr{A})$ is modular;
(b) for each $x, y \in A$, if $a \in C_{\mathscr{A}}(x, y)$ for $a \neq x$ then $y \in C_{\mathscr{A}}(x, a)$.

Proof. Since \mathscr{A} is Σ-separable and \mathscr{A} satisfies (i), we obtain (b) \Rightarrow (a) directly by Theorem 1. Prove (a) $\Rightarrow(\mathrm{b})$. Let $C_{\Sigma}(\mathscr{A})$ be modular and $a, x, y \in A, a \neq x$. Since $\{x, y\} \subseteq C_{\mathscr{A}}(x) \vee C_{\mathscr{A}}(y)$, we have

$$
\begin{equation*}
C_{\mathscr{A}}(x, y) \subseteq C_{\mathscr{A}}(x) \vee C_{\mathscr{A}}(y) \tag{*}
\end{equation*}
$$

Suppose $a \in C_{\mathscr{A}}(x, y)$. Then $a \in C_{\mathscr{A}}(x, y) \cap C_{\mathscr{A}}(a, x)$ and, by $(*)$, also

$$
a \in\left(C_{\mathscr{A}}(x) \vee C_{\mathscr{A}}(y)\right) \cap C_{\mathscr{A}}(a, x)
$$

Clearly $C_{\mathscr{A}}(x) \subseteq C_{\mathscr{A}}(a, x)$ and, by modularity of $C_{\Sigma}(\mathscr{A})$, we conclude

$$
a \in C_{\mathscr{A}}(x) \vee\left(C_{\mathscr{A}}(y) \cap C_{\mathscr{A}}(a, x)\right)
$$

However, \mathscr{A} is Σ-separable, thus also $a \in\{x\} \vee\left(\{y\} \cap C_{\mathscr{A}}(a, x)\right)$. Since $a \neq x$, this yields $\{y\} \cap C_{\mathscr{A}}(a, x) \neq \emptyset$, thus $y \in C_{\mathscr{A}}(a, x)$ which proves (b).

Definition 2. Let ϱ be a binary relation on A. We say that ϱ is weakly transitive if for each pairwise different elements $a, b, c \in A,\langle a, b\rangle \in \varrho$ and $\langle b, c\rangle \in \varrho$ imply $\langle c, a\rangle \notin \varrho$.

Corollary 1. Let $\mathscr{A}=(A,\{\varrho\})$ be an antisymmetrical binary relational system with one weakly transitive relation ϱ and $C_{\Sigma}(\mathscr{A})=\operatorname{Conv} \mathscr{A}$. The following conditions are equivalent:
(1) $\operatorname{Conv} \alpha$ is modular;
(2) Conv \mathscr{A} is distributive;
(3) for any pairwise different elements $a, b, c \in A$ we have $\langle a, b\rangle \notin \varrho$ or $\langle b, c\rangle \notin \varrho$.

Proof. (3) $\Rightarrow(2)$: If \mathscr{A} satisfies (3) then every subset of A is a convex subset, thus $\operatorname{Conv} \mathscr{A}=\operatorname{Exp} A$, i.e. Conv \mathscr{A} is distributive. $(2) \Rightarrow(1)$ is trivial.
$(1) \Rightarrow(3)$. Let Conv \mathscr{A} be modular and let a, x, y be pairwise different elements of A. Suppose $x \varrho a$ and $a \varrho y$. Then $a \in C_{\mathscr{A}}(x, y), a \notin x$ and $y \notin C_{\mathscr{A}}(x, a)$ with respect to antisymmetry and weak transitivity of ϱ. Hence (b) of Theorem 2 is not valid. Moreover, \mathscr{A} is Σ-separable by Theorem 3 in [2] and, by Lemma $1, C_{\Sigma}(\mathscr{A})$ satisfies (i) of Theorem 1, thus we have a contradiction. Hence also (3) is satisfied.

Corollary 2. Let $\mathscr{S}=(S, \leqslant)$ be an ordered set and $C_{\Sigma}(\mathscr{S})=\operatorname{Conv} \mathscr{S}$. The following conditions are equivalent:
(1) $\operatorname{Conv} \mathscr{S}$ is modular;
(2) Conv \mathscr{S} is distributive;
(3) \mathscr{S} does not contain a chain of length greater than two.

Proof. Clearly, any order is weakly transitive, and it is almost trivial to show that (3) of Corollary 1 is equivalent to (3) of Corollary 2 for $\varrho=\leqslant$.

For any group \mathscr{G}, the lattice $N(\mathscr{G})$ of all its normal subgroups is modular and it clearly satisfies (i) of Theorem 1 since $\mathscr{G}_{1} \vee \mathscr{G}_{2}=\mathscr{G}_{1} \cdot \mathscr{G}_{2}$ for each $\mathscr{G}_{1}, \mathscr{G}_{2} \in N(\mathscr{G})$. However, it does not satisfy (ii) of Theorem 1: e.g. for the group $(Z,+)$ of all integers we have $4 \in C_{\mathscr{G}}(2,3)=Z, C_{\mathscr{G}}(4) \neq C_{\mathscr{G}}(2)$ but $3 \notin C_{\mathscr{G}}(2,4)$. This motivates our effort to give another sufficient condition for modularity of $C_{\Sigma}(\mathscr{A})$. (Remark that a group \mathscr{G} is not Σ-separable with respect to $C_{\Sigma}(\mathscr{G})=N(\mathscr{G})$.)

Definition 3. Let $\mathscr{A}=(A, F, R)$ be an algebraic structure of type τ. By a binary formula we mean any formula $G\left(x_{1}, x_{2}, z, f\right)$ or $G\left(x_{1}, x_{2}, z, \varrho\right)$ of the language $L(\tau)$ provided f is a binary term operation of \mathscr{A} or ϱ is a binary relation of R.

Theorem 3. Let $\mathscr{A}=(A, F, R)$ be an algebraic structure and let Σ contain a binary formula $G\left(x_{1}, x_{2}, z, f\right)$ or $G\left(x_{1}, x_{2}, z, \varrho\right)$ such that the following conditions are
satisfied:
(i) if $X, Y \in C_{\Sigma}(\mathscr{A}), \emptyset \neq X \neq Y \neq \emptyset$, then $a \in X \vee Y$ if and only if there exist $b \in X, c \in Y$ such that $G(b, c, a, f)$ or $G(b, c, a, \varrho)$ is satisfied in \mathscr{A};
(ii) for each $a, b, c \in A, a \neq b$, if the formula $G(b, c, a, f)$ or $G(b, c, a, \varrho)$ is satisfied in \mathscr{A} and $C_{\mathscr{A}}(a) \neq C_{\mathscr{A}}(b)$ then $c \in C_{\mathscr{A}}(a, b)$. Then the lattice $\left(C_{\Sigma}(\mathscr{A}), \subseteq\right)$ is modular.

Proof. Let $X, Y, Z \in C_{\Sigma}(\mathscr{A})$ and $X \subseteq Z$. To check modularity of $C_{\Sigma}(\mathscr{A})$ it is enough to consider $\emptyset \neq X \neq Y \neq \emptyset$. Suppose $a \in(X \vee Y) \cap Z$. By (i) there exist $b \in X, c \in Y$ such that some binary formula $G(b, c, a, f)$ or $G(b, c, a, \varrho)$ is satisfied in \mathscr{A}. If $C_{\Sigma}(a)=C_{\mathscr{A}}(b)$ then

$$
a \in C_{\mathscr{A}}(b) \subseteq X \subseteq X \vee(Y \cap Z)
$$

If $C_{\mathscr{A}}(a) \neq C_{\mathscr{A}}(b)$ then, by (ii), $c \in C_{\mathscr{A}}(a, b)$. However, $a \in Z$ and $b \in X \subseteq Z$, thus also $c \in C_{\mathscr{A}}(a, b) \subseteq Z$. Hence, we conclude by (i)

$$
a \in X \vee(Y \cap Z)
$$

proving modularity of $C_{\Sigma}(\mathscr{A})$.
Example 3. If $\mathscr{G}=\left(A, .,^{-1}, e\right)$ is a group and $C_{\Sigma}(\mathscr{G})=N(\mathscr{G})$, take a binary formula $\left(x_{1} \cdot x_{2}=z\right)$. Evidently, for $\mathscr{A}_{1}, \mathscr{A}_{2} \in N(\mathscr{G}), a \in \mathscr{A}_{1} \vee \mathscr{A}_{2}=\mathscr{A}_{1} \cdot \mathscr{A}_{2}$ if and only if there exist $a_{1} \in A_{1}, a_{2} \in A_{2}$ with $a=a_{1} \cdot a_{2}$ and, if $a=b \cdot c$ (i.e. $G(b, c, a,$.$) is$ satisfied in \mathscr{G}) then $c=b^{-1} \cdot a$, thus $c \in C_{\mathscr{A}}(a, b)$. Hence, both (i), (ii) of Theorem 3 are satisfied.

Example 4. It is an easy exercise to verify that the quasiordered set of Example 1 also satisfies the assumptions of Theorem 3 for the binary formula $G\left(x_{1}, x_{2}, z, \varrho\right)=\left(x_{1} \varrho z\right.$ and $\left.z \varrho x_{2}\right)$.

Now, we turn our attention to distributivity of $C_{\Sigma}(\mathscr{A})$.
Theorem 4. Let $\mathscr{A}=(A, F, R)$ be an algebraic structure with the lattice $C_{\Sigma}(\mathscr{A})$ of Σ-closed subsets. If there exists a binary term operation $p(x, y)$ of \mathscr{A} such that
(i) for $B, C \in C_{\Sigma}(\mathscr{A})$ we have $a \in B \vee C$ if and only if $a=p(b, c)$ for some $b \in B$, $c \in C$;
(ii) if $D \in C_{\Sigma}(\mathscr{A})$ and $p(b, c) \in D$ for some $b, c \in A$, then $b, c \in D$, then the lattice $\left(C_{\Sigma}(\mathscr{A}), \subseteq\right)$ is distributive.

Proof. Suppose $B, C, D \in C_{\Sigma}(\mathscr{A})$ and $a \in D \cap(B \vee C)$. Then $a \in D$ and, by (i), there exist $b \in B, c \in C$ with $a=p(b, c)$. Hence also $p(b, c) \in D$ and, by (ii), we have $b \in D, c \in D$. Thus $b \in D \cap B, c \in D \cap C$ and by (i) again, we conclude $a=p(b, c) \in(D \cap B) \vee(D \cap C)$.

Example 5. If \mathscr{L} is a distributive lattice and $C_{\Sigma}(\mathscr{L})=\operatorname{Id} \mathscr{L}$, we can put $p(x, y)=x \vee y$. It is well-known that for $I_{1}, I_{2} \in \operatorname{Id} \mathscr{L}, y \in I_{1} \vee I_{2}$ if and only if $y=i_{1} \vee i_{2}$ for some $i_{1} \in I_{1}, i_{2} \in I_{2}$. Moreover, if $J \in \operatorname{Id} \mathscr{L}$ and $j_{1} \vee j_{2} \in J$ for j_{1}, $j_{2} \in \mathscr{L}$ then $j_{1} \leqslant j_{1} \vee j_{2}, j_{2} \leqslant j_{1} \vee j_{2}$ imply also $j_{1}, j_{2} \in J$.

Thus both assumptions of Theorem 4 are satisfied.
Now, let $\mathscr{A}=(A, F, R)$ be an algebraic structure and let $B \in C_{\Sigma}(\mathscr{A})$ for some given set Σ of open formulas. If there exists an element $b \in A$ such that $B=C_{\mathscr{A}}(b)$, we say that b is a generator of B.

In the remaining part of the paper, denote by Z the set of all integers and suppose $F \neq \emptyset$ for any algebraic structure $\mathscr{A}=(A, F, R)$ under consideration.

Definition 4. An algebraic structure $\mathscr{A}=(A, F, R)$ is called Σ-cyclic if there exist an element $d \in A$, a subset $K \subseteq Z$ and binary integral operations φ, ψ : $K \times K \rightarrow K$ and unary terms $w_{k}(x)$ for $k \in K$ of \mathscr{A} such that
(a) for each $B \in C_{\Sigma}(\mathscr{A})$ there exists $k \in K$ such that $w_{k}(d)$ is a generator of B;
(b) if $w_{m}(d)$ or $w_{n}(d)$ are generators of B or D, respectively, for $B, D \in C_{\Sigma}(\mathscr{A})$, then $w_{\varphi(m, n)}(d)$ or $w_{\psi(m, n)}(d)$ are generators of $B \vee D$ or $B \cap D$, respectively;
(c) $\psi(k, \varphi(m, n))=\varphi(\psi(k, m), \psi(k, n))$ for every $k, m, n \in K$.

The terms $w_{k}(x)$ are called characteristic terms of $C_{\Sigma}(\mathscr{A})$.

Theorem 5. If $\mathscr{A}=(A, F, R)$ is a Σ-cyclic algebraic structure then the lattice $\left(C_{\Sigma}(\mathscr{A}), \subseteq\right)$ is distributive.

Proof. Let \mathscr{A} be a Σ-cyclic algebraic structure and let $w_{k}(x)$ be its characteristic terms for $k \in K \subseteq Z$. Suppose that φ and ψ satisfy (b) and (c) of Definition 4. Let $B, C, D \in C_{\Sigma}(\mathscr{A})$. Suppose that $d \in A$ and $w_{m}(d)$ or $w_{n}(d)$ or $w_{k}(d)$ are generators of B or C or D, respectively. By (a), (b), (c) of Definition 4, we can easily derive

$$
\begin{aligned}
D \cap(B \vee C) & =C_{\mathscr{A}}\left(w_{k}(d)\right) \cap\left(C_{\mathscr{A}}\left(w_{n}(d)\right) \vee C_{\mathscr{A}}\left(w_{m}(d)\right)\right) \\
& =C_{\mathscr{A}}\left(w_{\psi(k, \varphi(m, n))}(d)\right)=C_{\mathscr{A}}\left(w_{\varphi(\psi(k, m), \psi(k, n))}(d)\right) \\
& =\left(C_{\mathscr{A}}\left(w_{k}(d)\right) \cap C_{\mathscr{A}}\left(w_{m}(d)\right)\right) \vee\left(C_{\mathscr{A}}\left(w_{k}(d)\right) \cap C_{\mathscr{A}}\left(w_{n}(d)\right)\right) \\
& =(D \cap B) \vee(D \cap C),
\end{aligned}
$$

i.e. the lattice $\left(C_{\Sigma}(\mathscr{A}), \subseteq\right)$ is distributive.

Example 6. If $\mathscr{G}=(G,$.$) is a cyclic group and C_{\Sigma}(\mathscr{G})=\operatorname{Sub} \mathscr{G}$, put $K=Z$, $w_{k}=x^{k}$ and $\varphi(m, n)=G C D(m, n), \psi(m, n)=\operatorname{LCM}(m, n)$. As an element $d \in G$ we pick up the generator of \mathscr{G}. Evidently, \mathscr{G} is Σ-cyclic.

Example 7. If $\mathscr{A}=(A, f)$ is a monounary algebra and $C_{\Sigma}(\mathscr{A})=\operatorname{Sub} \mathscr{A}$, we can put $K=N \cup\{0\}$ (non-negative integers), $w_{k}(x)=f^{k}(x)$ where $f^{0}(x)=x$ and $f^{k+1}(x)=f\left(f^{k}(x)\right)$ for each $k \in K$. Moreover, put $\varphi(m, n)=\min (m, n)$, $\psi(m, n)=\max (m, n)$. If \mathscr{A} has a unique generator d then \mathscr{A} is Σ-cyclic.

Example 8. Suppose $\mathscr{A}=(A, F, R)$ is an algebraic structure with at least two elements such that F contains a nullary operation c and $f(c, \ldots, c)=c$ for each $f \in F$. Further, suppose $C_{\Sigma}(\mathscr{A})=\{\{c\}, A\}$ (trivially, $C_{\Sigma}(\mathscr{A})$ is distributive). Put $K=\{0,1\}$. If $A \neq\{c\}$, choose $d \neq c, d \in A$ and put $w_{0}(x)=c, w_{1}(x)=d$. Further, let φ and ψ be defined in the same manner as in the foregoing Example 7. Evidently, \mathscr{A} is Σ-cyclic.

References

[1] Chajda I.: A note on varieties with distributive subalgebra lattices. Acta Univ. Palack. Olomouc, Fac. Rer. Natur., Matematica 31 (1992), 25-28.
[2] Chajda I., Emanovský, P.: Σ-isomorphic algebraic structures. Mathem. Bohemica 120 (1995), 71-81.
[3] Emanovský, P.: Convex isomorphic ordered sets. Mathem. Bohemica 118 (1993), 29-35.
[4] Evans T., Ganter B.: Varieties with modular subalgebra lattices. Bull. Austral. Math. Soc. 28 (1993), 247-254.
[5] Jakubíková-Studenovská D.: Convex subsets of partial monounary algebras. Czech. Math. J. 38 (1988), no. 113, 655-672.
[6] Marmazajev V.I.: The lattice of convex sublattices of a lattice. Mezvužovskij naučnyj sbornik 6. Saratov, 1986, pp. 50-58. (In Russian.)

Authors' addresses: Ivan Chajda, katedra algebry a geometrie, přír. fak. UP Olomouc, Tomkova 38, 77900 Olomouc; Petr Emanovský, katedra matematiky, ped. fak. UP Olomouc, Žižkovo nám. 5, 77140 Olomouc.

