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BANACH-VALUED HENSTOCK-KURZWEIL INTEGRABLE

FUNCTIONS ARE MCSHANE INTEGRABLE ON A PORTION
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Abstract. It is shown that a Banach-valued Henstock-Kurzweil integrable function on an
m-dimensional compact interval is McShane integrable on a portion of the interval. As a
consequence, there exist a non-Perron integrable function f : [0, 1]2 −→ 
 and a continuous
function F : [0, 1]2 −→ 
 such that

(P)

∫ x

0

{
(P)

∫ y

0

f(u, v) dv

}
du = (P)

∫ y

0

{
(P)

∫ x

0

f(u, v) du

}
dv = F (x, y)

for all (x, y) ∈ [0, 1]2.
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1. Introduction

It is well known that if f is Denjoy-Perron integrable on an interval [a, b] ⊂ � , then
f must be Lebesgue integrable on a portion of [a, b]. K.Karták [6] asked whether an

analogous result holds for the multiple Perron integral. In a fairly recent paper [1]

Buczolich gave an affirmative answer to this problem using the Henstock-Kurzweil

integral. Nevertheless, his proof depends on the measurability of the integrand.

Since a Banach-valued Henstock-Kurzweil integrable function need not be strongly

measurable, see for instance [4, p. 567], it is natural to ask whether Buczolich’s result

holds for Banach-valued Henstock-Kurzweil integrable functions. In this paper we

give an affirmative answer to this problem. As an application, we answer another

question of K.Karták [6, Problem 9.3] concerning the Perron integral; namely, there

exist a non-Perron integrable function f : [0, 1]2 −→ � and a continuous function
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F : [0, 1]2 −→ � such that

(P)

∫ x

0

{
(P)

∫ y

0

f(u, v) dv

}
du = (P)

∫ y

0

{
(P)

∫ x

0

f(u, v) du

}
dv = F (x, y)

for all (x, y) ∈ [0, 1]2.

2. Preliminaries

Unless stated otherwise, the following conventions and notation will be used. The

set of all real numbers is denoted by � , and the ambient space of this paper is � m ,

where m is a fixed positive integer. The norm in � m is the maximum norm ||| · |||,

where |||(x1, x2, . . . , xm)||| = max
i=1,...,m

|xi|. For x ∈ � m and r > 0, set B(x, r) := {y ∈

� m : |||y−x||| < r}. Let E :=
m∏

i=1

[ai, bi] be a fixed non-degenerate interval in � m . Let

X be a Banach space equipped with a norm ‖ · ‖. A function is always X-valued.

When no confusion is possible, we do not distinguish between a function defined on

a set Z and its restriction to a set W ⊂ Z.

An interval in � m is the cartesian product of m non-degenerate compact intervals

in � , I denotes the family of all non-degenerate subintervals of E. For each I ∈ I,

|I | denotes the volume of I .

A partition P is a collection {(Ii, ξi)}
p
i=1, where I1, I2, . . . , Ip are non-overlapping

non-degenerate subintervals of E. Given Z ⊆ E, a positive function δ on Z is called

a gauge on Z. We say that a partition {(Ii, ξi)}
p
i=1 is

(i) a partition in Z if
p⋃

i=1

Ii ⊆ Z,

(ii) a partition of Z if
p⋃

i=1

Ii = Z,

(iii) anchored in Z if {ξ1, ξ2, . . . , ξp} ⊂ Z,

(iv) δ-fine if Ii ⊂ B(ξi, δ(ξi)) for each i = 1, 2, . . . , p,

(v) Perron if ξi ∈ Ii for each i = 1, 2, . . . , p,

(vi) McShane if ξi need not belong to Ii for all i = 1, 2, . . . , p.

According to Cousin’s Lemma [8, Lemma 6.2.6], for any given gauge δ on E, δ-fine

Perron partitions of E exist. Hence the following definition is meaningful.

Definition 2.1. A function f : E −→ X is said to be Henstock-Kurzweil

integrable (McShane integrable, respectively) on E if there exists A ∈ X with the

following property: given ε > 0 there exists a gauge δ on E such that

∥∥∥∥
p∑

i=1

f(ξi)|Ii| − A

∥∥∥∥ < ε
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for each δ-fine Perron partition (δ-fine McShane partition, respectively) {(Ii, ξi)}
p
i=1

of E. We write A as (HK)
∫

E
f

(
(M)

∫
E

f , respectively
)
.

It is well known that if f is Henstock-Kurzweil integrable on E, then f is Henstock-

Kurzweil integrable on each subinterval J of E. Moreover, the interval function

J 7→ (HK)
∫

J
f is additive on I. This interval function is known as the indefinite

Henstock-Kurzweil integral, or in short the indefinite HK-integral, of f .

Theorem 2.2 (Saks-Henstock Lemma). Let f : E −→ X be Henstock-Kurzweil

integrable on E and let F be the indefinite HK-integral of f . Then given ε > 0 there

exists a gauge δ on E such that

∥∥∥∥
∑

(I,x)∈P

{f(x)|I | − F (I)}

∥∥∥∥ < ε

for each δ-fine Perron partition P in E.

3. Banach-valued Henstock-Kurzweil integrable functions are

McShane integrable on a portion

Theorem 3.1. Let f : E −→ X be Henstock-Kurzweil integrable on E and let F

denote the indefinite Henstock-Kurzweil integral of f . Then the following conditions

are equivalent:

(i) f is McShane integrable on E;

(ii) sup ‖
q∑

i=1

F (Ji)‖ is finite, where the supremum is taken over all finite partitions

{J1, . . . , Jq} of pairwise non-overlapping subintervals of E.

���������
. Since E is compact, the implication (i) =⇒ (ii) follows from [11,

Lemma 28].

(ii) =⇒ (i). Assume (ii). If x ∈ X∗, then x(f) is Henstock-Kurzweil integrable

on E and the indefinite Henstock-Kurzweil integral of x(f) is of bounded variation

on E. The rest of the proof is similar to that of the implication (iii) =⇒ (i) of [2,

Corollary 9]. The proof is complete. �

In view of [3, Proposition 2B], the next theorem is a mild improvement of [2,

Theorem 8].
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Theorem 3.2. Let f : E −→ X be Henstock-Kurzweil integrable on E and let F

denote the indefinite Henstock-Kurzweil integral of f . Then the following conditions

are equivalent:

(i) f is McShane integrable on E;

(ii) F is absolutely continuous on I, that is, given any ε > 0 there exists δ > 0

such that the inequality ‖
p∑

i=1

F (Ii)‖ < ε holds whenever {I1, . . . , Ip} is a finite

collection of pairwise non-overlapping subintervals of E with
p∑

i=1

|Ii| < δ.

���������
. (i) =⇒ (ii). This follows from [11, Lemma 28].

(ii) =⇒ (i). Since E is compact, this follows from Theorem 3.1. �

It is well known that the real-valuedMcShane integral is equivalent to the Lebesgue

integral. For a proof of this result, see, for example, [10]. Hence the following theorem

is a generalization of [1, Theorem]. Recall that a portion of E is a set of the form

E ∩ I , where I is an open interval in � m .

Theorem 3.3. If f : E −→ X is Henstock-Kurzweil integrable on E, then f is

McShane integrable on a portion of E.

���������
. Since f is assumed to be Henstock-Kurzweil integrable on E, the Saks-

Henstock Lemma (Theorem 2.2) holds. Therefore there exists a gauge δ on E such

that ∥∥∥∥
∑

(I,x)∈P

{f(x)|I | − F (I)}

∥∥∥∥ < 1

for each δ-fine Perron partition P in E. For each n ∈ � , we set

Xn =
{
x ∈ E : ‖f(x)‖ < n and δ(x) >

1

n

}
.

Clearly
⋃

n∈ �
Xn = E and hence by Baire’s Category Theorem [5, Theorem 5.2]

there exists N ∈ � such that XN is dense on some J belonging to I. Without loss of

generality we may assume that diam(J) < 1/N , where diam(J) denotes the diameter

of J .

Consider any finite collection {J1, . . . , Jq} of pairwise non-overlapping subintervals

of J . For each i ∈ {1, . . . , q} we invoke the density of XN∩J in J to pick xi ∈ XN∩J .

Since diam(J) < 1/N , we see that {(J1, x1), . . . , (Jq , xq)} is a (1/N)-fine, and hence

δ-fine, Perron partition anchored in XN ∩ J . Hence, by our choice of δ,

∥∥∥∥
q∑

i=1

{f(xi)|Ji| − F (Ji)}

∥∥∥∥ < 1
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and so ∥∥∥∥
q∑

i=1

F (Ji)

∥∥∥∥ < 1 +

q∑

i=1

‖f(xi)‖|Ji| < 1 + N |J |.

As {J1, . . . , Jq} is an arbitrary finite collection of pairwise non-overlapping subinter-

vals of J , an appeal to Theorem 3.1 completes the proof of the theorem. �

In [7], Kurzweil and Jarník proved that if f is a real-valued Henstock-Kurzweil

integrable function on E, then there exists an increasing sequence {Xn}
∞
n=1 of closed

sets whose union is E, and for each n ∈ � , f is Lebesgue integrable on Xn. Hence

it is natural to pose the following problem.
�������������

3.4. Let f : E −→ X be Henstock-Kurzweil integrable on E. Can we

find an increasing sequence {Xn}
∞
n=1 of closed sets whose union is E, and for each

n ∈ � , f is McShane integrable on Xn?

4. On a question of K.Karták concerning the Perron integral

K.Karták posed the following problem for the Perron integral:
�������������

4.1 [6, Problem 9.3]. Is there a function f : [0, 1]2 −→ � such that

(P)

∫ x

0

{
(P)

∫ y

0

f(u, v) dv

}
du = (P)

∫ y

0

{
(P)

∫ x

0

f(u, v) du

}
dv = F (x, y)

for all (x, y) ∈ [0, 1]2 and that the function F is continuous on [0, 1]2 while f is not

Perron integrable on [0, 1]2?

Recall that the real-valued Henstock-Kurzweil integral is equivalent to the Perron

integral. Hence we may use the Henstock-Kurzweil integral to answer the above

question of K.Karták.

Theorem 4.2. There exist f : [0, 1]2 −→ � and a continuous function F :

[0, 1]2 −→ � such that

(HK)

∫ x

0

{
(HK)

∫ y

0

f(u, v) dv

}
du = (HK)

∫ y

0

{
(HK)

∫ x

0

f(u, v) du

}
dv(1)

= F (x, y)

for all (x, y) ∈ [0, 1]2 but f is not Henstock-Kurzweil integrable on [0, 1]2.
���������

. Let f be given as in [12, Chapter VI]. Then there exist a continuous

function F : [0, 1]2 −→ � and f : [0, 1]2 −→ � such that
∂2F (x, y)

∂x∂y
=

∂2F (x, y)

∂y∂x
= f(x, y)
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for all (x, y) ∈ (0, 1)2. Moreover, f is not Lebesgue integrable, and hence not Mc-

Shane integrable, on any non-degenerate subinterval of [0, 1]2. It is clear that (1)

holds for all (x, y) ∈ [0, 1]2. Using Theorem 3.3 with E = [0, 1]2 and X = � , we
conclude that f cannot be Henstock-Kurzweil integrable on [0, 1]2. The proof is

complete.

In view of [9, Theorem 4.3] and [9, Theorem 4.1], we see that every real-valued

indefinite Henstock-Kurzweil integral generates a σ-finite Henstock variational mea-

sure. Thus it is natural to pose the following problem.

�������������
4.3. Let F be given as in Theorem 4.2, and let F̃ be the additive

interval function induced by F . Must the Henstock variational measure VHKF̃ be

σ-finite on [0, 1]2?
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